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PARAMETER ESTIMATION FOR OSCILLATORY SYSTEMS
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Simple harmonic motion was investigated of a rotational oscillating system.
The effect of dumping and forcing on motion of the system was examined and
measurements were taken. Resonance in a oscillating system was investigated
and quality factor of the dumping system was measured at different damping
forces using three different methods. Resonance curves were constructed at
two different damping forces. A probabilistic model was built and system
parameters were estimated from the resonance curves using Stan sampling
platform. The quality factor of the oscillating system when the additional
dumping was turned off was estimated to be Q = 71±1 and natural frequency
ω0 = 3.105±0.008s−1.
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Introduction. The aim of this experiment is to estimate the parameters of the
mechanical oscillating system by taking measurements.

The experiment used a torsion pendulum, a variable frequency motor for driving
force, and an "eddy brake" [1] for dumping. The pendulum mplitude was measures
versus the number of complete oscillations, as well as the damping constant. Res-
onance curves were found at two different damping forces. The quality factor was
measures in three ways: by the decay constant, by resonance amplitude and by the
resonance curve. The Stan package [2] was used to analyze the resonance curve.

This paper is organised as follows. The necessary theory is summarized in the
Section 1. Section 2 describes apparatus used in the experiment, illustrates the method
used and the results of the experiment. Section 3 is dedicated to the derivation of
parameters from the resonance curve. Section 4 discusses the results, and the general
conclusions are presented at the end of the main body of the article.

1. Theoretical Background.
The Equation of Motion. The equation of motion for an undamped torsional

oscillator has the form
Iθ̈ + τθ = 0 , (1)
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where I is the moment of inertial of the oscillator, θ is the angular displacement from
the equilibrium, and τ is the torsion constant. The general solution to this equation is

θ = θ0 cos(ω0t +φ) , (2)

where ω0 =

√
τ

I
is the natural frequency of the oscillator and φ is the initial phase.

The system is damped if there is an opposing force proportional to θ̇ . Now the
equation of motion takes the following form

Iθ̈ +bθ̇ + τθ = 0 , (3)

where b is a constant. Finally, when a sinusoidal driving force with angular frequency
ω is applied, we get

Iθ̈ +bθ̇ + τθ = Acos(ωt) . (4)

In other notation, Eqs. 3 and 4 can be written in the following form

θ̈ +2γθ̇ +ω
2
0 θ = 0 , (5)

θ̈ +2γθ̇ +ω
2
0 θ = f cos(ωt) , (6)

where ω0 =

√
τ

I
is the natural frequency of undamped oscillations, 2γ =

b
I

is a

damping measure and f =
A
I

is a measure of driving amplitude.
Solution of Equation of Motion. The general solution [3] to Eq. 6 is the sum

of the solution of Eq. 5 (called transient response) and a particular solution to Eq. 6
(called steady state or forced response).

The Eq. 5 has three different solutions depending on the magnitude of damping.
These different cases are called underdamped, overdamped and critically damped.
The last one is the special case: a critically damped system does not oscillate, but it
returns to equilibrium faster than an overdamped system.

In the underdamped case, the transient response has the form

θ = θ0 e−γt cos(ω1t) , (7)

where ω1 =
√

ω2
0 − γ2;γ is called the decay constant.

Quality factor is a dimensionless parameter that describes how underdamped
the oscillator is, how well it oscillates [3]. The quality factor Q is defined as

Q =
ω0

2γ
. (8)

For a good oscillators Q� 1.
The forced response has the form

θ(ω) = X(ω)cos(ωt−φ(ω)) , (9)

where ω is the angular frequency of the driving force, and

X(ω) =
f√

(ω2
0 −ω2)2 +(2γω)2

, (10)
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Figure 1: Dependence of amplitude (on the left) and phase difference (on the right) on
the frequency of the driving force.

tanφ(ω) =
2γω

ω2
0 −ω2 . (11)

X(ω) is the amplitude and φ(ω) is the phase difference between the driving force and
oscillatory response. The graphs of these functions are shown in Fig. 1.

X(ω) gets its maximal value

Xmax ≡ X(ωmax) =
f

2γ

√
ω2

0 − γ2

at ωmax =
√

ω2
0 −2γ2 .

(12)

Note that when γ � ω0 we can write

Xmax ≈
f

2γω0
=

f
ω2

0
· ω0

2γ
= X(0) ·Q . (13)

2. Methods and Results.
Apparatus. The experiments were carried out on an oscillatory system

consisting of:

• a bronze disc, which undergoes rotational motion. The restoring couple provided
by a coiled spring is linearly proportional to the angular displacement of the
pendulum, which is measured by the scale around the disc.

• a motor, with frequency control. The pendulum can be driven sinusoidally by
an arm connected to the motor. The frequency of the motor is controlled by the
voltage across it.

• two coils of wire, which form an “eddy brake”, as a damping couple. Increasing
the current in the eddy brake increases the damping of the system.

A detailed diagram of the oscillating system is shown in Fig. 2.
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Figure 2: Diagram of the oscillatory system used in the experiments.

Measurement of Period of the Pendulum. Four time measurements were made
for ten complete periods of the pendulum. The results are shown in Tabs. 1 and 2.

Time for 10 oscillations
20.35 s
20.22 s
20.10 s
20.27 s

Table 1: Measurements
of 10 oscillations.

mean 20.24 s
σ 0.10 s
σm 0.05 s

Period 2.024±0.005 s
Frequency ω1 3.105±0.008 s−1

Table 2: Period and angular frequency
of the pendulum. "Eddy brake" is off.

Even though "eddy brake" is off, i.e. current through it is zero, the damping
force is still present, such as friction in the axle. But it is very small (γ � ω0) so we
can assume ω0 ≈ ω1 (see Eq. (7)).

Measurement of Amplitude. According to the Eq.(7), n-th successive oscillation
has an amplitude

an = a0 e−nγT , (14)

were T =
2π

ω1
is the period and a0 is the initial amplitude. Taking the logarithm on

both sides, we get a linear dependence on n:
ln(an) = ln(a0)−nγT . (15)

The experiment was carried out under two conditions: with no current through
the eddy brake and with a braking current Ib = 0.6A, without driving force. In both
cases the pendulum was released from rest at 10 on the scale.

For more accurate measurements, the process was recorded by a video camera,
then the amplitude was determined by playback in slow motion. The results are shown
in Fig. 3.
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Figure 3: Dependence of ln(amplitude) on the oscillation number n. The relationship
is linear as we would expect from the Eq. (15).

First Estimation of Quality Factor. From Eq. (15) a graph of ln(an) against n
should be a straight line with

slope of the line =−γ T =−γ
2π

ω1
. (16)

For low damping ω1 ≈ ω0, so the slope is approximately −
π

Q
. By statistical analysis

of the data, we got

slope [Ib = 0.0A] −0.044±0.001
slope [Ib = 0.6A] −0.80±0.03

and by assumption slope≈−
π

Q
,

Q [Ib = 0.0A] 71±1
Q [Ib = 0.6A] 3.9±0.1

Forced Oscillations. Now a sinusoidal driving force is applied to the pendulum.
The general solution to the equation of motion (6) is a superposition of the transient
response (7) and the forced response (4). As there is a damping force, the transient
response vanishes over time, and only the forced response remains.
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The experiment was carried out with a damping current of 0.3A and 0.6A. The
frequency of the driving force was changed by the supply voltage and was determined
by taking time of 10 complete rotations of the drive wheel (see the white mark on the
wheel of the motor, Fig. 2).

Resonance Curve. The measurements were made by varying the voltage of the
driving motor, thus changing the frequency of the driving force. After some time, only
the steady state solution (forced response) was seen. The amplitude was measured.

At first measurements were taken over the whole frequency range. Then more
points were taken close to the resonance frequency to define the shape of the resonance
curve more accurately.

The results are shown in Fig. 4 and Tab. 3.

Xmax ωmax

Ib = 0.3A 11.5±0.1 3.11±0.02 s−1

Ib = 0.6A 3.3±0.1 3.05±0.05 s−1

Table 3: Resonance frequency and amplitude at resonance.
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Figure 4: Amplitude of forced oscillations as a function of angular frequency.

Second Estimation of Quality Factor. The quality factor can be estimated using
Eq. (13). But first it needs to estimate X(0).

To measure the amplitude at ω = 0, the drive wheel was slowly rotated by hand
and the maximum displacement of the pendulum was read on both sides of zero.
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The amplitude at ω = 0 was estimated as X(0) = 0.7±0.1. Thus

Q2nd [Ib = 0.3A] 16±2
Q2nd [Ib = 0.6A] 4.7±0.7

3. Statistical Analysis of Resonance Curve.
Model. From our experiment, we have (ωi,Xi) pairs for i = 1, ...,n, where n is

the number of measurements taken. It can be assumed that our measurements come
from the distribution

Xi ∼ P( · |ωi,ω0,X0,γ)≡N(X(ωi; ω0,X0,γ), σ
2) for i = 1, ...,n , (17)

X(ω; ω0,X0,γ) =
X0ω2

0√
(ω2

0 −ω2)2 +(2γω)2
, (18)

where N(µ,σ2) is the Normal distribution and X(ω; ω0,X0,γ) (reparameterized ver-
sion of Eq. (10)) depends only on the parameters ω0, γ and X0. The latter is the
amplitude at zero frequency.

Since our measurements are accurate to 0.1, we take σ = 0.1. Our task is to
estimate the parameters ω0, γ and X0 from the resonance curve (ωi,Xi)1...n. More
formally, find the posterior distribution

ω0, γ, X0 ∼ P( · |ω1...ωn,X1...Xn) . (19)
Unfortunately, the posterior distribution (19) is intractable. Therefore, we do

not have its analytical form for calculating the moments of the parameters.
However, without having explicit form of the posterior distribution, we can

sample from that distribution.
Using Stan Sampling Platform. Stan is a state-of-the-art platform for statistical

modeling and high-performance statistical computation [2]. The Stan language is used
to specify a (Bayesian) statistical model with an imperative program calculating the
log probability density function. More about Stan at mc-stan.org.

From the Bayes theorem

P(ω0,γ,X0 |X1...Xn,ω1...ωn) =
P(X1...Xn |ω0,γ,X0,ω1...ωn) ·P(ω0,γ,X0)

margnal

=

n
∏
i=1

P(Xi |ω0,γ,X0,ωi) ·P(ω0,γ,X0)

margnal
,

(20)

where the first term on the right is defined by our model (Eq. (17)) and the second
term is the prior distribution – the prior confidence in the parameters. We used the
Gamma distribution as a prior. Therefore, all terms in the numerator of Eq. (20) are
defined, so we can do sampling.

Stan uses MC-MC algorithm to draw samples from the distribution (20).
Sampling Results. The mean and standard deviation of the samples were

calculated and the values obtained are shown in Tab. 4. The shape of the curve
corresponding to inferred parameters is shown in Fig. 5 to compare with experimental
data.

mc-stan.org
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Ib = 0.3A Ib = 0.6A

ω0 / s−1 3.10584±0.00012 3.1025±0.0013
γ / s−1 0.09059±0.00016 0.3363±0.0018

X0 ≡ X(0) 0.6675±0.0010 0.708±0.003
Q3rd / s−1 17.14±0.03 4.61±0.02

Table 4: Resonance frequency and amplitude at resonance.
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Figure 5: Resonance curve shape using parameters found by inference.

4. Discussion.
Consistency with Theory. From Fig. 3 we see that the points lie quite well on

the line predicted by Eq. (15). Also, when we increase the damping force, we get a
lower quality factor, as expected from Eq. (8).

In the case of forced oscillations, our resonance curves shown in Fig. 4 have
the same shape as in Fig. 1 derived from theory.

In the case of lower damping, we have a higher resonance amplitude, which is
also consistent with Eq. (10) (also visualized in Fig. 1). However, at lower damping,
we should have a higher resonance frequency, which follows from Eq. (12), but from
the results of Tab. 3 this is not obvious.

Three Estimations of Quality Factor. We have estimated the quality factor in
three different ways at same damping:

• Q = 3.9±0.1 – transient response method,

• Q = 4.7±0.7 – forced response method,

• Q = 4.61±0.02 – resonance curve method.
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The second and third values are consistent with each other. Note that the
large error in the second estimate comes from the measurement of X(0) with high
uncertainty. However, the first and third values are very different, there could have
been systematic error in picking the braking current.

Improvements to the Experiment. At high damping, e.g. Ib = 0.6A, approxima-

tion ω1 =
√

ω2
0 − γ2 ≈ ω0 is not accurate anymore. On the other hand, we can easily

measure the frequency ω1. This way we will get the best Q-factor estimate.
We can construct a better resonance curve (Fig. 4) simply by taking more

measurements. We can also calculate the quality factor from the bandwidth of the
resonance curve [3] and compare it with previous methods.

Conclusion. We have shown that our measurements are consistent with theory,
e.g. exponentially decaying amplitude, shape of the resonance curve. Different meth-
ods have been provided for analyzing measurements and deriving system parameters
such as natural frequency, decaying factor, etc. The probabilistic method for inferring
system parameters gave estimates with high precision. Thus, we can conclude that 10
points of the resonance curve contain all information about the system.
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TATANO�AKAN HAMAKARGERI PARAMETRERI GNAHATOWM�

Owsowmnasirvel � pttakan tatano�akan hamakargi parz ner-

da�nak �ar�owm�: Hetazotvel en maro�  harkadrakan ow�erii azde-

cow�yown� hamakargi vra, in�pes na katarvel en �a�owmner: Ereq tar-

ber me�odnerov hamakarg� ditarkvel � �ezonansayin �e�imowm  maro�

hamakargi tatanowmneri orakakan gor�akic� �a�vel � tarber maro�

ow�eri depqowm: Erkow tarber maro� ow�eri depqowm ka�owcvel en �ezonan-

sayin korer�: �gtagor�elov Stan nmow�a�man mijavayr�` �ezonansayin

koreri himan vra ka�owcvel � havanakanayin model  gnahatvel en hama-

kargi parametrer�: Lracowci� maro� ow�eri bacakayow�yan depqowm

hamakargi tatanowmneri orakakan gor�akic� gnahatvel � orpes

Q = 71±1, isk se�akan ha�axow�yown� orpes ω0 = 3.105±0.008 vrk−1:

А. А. МАТЕВОСЯН, А. Г. МАТЕВОСЯН

ОЦЕНКА ПАРАМЕТРОВ КОЛЕБАТЕЛЬНЫХ СИСТЕМ

Было исследовано простое гармоническое движение вращательно-
колебательной системы. Также исследовались затухание и вынужденные
колебания системы, были произведены измерения. Тремя разными методами
исследовался резонанс в колебательной системе и измерялся коэффициент
качества (добротность) затухающей системы при различных параметрах
затухания. При двух различных демпфирующих силах были построены
резонансные кривые. Построена вероятностная модель и оценены параметры
системы по резонансным кривым с использованием платформы для
отбора Stan. При отсутствии дополнительной силы сопротивления коэф-
фициент качества (добротность) колебательной системы оценивалась в
Q = 71±1, а собственная частота – ω0 = 3,105±0,008 с−1.


