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PATH FOLLOWING PROBLEM FOR UAV CARRYING PENDULUM
A.S. SHAHINYAN
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The linearized dynamics of a UAV is considered along with a pendulum
hanging from it. The state trajectories of the center of mass of the UAV are given.
Given the trajectory of the center of mass of the UAV and the state trajectory of
its yaw angle, we have to find the control actions and conditions under which
the UAV would follow the path while holding the pendulum stable around its
lower equilibrium point. The problem is solved using the method for solving
inverse problems of dynamics. All the state trajectories of the system and all the
control actions are calculated. The condition is obtained under which a solution
to the path following problem exists. A specified simple trajectory is chosen as
an example for visualizing the results.
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Introduction. Control problems of UAVs have important applications in both
science and life. The history of UAVs, the examination and the research about the
UAVs are thoroughly discussed in [1]. The trajectory tracking and path following
problems of UAVs are extremely relevant. The fact is that such kind of problems are
considered and discussed by a huge number of researchers recently and nowadays.
For an overview of articles in this area, see the survey paper [2].

In this article, the dynamics of a UAV is considered along with a pendulum
hanging from it. The older article [3] is used to represent the linearized dynamics of
the UAV-—pendulum system. Then, the state trajectories of the center of mass of the
UAV are given. The problem is to calculate the control actions and conditions under
which the UAV will follow the path, keeping the pendulum in a stable state around the
equilibrium point.

Using the method for solving inverse problems of dynamics, all the state
trajectories of the system and all the control actions are calculated. The results we
gained, that is, the control inputs and state trajectories, are given both in analytic form
and shown in the form of graphs that were generated from virtual simulations for a
specified simple trajectory example.
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Modelling of the System. To derive the purely theoretical dynamics of a
UAY, we fix the coordinate system Oxyz. Let O be the origin. We also need another
coordinate system Ox,ypz; fixed at the center of mass O, of the UAV (Fig. 1). The
torques and forces generated by each of the propellers are numbered 1 to 4 [3].

Let & = (x y z)T be the coordinates of the center of mass of the UAV relative
to the Oxyz system. By definition, the center of mass of the UAV coincides with the
origin of the Ozx;yzzs coordinate system. Let us describe the inclined position of the
UAV about the point Oy using yaw (W), pitch (®) and roll (®) angles. Then we will
have two vectors describing the position of the UAV:

E=@xya), n=(@ 0¥, (1)
as well as the linear V; and angular V velocities:
VB = (VBX Vay VB)Ta V= (P q ’")T' ()

In this notation, the dynamics of the system is described by the following
system [3,4]:
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As for the mathematical model of the pendulum, we will consider its dynamics
in the coordinate system Ojpxzyzzz. So, the dynamics of the pendulum will be as
follows [4]:

(
.. 1 4.. 2 I\ . 2 .. 2 I\ .
Xp = vy (X Ep — (1, = ¥ )X — 26, (vppyp — (1, — y,)%p)
p (112)_,_),127)C2 prp P p/op p\IPpPIP P p/p

+35(7 +yp¥p+ (8 +2)) +xp(—Lypdp + o3 + y3 (55 + £ (g +2))
+ (=0 —y5—L(g+7))))

. 1 4. N 2 L. 2 on..
Vp = W(_ypyp — (I —x35)%p — 2y, (xptpyp — (1, — x,)¥p)

(&)

—|—y§,(xf, +xpip +C(g+7)) "'J’p(_lgxpxp +Xfop "‘X;ZJ()}% +C(g+72))

+ (=i =37 = L (g +2)),
where [, denotes the length of the pendulum. Using the formula for the center of mass
of a system

_ i +man
fo=—"-
my +myp
where 7, = (x, ye z0) ., Ai=E=(xy )T, and i =7, = (x+x, y+y, 2+2,)7,
and linearizing the dynamics around the origin of the fixed coordinate system, we get
the following linear dynamics:

X1 =Xp,X = gxs — ixn X3 = X4,X4 = —§x7 - i9615 X5 = Xg,X6 = U1
’ 4 21, ’ ’ 4 21, ’ ’ ’
. . . . 8 . 8 .
X7 = X10,%8 = X11,X9 = X12,X10 = U2 — fx15,xll =us— X3k =17 (6)
xx yy 2z
. & &8 8
X13 = X14,X14 = — X8 — —X13,X15 = X16,X16 = 5X7 — XI5,
27, 27,

T . .
where u; = - 8, Ur = Tg, U3 = To, U4 = Ty, Mys = M, and the following notations
are introduced:

X1 = X¢, X2 :xc‘vx?) =Yc, X4 = ymxS = ¢y X6 = ZCax7 = (I)rxs = ®a

(7)

x9 =¥, x10 = p,x11 = q,X12 = 1,X13 = Xp,X14 = Xp,X15 = Yp,X16 = Vp-
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Using Kalman'’s rule, one can check that the system (6) is fully controllable. So,
now we are at a point where we can define the problem and we can go ahead to show
how we solved it.

Problem Definition. Given the system (6) and the trajectories of its center of
mass, we have to calculate the control actions u; (i =1,...,4) and the conditions under
which the UAV will follow the path, keeping the pendulum stable around its lower
equilibrium point.

In other words, we are given the trajectory of the center of mass of the UAV
and the state trajectory of its yaw angle, and we are required to find the control actions
u; (i=1,...,4) and the conditions under which the UAV will fly along the given path
and at the same time maintain the stability of the pendulum at the equilibrium point.

Solution. Suppose the trajectory of the center of mass of the UAV is given as

x1 = g1(t), x3 = g3(t) xs = gs(1), 3)
and the yaw angle state trajectory is
= go(1), )
where g1(t),g3(t) € C*0;0),85(t),g0(t) € C*[0,0). Then from the first, third and
fifth equations of the system (6) we will have
X = gy (t), xa = g5(1), x6 = g5(1). (10)
x13 and x5 can be calculated from the second and fourth equations of the system
(6). Hence, we can also get x4 and x¢:

t
X13 :x13(0) COS(kt) + X14k %/ t— )d (11)
0
t
x15 = x15(0) cos(kt)+x16k sin(kt) — %/ (t—1)g5(7)dr, (12)
0
x14 = —x13(0)ksin(kt) 4 x14 cos(kr) 2/005 (t—1)g](t)dr, (13)
0
%16 = —x15(0)ksin(ke) -+ x16 cos(kr) — 2 / cos(t — 7)gl()dx, (14)
0
28

where k> = =2 > 0. State trajectories of x; = @ pitch and xg = ® roll angles can be

P
gained from the sixteenth and fourteenth equations of the system (6), respectively. We

will have:
4 , 2

X7 = —§g3 (1)— Exls(t)v (15)
4 2

Xg = fg'{(t)+—x13(t). (16)
8 lp
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Using the seventh and eighth equations of the system (6), we can acquire xjg
and xp;:
4 2

x10 = —g3 (1) — —x5(1), (17)
4 lp
4 2

x11 = —g{'(t) + —x5(t). (18)
8 lp

It only remains to get xg and x;,, for which we will have:
x6 = g5(1), (19)
x12 = go(t). (20)

Now that we have all the state trajectories of the system (6), we can calculate
the control actions u; (i = 1,...4). Using Eq. (6) and the Egs. (8)—(20) we will have:

uy = x¢ = g5 (1)
. g 4 2, g

Uy = %10+ —x15 = —— gy (1) — —i15 + >x15(t)

L 8 lp Ly

(21)

s = iy + Sxpy = igiv(t) - E56'13 + é1613(t)

Iyy 8 lp 1yy
Ug = X120 = glg(l‘).

Suppose that the pendulum is allowed to move no more than R(R > 0) from its
equilibrium point. This means that states of the pendulum x,, and y, must satisfy the
following inequality:

X +y, <R (22)

So, in order to ensure that the UAV follows the path given by the functions (8),
we will need to construct the control actions as given in (21).

Numerical Example. To demonstrate the results visually, let’s carry out the
above calculations for a simple case scenario. So, in our example, we will consider
the following path-defining functions:

x1(t) = g1(t) = rsin(wt)

x3(t) = g3(t) = rcos(ot)

xs5(t) = gs(t) = vt (23)
x9(1) =0,

where r =5 m, v =0.1 m/s, @ = 0.5 s~!. As for the other parameters of the

system, we take g = 9.8 m/s?, I, = I, = 0.004856 kg - m?, I, = 0.008801 kg - m.
By following the steps outlined in the solution section, we will have our integrated
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system as follows:

(

x1(t) = 5sin(0.5¢7)

x2(t) = 2.5¢0s(0.5¢)

x3(t) = 5cos(0.5¢)

x4(t) = —2.5sin(0.5¢)

xs(t) =0.1¢

x6() = 0.1

x7(t) = 0.51co0s(0.5¢) +2(0.45(—0.29co0s(0.5¢) +0.29cos(4.43¢)))
%5(r) = —0.515in(0.51) ~2(0.45(-0.295in(0.51) +0.03sin(4.43))
X9(t) =0

x10(t) = —0.26sin(0.5¢) +0.9(0.14sin(0.5¢) — 1.27sin(4.43t))
x11(t) = —0.26¢0s(0.5¢) +0.9(0.14 cos(0.5¢) — 0.14 cos(4.43t))
x12(1) =0

x13(t) = 0.45(0.29sin(0.5¢) — 0.03 sin(4.43¢))

x14(t) = 2(0.03 cos(0.5¢) — 0.03 cos(4.431))

x15(t) = —0.45(—0.29co0s(0.5¢) +0.29 cos(4.43¢) )

x16(t) = —2(0.035in(0.5¢) — 0.29sin(4.43)).

As for the control actions, we will have:

u(t)=0

ur(t) = —0.13cos(0.57) +2018.12(0.45(0.29 cos(0.5¢) — 0.29cos(4.43t)) )
+0.9(0.07cos(0.5¢) — 5.6cos(4.43¢))

u.(t) = 0.13sin(0.5¢) —2018.12(0.45(0.29sin(0.5¢) — 0.03 sin(4.431)))
+0.9(0.07sin(0.5¢) — 0.63sin(4.43¢))

ug(t) = 0.

(25)

0
xislt] ¥ xolt
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Fig. 3. Trajectory of the pendulum.

Fig. 2. Trajectory of center of mass
of the UAV.
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So, the maximum deviation of the pendulum from its equilibrium position can
be calculated, and it is equal to R = 0.26 m, which in this case equals to approximately
5.2% of the trajectory radius.

And finally, the results of the above calculations are demonstrated in the form
of graphs (Figs. 2, 3, 4).

Fig. 4. The projection of the absolute motion of the pendulum on the Oxy plane.

Received 15.03.2021
Reviewed 29.03.2021

Accepted 12.04.2021

REFERENCES

1. Shahinyan A.S. Hybrid Control of Motion of an Unmanned Aerial Vehicle, Carrying an
Inverted Pendulum. Proc. NAS RA. Mechanics 73 : 2 (2020), 69-78.

2. Rubi B., Perez R., Morcego B. A Survey of Path Following Control Strategies for UAVs
Focused on Quadrotors. J. Intell. Robot. Syst. 98 (2020), 241-265.
http://doi.org/10.1007/s10846-019-01085-z

3. Luukkonen T. Modelling and Control of Quadcopter. School of Science. Mat-2.4108,
Independent Research Project in Applied Mathematics. Espoo, 22.09.2011, 26 p.

4. Buchholz N.N. The Main Course of Theoretical Mechanics. V. 2. Moscow, Nauka (1972),
332 p. (in Russian).


http://doi.org/10.1007/s10846-019-01085-z

PATH FOLLOWING PROBLEM FOR UAV CARRYING PENDULUM 63

W U. sUSNPL3UL

SNSULUY 4NN WLOYURNE 2NN UUNMRh TLUG USPL ABUUJUNUUL
Ub luLAbhP

Yhyrwpyynud £ wbonwgnt posnn uwpph (WE-U) nhtwdhyud dpubhg up-
Jwd qdwyhlt nGwbwyh htigp: Spywd G WE-U-h qubqusttipnh Yayppnbh higpwu-
goh Jhtwyitipp: Spwo tb WEU-h quiqudh Yayppnoh htpughdt n tpw
hnpuwbodwd wuphdwbh htiqpughdp, dtbp wtpp L qupotip wyb nbljugunpnn wgnbi-
gnipynibbtint n wuydwbbtinp, npnoig nhiypnid WE-U-0 htaplutjn £ yqppdwd htgpuw-
gdoht’ shwdwiwbwl dndwhwlp Juynih wwhtny hp uipnphtt hwjwuwpulpnnie-
Jub nhpph pnipg: folnhpp (ndynud £ nhtwdhluyh funph imddwb hwlunwpa
tnubwyny: Swoqupyuwd G hwiwlupgh pninp $wquyht Ynnpnhbunpitipp b
ntijujupnn wgntigmpymbttpp: Uypuguwd & pujupup wguydwi hwiwupgh
pnywd htitpugony owpdybynt hwdwn: Wohnwipuwbtph wpynibpbtinn wyugpbpu-
Unp Dbpjuyugbbine hwdwp pipgud b pduwyht ophlwy:

A. C. IIATUHAH

SAIAYA CJIEAOBAHINA IIO0 TPAEKTOPUN BILIA,
HECYIIEI'O MASATHUK

Paccmorpena uHeapu3oBaHHasT AUHAMUAKA OECIUIOTHOIO JIETATEILHOIO
annapara (BILJTA) ¢ masgTHEKOM, cBHCAIONMM ¢ Hero. IIpuBejieHbl cocTostHUSE
tpaektopun 1erTpa macc BILJIA. Nmest TpaekTopuio nentpa mace BITJTA u
TPAEKTOPHUIO COCTOSTHUST YIJIa PBICKAHUsS, Mbl JIOJI?KHBI HAUTH YIIPABJISTIONINE
BO3JeiicTBYS U ycaoBus, Ipu KoTopbix BILJTA 6yier ciieoBars 10 TPAEKTOPUH,
yAepKuBas MAATHUK B YCTOWYMBOM COCTOSIHUM BOKPYI' €0 HHUXKHEH TOYKH
paBHOBecHs. 3aJada peraeTcsi MeTOI0M OOpPATHOIO PeIleHns 3a0aUun THHAMU-
KH. PaccuuraHbl Bce TPAeKTOPUU COCTOSIHUN CHCTEMBI W BCE YIIPABJISIONINE
BozelicTBust. Ilosryueno yciioBre, Ipu KOTOPOM CYIIIECTBYET PEIIeHUe 33 1a9H O
IIyTU CJAeJOBaHUs. 3aJaHHasl pOCTasd TPAeKTOpHsl BbIOpaHa B KadecTBe
IIpuMepa JIJisd BU3yaJIu3allun PE3yJ/IbTaTOB.



