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PATH FOLLOWING PROBLEM FOR UAV CARRYING PENDULUM

A. S. SHAHINYAN
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The linearized dynamics of a UAV is considered along with a pendulum
hanging from it. The state trajectories of the center of mass of the UAV are given.
Given the trajectory of the center of mass of the UAV and the state trajectory of
its yaw angle, we have to find the control actions and conditions under which
the UAV would follow the path while holding the pendulum stable around its
lower equilibrium point. The problem is solved using the method for solving
inverse problems of dynamics. All the state trajectories of the system and all the
control actions are calculated. The condition is obtained under which a solution
to the path following problem exists. A specified simple trajectory is chosen as
an example for visualizing the results.
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Introduction. Control problems of UAVs have important applications in both
science and life. The history of UAVs, the examination and the research about the
UAVs are thoroughly discussed in [1]. The trajectory tracking and path following
problems of UAVs are extremely relevant. The fact is that such kind of problems are
considered and discussed by a huge number of researchers recently and nowadays.
For an overview of articles in this area, see the survey paper [2].

In this article, the dynamics of a UAV is considered along with a pendulum
hanging from it. The older article [3] is used to represent the linearized dynamics of
the UAV–pendulum system. Then, the state trajectories of the center of mass of the
UAV are given. The problem is to calculate the control actions and conditions under
which the UAV will follow the path, keeping the pendulum in a stable state around the
equilibrium point.

Using the method for solving inverse problems of dynamics, all the state
trajectories of the system and all the control actions are calculated. The results we
gained, that is, the control inputs and state trajectories, are given both in analytic form
and shown in the form of graphs that were generated from virtual simulations for a
specified simple trajectory example.
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Modelling of the System. To derive the purely theoretical dynamics of a
UAV, we fix the coordinate system Oxyz. Let O be the origin. We also need another
coordinate system OBxByBzB fixed at the center of mass OB of the UAV (Fig. 1). The
torques and forces generated by each of the propellers are numbered 1 to 4 [3].

Let ξ = (x y z)T be the coordinates of the center of mass of the UAV relative
to the Oxyz system. By definition, the center of mass of the UAV coincides with the
origin of the OBxByBzB coordinate system. Let us describe the inclined position of the
UAV about the point OB using yaw (Ψ), pitch (Φ) and roll (Θ) angles. Then we will
have two vectors describing the position of the UAV:

ξ = (x y z)T , η = (Φ Θ Ψ)T , (1)

as well as the linear V̄B and angular ν̄ velocities:

V̄B = (V̄Bx V̄By V̄B)
T , ν̄ = (p q r)T . (2)

In this notation, the dynamics of the system is described by the following
system [3, 4]: 
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Here the following notations are adopted:

Cα = cosα, Sα = sinα, M = mUAV +mP,

τB =

τΦ

τΘ

τΨ

=

lk(−ω2
2 +ω2

4 )
lk(−ω2

1 +ω2
3 )

∑
i

τi

 ,

T = ∑
i

Fi = ∑
i

kω
2
i , T̄ = (0 0 T )T .

(4)



58 A. S. SHAHINYAN

Fig. 1.

As for the mathematical model of the pendulum, we will consider its dynamics
in the coordinate system OBxByBzB. So, the dynamics of the pendulum will be as
follows [4]:
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pÿp− (l2
p− x2
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where lp denotes the length of the pendulum. Using the formula for the center of mass
of a system

r̄c =
m1r̄1 +m2r̄2

m1 +m2
,

where r̄c = (xc yc zc)
T , r̄1 = ξ̄ = (x y z)T , and r̄2 = r̄p = (x+ xp y+ yp z+ zp)

T ,
and linearizing the dynamics around the origin of the fixed coordinate system, we get
the following linear dynamics:
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g
2

x8−
g
lp
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where u1 =
T
M
−g, u2 = τΦ, u3 = τΘ, u4 = τΨ, mUAV = mp and the following notations

are introduced:
x1 = xc,x2 = ẋc,x3 = yc,x4 = ẏc,x5 = zc,x6 = żc,x7 = Φ,x8 = Θ,

x9 = Ψ,x10 = p,x11 = q,x12 = r,x13 = xp,x14 = ẋp,x15 = yp,x16 = ẏp.
(7)
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Using Kalman’s rule, one can check that the system (6) is fully controllable. So,
now we are at a point where we can define the problem and we can go ahead to show
how we solved it.

Problem Definition. Given the system (6) and the trajectories of its center of
mass, we have to calculate the control actions ui (i = 1, ...,4) and the conditions under
which the UAV will follow the path, keeping the pendulum stable around its lower
equilibrium point.

In other words, we are given the trajectory of the center of mass of the UAV
and the state trajectory of its yaw angle, and we are required to find the control actions
ui (i = 1, ...,4) and the conditions under which the UAV will fly along the given path
and at the same time maintain the stability of the pendulum at the equilibrium point.

Solution. Suppose the trajectory of the center of mass of the UAV is given as

x1 = g1(t), x3 = g3(t) x5 = g5(t), (8)

and the yaw angle state trajectory is

x9 = g9(t), (9)

where g1(t),g3(t) ∈ C4[0;∞),g5(t),g9(t) ∈ C2[0,∞). Then from the first, third and
fifth equations of the system (6) we will have

x2 = g′1(t), x4 = g′3(t), x6 = g′5(t). (10)

x13 and x15 can be calculated from the second and fourth equations of the system
(6). Hence, we can also get x14 and x16:
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> 0. State trajectories of x7 = Φ pitch and x8 = Θ roll angles can be

gained from the sixteenth and fourteenth equations of the system (6), respectively. We
will have:
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Using the seventh and eighth equations of the system (6), we can acquire x10
and x11:
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4
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g′′′3 (t)−
2
lp

x′15(t), (17)
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4
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It only remains to get x6 and x12, for which we will have:

x6 = g′5(t), (19)

x12 = g′9(t). (20)

Now that we have all the state trajectories of the system (6), we can calculate
the control actions ui (i = 1, ...4). Using Eq. (6) and the Eqs. (8)–(20) we will have:
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u4 = ẋ12 = g′9(t).

(21)

Suppose that the pendulum is allowed to move no more than R(R > 0) from its
equilibrium point. This means that states of the pendulum xp and yp must satisfy the
following inequality:

x2
p + y2

p ≤ R2. (22)

So, in order to ensure that the UAV follows the path given by the functions (8),
we will need to construct the control actions as given in (21).

Numerical Example. To demonstrate the results visually, let’s carry out the
above calculations for a simple case scenario. So, in our example, we will consider
the following path-defining functions:

x1(t) = g1(t) = r sin(ωt)

x3(t) = g3(t) = r cos(ωt)

x5(t) = g5(t) = νt

x9(t) = 0,

(23)

where r = 5 m, ν = 0.1 m/s, ω = 0.5 s−1. As for the other parameters of the
system, we take g = 9.8 m/s2, Ixx = Iyy = 0.004856 kg ·m2, Izz = 0.008801 kg ·m2.
By following the steps outlined in the solution section, we will have our integrated
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system as follows:

x1(t) = 5sin(0.5t)

x2(t) = 2.5cos(0.5t)

x3(t) = 5cos(0.5t)

x4(t) =−2.5sin(0.5t)

x5(t) = 0.1t

x6(t) = 0.1

x7(t) = 0.51cos(0.5t)+2(0.45(−0.29cos(0.5t)+0.29cos(4.43t)))

x8(t) =−0.51sin(0.5t)−2(0.45(−0.29sin(0.5t)+0.03sin(4.43t)))

x9(t) = 0

x10(t) =−0.26sin(0.5t)+0.9(0.14sin(0.5t)−1.27sin(4.43t))

x11(t) =−0.26cos(0.5t)+0.9(0.14cos(0.5t)−0.14cos(4.43t))

x12(t) = 0

x13(t) = 0.45(0.29sin(0.5t)−0.03sin(4.43t))

x14(t) = 2(0.03cos(0.5t)−0.03cos(4.43t))

x15(t) =−0.45(−0.29cos(0.5t)+0.29cos(4.43t))

x16(t) =−2(0.03sin(0.5t)−0.29sin(4.43t)).

(24)

As for the control actions, we will have:

u1(t) = 0

u2(t) =−0.13cos(0.5t)+2018.12(0.45(0.29cos(0.5t)−0.29cos(4.43t)))

+0.9(0.07cos(0.5t)−5.6cos(4.43t))

ue(t) = 0.13sin(0.5t)−2018.12(0.45(0.29sin(0.5t)−0.03sin(4.43t)))

+0.9(0.07sin(0.5t)−0.63sin(4.43t))

u4(t) = 0.
(25)

Fig. 2. Trajectory of center of mass
of the UAV.

Fig. 3. Trajectory of the pendulum.
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So, the maximum deviation of the pendulum from its equilibrium position can
be calculated, and it is equal to R = 0.26 m, which in this case equals to approximately
5.2% of the trajectory radius.

And finally, the results of the above calculations are demonstrated in the form
of graphs (Figs. 2, 3, 4).

Fig. 4. The projection of the absolute motion of the pendulum on the Oxy plane.
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�O�ANAK KRO� AN�DA�OW ���O� SARQI RAGRAYIN �EKAVARMAN

MI XNDIR

Ditarkvowm � an�da�ow ���o� sarqi (A�S) dinamikan nranic kax-

va� g�ayin �o�anaki het: Trva� en A�S-i zangva�neri kentroni heta-

g�i vi�akner�: Trva� en A�S-i zangva�i kentroni hetagi�n ow nra

horanjman asti�ani hetagi��, menq petq � gtnenq ayn �ekavaro� azde-

cow�yownnern ow paymanner�, oronc depqowm A�S-n het elow � trva� heta-

g�in` mia�amanak �o�anak� kayown pahelov ir storin havasarak��ow�-

yan dirqi �owrj: Xndir� low�vowm � dinamikayi xndri low�man hakadar�

e�anakov: Ha�varkva� en hamakargi bolor fazayin koordinatner�  

�ekavaro� azdecow�yownner�: Stacva� � bavarar payman hamakargi`

trva� hetag�ov �ar�velow hamar: A�xatanqi ardyownqner� patkera-

vor nerkayacnelow hamar berva� � �vayin �rinak:

А. С. ШАГИНЯН

ЗАДАЧА СЛЕДОВАНИЯ ПО ТРАЕКТОРИИ БПЛА,
НЕСУЩЕГО МАЯТНИК

Рассмотрена линеаризованная динамика беспилотного летательного
аппарата (БПЛА) с маятником, свисающим с него. Приведены состояния
траектории центра масс БПЛА. Имея траекторию центра масс БПЛА и
траекторию состояния угла рыскания, мы должны найти управляющие
воздействия и условия, при которых БПЛА будет следовать по траектории,
удерживая маятник в устойчивом состоянии вокруг его нижней точки
равновесия. Задача решается методом обратного решения задачи динами-
ки. Рассчитаны все траектории состояний системы и все управляющие
воздействия. Получено условие, при котором существует решение задачи о
пути следования. Заданная простая траектория выбрана в качестве
примера для визуализации результатов.


