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An edge-coloring of a graph G with consecutive integers c,...,c; is called
an interval t-coloring, if all colors are used, and the colors of edges incident
to any vertex of G are distinct and form an interval of integers. A graph G is
interval colorable, if it has an interval t-coloring for some positive integer ¢. In
this paper, we consider the case, where there are restrictions on the edges of the
tree and provide a polynomial algorithm for checking interval colorability that
satisfies those restrictions.
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Introduction. All graphs considered in this paper are undirected (unless
explicitly said), finite, and have no loops or multiple edges. For an undirected graph G,
let V(G) and E(G) denote the sets of vertices and edges of G, respectively. The degree
of a vertex v € V(G) is denoted by di(v). Let T be a tree (a connected undirected
acyclic graph). Let d7(u,v) be the length of the path from the vertex u to the vertex v.
Since T is a tree, there is exactly one path connecting two vertices.

For a directed graph 8 if there is an edge from a vertex u to a vertex v we will
denote it as u — v. The graph G is called the underlying graph of a directed graph 8
ifV(G)=V(G) and E(G) = {(u,v)|iff u — v or v — u} (between any pair of vertices
u and v, if the directed graph has an edge u — v or an edge v — u , the underlying
graph includes the edge (u,v)).

For a tree T and a vertex r, let 7, be the directed graph whose underlying graph
is T and in 7, each edge is directed in such a way that for each vertex v € T, there
is a path in 7, from r to v. We will say that 7, is a rooted tree with a root . Fig. 1
illustrates the rooted tree 7,, with the root v;.
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Let 7, be a rooted tree, the depth of a vertex v, denoted by A(v), is the length of
the unique path from the root r to the vertex v. A vertex u is said to be the parent of
the vertex v, denoted by p(v), if u — v. In that case the vertex v is said to be a child of
the vertex u. The children of a vertex v € V(T;) are the set W C V(T,) of all vertices
w of the tree 7, satisfying the condition v — w. A vertex having no children is said
to be a leaf vertex. Non-root two vertices a,b € V(7,) are said to be sibling vertices
if p(a) = p(b). For a vertex v let S(v) be the subtree induced by all the vertices w
such that there is a path from v to w in 7, [1]. For a non-root vertex v, let U (v) be the
subtree in 7, induced by the subset V(S(v)) U{p(v)} of its vertices. Fig. 2 illustrates
the subtree U(vg): V(U (ve)) = {vi1,ve,v7,V8,V9,V10,V11,V12,V13} and the edges are
all the edges between these vertices.

Fig. 1. A rooted tree T, with the root v;. Fig. 2. The subtree U (ve) in T, .

An edge-coloring of a graph G is an assignment of colors to the edges of the
graph so that no two adjacent edges have the same color. An edge-coloring of a graph
G with colors 1,.. ., is an interval ¢-coloring if all colors are used, and the colors of
edges incident to each vertex of G form an interval of integers. A graph G is interval
colorable, if it has an interval ¢-coloring for some positive integer ¢. The set of all
interval colorable graphs is denoted by 91. The concept of an interval edge-coloring
of a graph was introduced by Asratian and Kamalian [2]. This means that an interval
t-coloring is a function o : E — {1,...,¢} such that for each edge e the color a(e) of
that edge is an integer from 1 to ¢, for each color from 1 to 7 there is an edge with that
color and for each vertex v all the edges incident to v have different colors forming an
interval of integers. For an interval coloring ¢ and a vertex v, the set of all the colors
of the incident edges of v is called the spectrum of that vertex in & and is denoted by
Sq(v). The smallest and the largest numbers in Sq (V) are denoted by Sg (v) and Sq (v),
respectively. o

Interval edge-colorings have been intensively studied in different papers. In [3]
it was shown that every tree is from 1. Lower and upper bounds on the number of
colors in interval edge-colorings were provided in [4] and the bounds were improved
for different graphs: planar graphs [5], r-regular graphs with at least 2r + 2 vertices [6],
cycles, trees, complete bipartite graphs [3], n-dimensional cubes [7, 8], complete
graphs [9, 10], Harary graphs [1 1], complete k-parite graphs [12].

In this paper, we consider the case, where there are restrictions on the edges and
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the problem is to find an interval 7-coloring that meets those restrictions. Colorings
with restrictions (also known as list colorings and list edge-colorings) were first studied
in 1970s in the independent papers [13] and [14]. In [15] a solution for the simplified
version of this problem was provided when the restrictions are on the spectrums, the
restrictions are strict, and all the spectrums contain the color 1. In [4] and [16] it
was shown that for bipartite graphs with maximum degree equal to 3 and with strict
restrictions on spectrums the problem of finding an interval ¢-coloring that meets the
restrictions is an NP-complete [17, 18] problem. The problem, where the restrictions
are on spectrums can be reduced to the problem, when the restrictions are on the edges.
In [19] another problem with restrictions is considered for bipartite graphs, where the
restrictions are provided for one “part” of the bipartite graph.

Simplifying the Algorithm. Given a graph G and for each edge ¢ € E(G) of
the graph there is a restriction R(e) = [I(e),r(e)]. For a given t we want to answer
whether it is possible to find an interval ¢-coloring & such that for each edge e the
color a(e) is inside the restricted range /(e) < a(e) < r(e). For a given ¢ let P,(G,R)
be a function, which answers that question:

P(G.R) = {1

0, otherwise.

For an interval f-coloring we need to use all the colors from 1 to ¢ and only those
colors. We now want to prove that these restrictions are not important for finding a
polynomial algorithm. It means that if for each restriction we can find an interval
edge-coloring that uses only the colors that are at least 1 and are at most ¢, then we
can always modify the restrictions and use the same algorithm to find an interval
t-coloring.

We will say a coloring ¢ is an interval coloring if it uses positive integers and
for each vertex v the spectrum Sy (v) is an interval of integers and all the edges incident
to v have different colors.

, if there is an interval ¢-coloring satisfying the restrictions,

Lemma 1. For a connected graph G and an edge-coloring o, if for every
vertex the colors of the edges incident to that vertex form an interval of integers, then
the set of all colors of G is also an interval of integers.

Proof. We prove this Lemma by induction. Let n = |V (G)|. Let us start with
an arbitrary vertex vi. At each step we are going to add a new vertex that is connected
to one of the previously added vertices and show that the newly formed set is also an
interval (every color between the minimum and maximum is being used). If at the
step k we added vertices vy, ...,V so far then let S; denote the set of colors at that

k
step: Sy = U Sa(vi), and our goal is to show that Sy is an interval of integers for every
i=1

k. The base case of the induction is S, which is equal to S¢(v;) and is an interval
of integers. Suppose we already added vertices vi,vy,..., v, for some k < n and
the set of colors so far is Sx_;, which is an interval of integers by induction. Since
the graph is connected it is possible to find a vertex vy that is connected with an edge
to one of the other vertices in our set. Let Sy = Sx_1 USq (k). Let us say vj and v
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are connected with an edge e = (v}, ), since j < k—1, a(e) € Sx_; and since e is
incident to v, &t(e) € Sg(vk). This means that Sx_1 NSy (v) # @ and since S;_; and
S« (vk) are both intervals of integers then Sy is also an interval of integers, because it
is the union of intervals that have a common point. Hence by induction we can get
that S, is an interval of integers, which is the set of all colors of the graph. O

This Lemma is very similar to the Lemma 1.2.1 from [4], where it is proved for
interval f-coloring with some additional requirements.

Lemma 2. If we can detect in polynomial time for any restriction R whether
it is possible to find an interval coloring that meets the restrictions R, then:

a) We can detect in polynomial time whether it is possible to have a coloring
with restrictions R that uses the color 1.

b) We can detect in polynomial time whether it is possible to have a coloring
with restrictions R that uses the color t and all the colors are less than or equal to t.

Proof. a) Suppose that there is a polynomial algorithm A(G, R) answering
whether there is an interval coloring of G that satisfies the restrictions R. We want
to find an algorithm A (G, R) that answers whether it is possible to have an interval
coloring of G that satisfies the restrictions R and contains an edge with the color 1.
The A;(G,R) could work this way: for every edge e, if 1 € [I(e),r(e)], then we could
make r(e) = 1 and get a different restriction R,, where /(e¢) = 1 and r(e) = 1 and run
the algorithm A with restrictions R,. This means that for each such edge e we would
run the algorithm A(G,R,) and since the number of edges is |E(G)| we would run
the algorithm A with different restrictions at most |E(G)| times, and if for some e
we detect that A(G,R,) = 1, then A;(G,R) = 1, otherwise, A|(G,R) = 0. Hence the
algorithm A; (G, R) is also polynomial.

b) Similar to the item (a) suppose that there is a polynomial algorithm A(G,R)
answering whether there is an interval coloring of G that satisfies the restrictions R.
We want to find an algorithm A,(G,R) that answers whether it is possible to have
an interval coloring of G that satisfies the restrictions R, there is an edge with the
color ¢, and all the colors are at most ¢. The A;(G,R) could work this way: first we
would transform all the restrictions in R into restrictions R’ in the following way: for
each edge e intersect the restriction [/(e),r(e)] with the interval [1,7] to get a new
restriction [/’ (e),r' (e)]. If the intersection is empty for some edge, then A,(G,R) is 0,
and we no longer need to continue. Otherwise, for all new restrictions in R , ' (e) < 1.
Now on R’ let’s do the following. For every edge e such that t € [I'(e),r (e)], we
could make /'(¢) =t and get a different restriction R’,, where I'(¢) =t and /' (¢) =1,
and run the algorithm A with restrictions R,. This means that for each ¢ we would
run the algorithm A(G,R.) and since the number of edges is |E(G)| we would run
the algorithm A with different restrictions |E(G)| times and if for some e we detect
that A(G,R.) = 1, then A,(G,R) = 1, otherwise, A,(G,R) = 0. Hence the algorithm
A;(G,R) is also polynomial. O

Theorem 1. [f there is a polynomial algorithm that detects whether it is
possible to have an interval edge-coloring for any restrictions R on the edges of a
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connected graph G, then there is a polynomial algorithm that detects whether there is
an interval t-coloring of G for the given restrictions.

Proof. The difference of interval edge-coloring and interval f-coloring is
that the interval 7-coloring should use the colors from 1 to ¢. Since the graph G is
connected, if we ensure that all the colors are from 1 to ¢ and the color 1 and the
color ¢ are used in the interval coloring, then by Lemma 1 the interval coloring will
also be an interval ¢-coloring since all the colors from 1 to ¢ will be used. Similar
to the proofs of the previous Lemmas, let A(G,R) be the algorithm that detects if
the graph can have an interval coloring, A; (G, R) is the algorithm that detects if the
graph can have an interval coloring using the color 1, and A,(G,R) is the algorithm
that detects if there is an interval coloring that uses the color ¢ and all the colors
are less than or equal to z. We want to find an algorithm A; ,(G,R) that answers
whether it is possible to have an interval ¢-coloring of G that satisfies the restrictions R.
The algorithm for A} ,(G,R) could work in this way: first, we would select an edge e
and construct R, restrictions on it such that r(e) = 1 (similar to Lemma 2), then we
would run the algorithm A, (G, R,). If it results to 1 for some e, then A; (G, R) is also
1, otherwise, it is 0. Since we run the algorithm A,(G,R,) at most |E(G)| times and
A;(G,R,) is a polynomial algorithm from Lemma 2, the algorithm A ;(G,R) is also
polynomial. O

Theorem 1 means that we do not need to worry about the interval ¢-coloring
for the restrictions. If we can provide a polynomial algorithm that detects whether
it is possible to find an interval coloring for any given restrictions R, then we can
have a polynomial algorithm that detects if it is possible to find an interval z-coloring.
The Theorem is true for any connected graph.

A Polynomial Algorithm for Interval Edge Colorability of a Tree with
Restrictions on Its Edges. Here we will provide a polynomial algorithm A(7,R),
which for a given tree T will return 1, if it is possible to have an interval edge-coloring
with restrictions R and 0 if it is impossible. From Theorem 1 it follows, that if we can
find such an algorithm, then we can also find a polynomial algorithm that answers
if it is possible to have an interval 7-coloring. We assume that for all the restrictions
I(e) > 1, because we are only interested in colorings with positive integers. We are
only interested to meet the restrictions for each edge and also to make sure that for
every vertex the colors of incident edges are different and form an interval. With-
out loss of generality, we can assume that r(e) < |[V(T)|, because we normally are
interested in interval z-colorings, in which the maximum color can not exceed the
number of edges |E(T')| (since having the color 1 is also required) and in the case
of trees we have |E(T)| = |[V(T)| — 1. We can also assume that each edge has a
restriction, because otherwise we could assume /(e) = 1 and r(e) = |V(T)| for the
edges that do not have restrictions. Now the problem is the following.

Problem. Given an arbitrary tree 7 with N = |V (G)| vertices and given arbitrary
restrictions R for every edge e with 1 </(e) < r(e) < N. Determine whether it is
possible to have an interval coloring @ : E(G) — {1,...,N} such that for each edge e,
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I(e) < a(e) < r(e) and for every vertex v, S¢(v) is an interval (S (v) —Sg(v) +1 =
dr(v) and all the colors from Sg (v) to Sg (v) occur in Sg(v)).

We can assume N > 2, since the case N = 1 is obvious. In that case every tree
with N > 2 has a vertex v with d7 (v) = 1 (a leaf vertex). Let vy be an arbitrary leaf
vertex. Consider the rooted tree 7;,,. Let the vertex connected to vg be v;. In that case
T,, would look like the tree shown in Fig. 3.

Fig. 3. The rooted tree T, Fig. 4. The subtree U (v) with children
Uui,...,ug.

By definition, vo = p(v;) and U (v;) would be the subtree induced by V (S(v;))U
{vo}, hence U (v;) would be the entire 7,,. We are going to solve the problem using a
dynamic programming on trees. For each vertex v and each color ¢ € {1,...,N} we
are going to calculate a value colorable[v][c|, which will be 1, if it is possible to have
an interval coloring on U (v) such that the edge connecting v and p(v) is colored with
the color ¢ and all the restrictions are met on U (v). We are not going to calculate the
value of colorable|vy|[c], because vy does not have a parent. For the entire tree we can
say that it is possible to have an interval coloring that meets all the restrictions, if there
is a color ¢, for which colorable|v;|[c] = 1. If for some color ¢, colorable[v][c] =1
it means that the tree U (v;) has an interval coloring with the edge vo — v having the
color c. It means the entire tree has an interval coloring that meets the restrictions.

In order to calculate colorable[v,][c] we need to calculate these values for all
the children of v; and then based on these values calculate the answers in the vertex v;.
Now suppose that for some vertex v we already calculated the values for its children
ui,...,ux (k=dr(v) —1 and we have all the values colorable|u|[c| forevery 1 <i<k
and 1 < ¢ < N). How can we combine these results to calculate colorable|v]|c] for
every color ¢? Fig. 4 illustrates that subgraph.

For every vertex u that has a parent p(u) we will denote the edge p(u) — u
by e,. Consider all possible combinations of a color c¢ for the edge e, and all the
possible colors cy,...,cx for the edges ey,,...,e, such that /(e,) < c < r(e,) and
colorable[u;][c;] = 1 as illustrated in Fig. 5. If the colors ¢, cy, . .., ¢ are different from
each other and form an interval of integers, then we can say that colorable[v][c] = 1.
Since the restrictions for the edge e, are satisfied, the colors around the vertex v form
an interval of integers, and it is be possible to have interval colorings for the subtrees
U(uy),...,U(ux) with the colors cy,...,c. Fig. 6 illustrates the subtrees that have
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interval colorings.

This means that for every color ¢ such that I(e,) < ¢ < r(e,) we just need to
find some colors cy,...,c; such that colorable[u|[c1] = 1,...,colorable[u][ci] = 1
and the colors c,cy,...,c; form an interval of integers.

C
Fig. 5. Combination of possible colors around
the vertex v.

Fig. 6. The subtrees that we already know
have interval colorings.

Suppose that the minimal color that we want to use for the vertex v is L.
Then c,cy,...,c; should all be colors from [L, L+ k]. It means we have to match a
color from [L, L+ k] that is not ¢ to a vertex u such that all the vertices have different
colors. Let the colors from L to L+ k without the color ¢ be g1,...,gr. We can select
a color g; for a vertex u; only if colorable(u;|[g;] = 1. We can create a bipartite
graph F with vertices u1,. .., u; on the left side and colors gy, ..., g on the right side
and connect a vertex on the left side to a vertex on the right side with an edge, if
colorable(u;|[g;] = 1 as illustrated on Fig. 7.

Fig. 7. The bipartite graph F constructed by the child
vertices and their possible colors.

Suppose that we found a perfect matching M C E(F) in this graph, then we
can represent the matching as a function m with m(u;) = g; if (u;,g;) € M. In that
case, if we color the edge e, with the color ¢ and the edge ¢,, with the color g;,
then all the restrictions will be met, because colorable[u;|[m(u;)] = 1 and the colors
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c,m(uy),...,m(uy) form the interval [L,L + k]. Note that in order to find the perfect
matching we fixed the L, but to calculate for each ¢ such that /(e,) < ¢ < r(e,) we need
to try to find a perfect matching for all possible L suchthat 1 <L <c<L+k <N,
and if for some L we find a perfect matching it means we found a way of coloring the
subtrees S(u;) for the children of v in such a way that all the restrictions are met and
the coloring is an interval coloring.

For each vertex v, we need to calculate maximum matching O(N - dr(v)) times
and the matching algorithm will run for O(dr(v)) vertices. If we use Kuhn’s algorithm
[20] for the maximum bipartite matching, then it will take O(dr (v)?) every time we
run the algorithm, that gives O(N - Z dr(v)*) for the entire algorithm. Note that

veV(T)
Y dr(v)=2-|E(T)|<2-N.
veV(T)
N N
It is easy to prove, that if le- = N and x; > 0, then fo' < N4, because
N 4 i=1 N 41:1
N* = (Z x,~> > YN | x# (if we open the brackets in (Z xi) it will be the sum of
i=1 i=1
x} and other positive members).

This means the complexity of the algorithm is O(N?). If we also want the
coloring to be an interval ¢-coloring, then it can be done in O(N”) by fixing the color
1 and the color ¢ as explained in the proof of the Theorem 1.
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SUNGrh UbQUUUBLUSHL UNIUSPL LEMPUNFULE. GNBrh JdLU
SMJUT UlNUuLuouunruLernd

G gqpwdh UYnnuyhtt GEpynuip hwonppuub phwjwd pytpny cy,...,¢

Unsynud £ dhowluypuyhtt z-d0tpynud, tpt pninp gnydbipp ogypugnpdywd Lo L
guijugwd ququphl Jhg Ynntipp tbpigwd Gb qpuppbp gnybbpng b juqunmd
Ll pwlwd pytiph dhewluyp: G gnudp dhowlw)puyht btipltih L, tph hug-np
t phwuid pyh hwdwp gnynipnid nbh dhowluwypuyhtt #-btpynud: Nnnpjudmd
nhypuplyti £ wyb ntiypp, tipp dwnh 4nnbph ypu ppyud G vwhdwiuthwnudp
U yppyt) £ wyn vwhdwbwhwymibtphtt pujupupnn dhowuypwhtt tbpuwib
gnynipniip upnmgnn puqiutnuduyhl wgnphed:
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A. X. CAAK4H, P. P. KAMAJIAH

UHTEPBAJIbHAA PEBEPHAYAd PACKPACKA JIEPEBBEB C
OI'PAHUYEHUAMI HA PEBPAX

Packpacka pebep rpada G rocie10BaTe/IbHBIMA HEIBIMI YUCIAMHI C1, ..., C;
Ha3bIBAETCsI WHTEPBAJbHON [-PAaCKpPaCKOW, €CJU HCIOJb3YIOTCS BCE I[BETa U
1BeTa pebep, NHIUIEHTHBIX JIF0O0i BepIiinHe rpada G, pasjndHbl 1 00pa3yoT
WHTEPBAJI TeabIX ducesa. ['pad G ABJseTCs MHTEPBAJIBLHO PACKPAIINBAEMbBIM,
€CcJIi OH MMeeT MHTEPBAJILHYIO f-PAaCKPACKY JJIsi HEKOTOPOrO HATYPAJIbLHOIO f.
B pabore paccmarpuBaercs 3a1ada CyneCTBOBAHUSI MHTEPBAJILHON pacKpacKu
JepeBa € 3aJaHHBIMUA OrpaHHYEHUsIMH Ha ero pebpax. [Ipemcrasiien moJm-
HOMMAJIBHBIA aJITOPUTM IPOBEPKU CYIIECTBOBAHUS MHTEPBAJIBHON PACKPACKH,
VIOBJIETBOPSIONIEH STUM OrPAHUICHISIM.



