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Simple harmonic motion was investigated of a rotational oscillating system.
The effect of dumping and forcing on motion of the system was examined and
measurements were taken. Resonance in a oscillating system was investigated
and quality factor of the dumping system was measured at different damping
forces using three different methods. Resonance curves were constructed at
two different damping forces. A probabilistic model was built and system
parameters were estimated from the resonance curves using Stan sampling
platform. The quality factor of the oscillating system when the additional
dumping was turned off was estimated to be Q = 71 £ 1 and natural frequency
@p =3.105+£0.008s".
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Introduction. The aim of this experiment is to estimate the parameters of the
mechanical oscillating system by taking measurements.

The experiment used a torsion pendulum, a variable frequency motor for driving
force, and an "eddy brake" [ 1] for dumping. The pendulum mplitude was measures
versus the number of complete oscillations, as well as the damping constant. Res-
onance curves were found at two different damping forces. The quality factor was
measures in three ways: by the decay constant, by resonance amplitude and by the
resonance curve. The Stan package [2] was used to analyze the resonance curve.

This paper is organised as follows. The necessary theory is summarized in the
Section 1. Section 2 describes apparatus used in the experiment, illustrates the method
used and the results of the experiment. Section 3 is dedicated to the derivation of
parameters from the resonance curve. Section 4 discusses the results, and the general
conclusions are presented at the end of the main body of the article.

1. Theoretical Background.

The Equation of Motion. The equation of motion for an undamped torsional
oscillator has the form

164+160=0, (D)
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where [ is the moment of inertial of the oscillator, 6 is the angular displacement from
the equilibrium, and 7 is the torsion constant. The general solution to this equation is

0 = Oycos(wpr +¢) , )

T
where wy = \/; is the natural frequency of the oscillator and ¢ is the initial phase.
The system is damped if there is an opposing force proportional to 8. Now the
equation of motion takes the following form
10+b0+10=0, (3)

where b is a constant. Finally, when a sinusoidal driving force with angular frequency
o is applied, we get

180 +b6 + 10 = Acos(wt) . 4)

In other notation, Eqs. 3 and 4 can be written in the following form
6+2y0 + w26 =0, (5)
6 +2y0 + 06 = fcos(wr) , (6)

T b
where @y = \ﬂ is the natural frequency of undamped oscillations, 2y = 7 is a

damping measure and f = 7 is a measure of driving amplitude.

Solution of Equation of Motion. The general solution [3] to Eq. 6 is the sum
of the solution of Eq. 5 (called transient response) and a particular solution to Eq. 6
(called steady state or forced response).

The Eq. 5 has three different solutions depending on the magnitude of damping.
These different cases are called underdamped, overdamped and critically damped.
The last one is the special case: a critically damped system does not oscillate, but it
returns to equilibrium faster than an overdamped system.

In the underdamped case, the transient response has the form

0 =6pe " cos(m1) , 7

where @) = 4/ a)g — ¥2;v is called the decay constant.

Quality factor is a dimensionless parameter that describes how underdamped
the oscillator is, how well it oscillates [3]. The quality factor Q is defined as

oy

0= 2y ®)
For a good oscillators Q > 1.
The forced response has the form
6(w) = X(w)cos(wt — ¢(@)) ©)
where o is the angular frequency of the driving force, and
f

X(o)=

(10)

V(@ 027+ 2y
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Figure 1: Dependence of amplitude (on the left) and phase difference (on the right) on
the frequency of the driving force.

2yw
2 2

tan¢ (@) = (11)
X (@) is the amplitude and ¢ (@) is the phase difference between the driving force and
oscillatory response. The graphs of these functions are shown in Fig. 1.

X (@) gets its maximal value

_
2yy/ @f — P (12)
at  Opax =/ OF — 27> .

Note that when y < @y we can write

ORI S N
Xois ™ o = o2y = X(0)-0. (13)

Xmax = X(wmax) —

2. Methods and Results.
Apparatus. The experiments were carried out on an oscillatory system
consisting of:

* abronze disc, which undergoes rotational motion. The restoring couple provided
by a coiled spring is linearly proportional to the angular displacement of the
pendulum, which is measured by the scale around the disc.

* a motor, with frequency control. The pendulum can be driven sinusoidally by
an arm connected to the motor. The frequency of the motor is controlled by the
voltage across it.

* two coils of wire, which form an “eddy brake”, as a damping couple. Increasing
the current in the eddy brake increases the damping of the system.

A detailed diagram of the oscillating system is shown in Fig. 2.
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Figure 2: Diagram of the oscillatory system used in the experiments.

Measurement of Period of the Pendulum. Four time measurements were made
for ten complete periods of the pendulum. The results are shown in Tabs. 1 and 2.

Time for 10 oscillations mean 20.24 s
20.35 s c 0.10s
20.22's Om 0.05s
20.10 s Period 2.0244+0.005 s
20.27 s Frequency ®; 3.105+0.008 s!
Table 1: Measurements Table 2: Period and angular frequency
of 10 oscillations. of the pendulum. "Eddy brake" is off.

Even though "eddy brake" is off, i.e. current through it is zero, the damping
force is still present, such as friction in the axle. But it is very small (Y < ay) so we
can assume @y ~ @ (see Eq. (7)).

Measurement of Amplitude. According to the Eq.(7), n-th successive oscillation
has an amplitude

an=age "7, (14)

2n
were T = o is the period and q is the initial amplitude. Taking the logarithm on

both sides, V\}e get a linear dependence on n:
In(a,) = In(ag) —nyT . (15)

The experiment was carried out under two conditions: with no current through
the eddy brake and with a braking current I, = 0.6 A, without driving force. In both
cases the pendulum was released from rest at 10 on the scale.

For more accurate measurements, the process was recorded by a video camera,
then the amplitude was determined by playback in slow motion. The results are shown
in Fig. 3.
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Figure 3: Dependence of In(amplitude) on the oscillation number n. The relationship
is linear as we would expect from the Eq. (15).

First Estimation of Quality Factor. From Eq. (15) a graph of In(a,) against n
should be a straight line with

2n
slope of the line = —y7T = —y; . (16)
1

T
For low damping ®; =~ @y, so the slope is approximately _é . By statistical analysis

of the data, we got

slope [I, = 0.0A] —0.044+0.001
slope [I, = 0.6A]  —0.80+0.03

and by assumption slope ~ —

i

Q

Q[ =0.04] 71+1
Q[ =0.6A] 3940.1

Forced Oscillations. Now a sinusoidal driving force is applied to the pendulum.
The general solution to the equation of motion (6) is a superposition of the transient
response (7) and the forced response (4). As there is a damping force, the transient
response vanishes over time, and only the forced response remains.
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The experiment was carried out with a damping current of 0.3A and 0.6A. The
frequency of the driving force was changed by the supply voltage and was determined
by taking time of 10 complete rotations of the drive wheel (see the white mark on the
wheel of the motor, Fig. 2).

Resonance Curve. The measurements were made by varying the voltage of the
driving motor, thus changing the frequency of the driving force. After some time, only
the steady state solution (forced response) was seen. The amplitude was measured.

At first measurements were taken over the whole frequency range. Then more
points were taken close to the resonance frequency to define the shape of the resonance
curve more accurately.

The results are shown in Fig. 4 and Tab. 3.

Xmax wmax

I,=03A 11.5+0.1 3.11+0.02s7!
I,=06A 33+0.1 3.05+0.05s7!

Table 3: Resonance frequency and amplitude at resonance.

I I I I
—+- braking current = 0.3 A
braking current = 0.6 A

Amplitude / arbitrary units
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Figure 4: Amplitude of forced oscillations as a function of angular frequency.

Second Estimation of Quality Factor. The quality factor can be estimated using
Eq. (13). But first it needs to estimate X (0).

To measure the amplitude at @ = 0, the drive wheel was slowly rotated by hand
and the maximum displacement of the pendulum was read on both sides of zero.
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The amplitude at @ = 0 was estimated as X (0) = 0.7 £0.1. Thus

0¥ [I,=0.34] 16+2
0% I, =0.6A] 4.7+0.7

3. Statistical Analysis of Resonance Curve.

Model. From our experiment, we have (w;,X;) pairs fori = 1,...,n, where n is
the number of measurements taken. It can be assumed that our measurements come
from the distribution

Xi ~ :P( |(0,',CO(),X(),'}/)EN(X(COI';(DO,X(),'}/),O'Z) fori=1,...,n, (17)
Xowg
(18)

V(@ — 0?2+ (270

where N(u, 6?) is the Normal distribution and X (@; @y, Xo,y) (reparameterized ver-
sion of Eq. (10)) depends only on the parameters @y, Y and Xy. The latter is the
amplitude at zero frequency.

Since our measurements are accurate to 0.1, we take o = 0.1. Our task is to
estimate the parameters @y, ¥ and Xy from the resonance curve (®;,X;);..,. More
formally, find the posterior distribution

o, Y, Xo~P(-|o...00,,X1..Xy) - (19)

Unfortunately, the posterior distribution (19) is intractable. Therefore, we do
not have its analytical form for calculating the moments of the parameters.

However, without having explicit form of the posterior distribution, we can
sample from that distribution.

Using Stan Sampling Platform. Stan is a state-of-the-art platform for statistical
modeling and high-performance statistical computation [2]. The Stan language is used
to specify a (Bayesian) statistical model with an imperative program calculating the
log probability density function. More about Stan at mc-stan.org.

From the Bayes theorem

X((D, (X)OaXOa ’}/> =

:P(XIXIZ | Wy, y7X05 (J)l(!)n) : ﬂ)(abv ,)/7X0)
margnal

I—_Il {‘P(Xl ‘ Wy, %X07 C()i) ' (P(CO(), ?’;XO)

:P((X)(), Y,Xo ’X] ...Xn,a)] (Dn) =

(20)

margnal ’

where the first term on the right is defined by our model (Eq. (17)) and the second
term is the prior distribution — the prior confidence in the parameters. We used the
Gamma distribution as a prior. Therefore, all terms in the numerator of Eq. (20) are
defined, so we can do sampling.

Stan uses MC-MC algorithm to draw samples from the distribution (20).

Sampling Results. The mean and standard deviation of the samples were
calculated and the values obtained are shown in Tab. 4. The shape of the curve
corresponding to inferred parameters is shown in Fig. 5 to compare with experimental
data.


mc-stan.org
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I,=03A I, =0.6A

w /s~ 3.1058440.00012 3.1025+0.0013
y/s~'  0.09059+0.00016 0.3363+0.0018
Xo=X(0)  0.6675+0.0010 0.708 +0.003
0¥ g1 17.14+0.03 4.61+0.02

Table 4: Resonance frequency and amplitude at resonance.
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Figure 5: Resonance curve shape using parameters found by inference.

4. Discussion.

Consistency with Theory. From Fig. 3 we see that the points lie quite well on
the line predicted by Eq. (15). Also, when we increase the damping force, we get a
lower quality factor, as expected from Eq. (8).

In the case of forced oscillations, our resonance curves shown in Fig. 4 have
the same shape as in Fig. 1 derived from theory.

In the case of lower damping, we have a higher resonance amplitude, which is
also consistent with Eq. (10) (also visualized in Fig. 1). However, at lower damping,
we should have a higher resonance frequency, which follows from Eq. (12), but from
the results of Tab. 3 this is not obvious.

Three Estimations of Quality Factor. We have estimated the quality factor in
three different ways at same damping:

* 0 =3.940.1 — transient response method,
* Q0 =4.740.7 — forced response method,

* 0 =4.614+0.02 —resonance curve method.
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The second and third values are consistent with each other. Note that the
large error in the second estimate comes from the measurement of X (0) with high
uncertainty. However, the first and third values are very different, there could have
been systematic error in picking the braking current.

Improvements to the Experiment. At high damping, e.g. I, = 0.6A, approxima-

tion W) = 4/ wg — 72 & @y is not accurate anymore. On the other hand, we can easily
measure the frequency @;. This way we will get the best Q-factor estimate.

We can construct a better resonance curve (Fig. 4) simply by taking more
measurements. We can also calculate the quality factor from the bandwidth of the
resonance curve [3] and compare it with previous methods.

Conclusion. We have shown that our measurements are consistent with theory,
e.g. exponentially decaying amplitude, shape of the resonance curve. Different meth-
ods have been provided for analyzing measurements and deriving system parameters
such as natural frequency, decaying factor, etc. The probabilistic method for inferring
system parameters gave estimates with high precision. Thus, we can conclude that 10
points of the resonance curve contain all information about the system.

Received 15.01.2021
Reviewed 29.03.2021

Accepted 12.04.2021

REFERENCES

1. Cadwell L.H. Magnetic Damping: Analysis of an Eddy Current Brake Using an Airtrack.
Am. J. Phys. 64 (1996), 917-923.
http://doi.org/10.1119/1.18122

2. Carpenter B., Gelman A., et al. Stan: A probabilistic programming language. J. Stat.
Softw. 76(1) (2017), 1-32.
http://doi.org/10.18637/jss.v076.i01

3. Feynman R.P,, Leighton R.B., Sands M.L. The Feynman lectures on physics. Reading,
Mass: Addison-Wesley Pub. Co. (1963)


http://doi.org/10.1119/1.18122
http://doi.org/10.18637/jss.v076.i01

140 A. A. MATEVOSYAN, A.G. MATEVOSYAN

U 0. UdEbednusuy, W Q. UdetdNUsuy
sgsuLNIWLUUL SUUwydrasrh MUCUUBSAENh QLUNUSNEULR

Munmuitwuhpyty b yyppuiud pupuinqnujut hwiwupgh wwung otip-
nupbwy swpdnuip: Stpugnpdty G0 dwpnn U hwpunpujub mdtpphh wgnb-
gnipjniip hwdwlupgh ypw, hosytiu twb Jugpwpyty Gb sahnudbitin: Gptip qrup-
ptip dbpnnbtpny hwdwlupgp nhypwpyyt; £ ebignibwbuughtt nidhdnd b dwpnn
hudwlupgh puypubnuittph npujujut gnpowyhgp sunhytby £ qpupptip dwipnn
nidtiph niypnid: Gpyne pupptip dwpnn nudtiph niygpnid junnmigyt) th ntignbwmb-
uwyhll Ynptipp: Ogpugnpdtiny Stan Winpwpiwd thewjuwjpp ntigniwbuwjhb
Unptiph hhdwt ypw Juenigyty L hujuiwubught dnnbp b gbwhunpyty G hudw-
Jupgh wwpwdtipptipp: Lpwgnighs dwpnn nudtiph puguwuynipjud phuypnid
huwdwlupgh pupwinudbtiph npuuyubt gnpdwyhgpn qwhunpytp L npuybu
Q =71+1, huy ubithuljud hwSwhniyeniip nputu @y = 3.105+0.008 py~':

A. A. MATEBOCHH, A.T. MATEBOCAH

OLHEHKA ITAPAMETPOB KOJIEBATEJIBHBIX CHCTEM

Bruto mcciteioBaHo MpocTOE rapMOHUYECKOE JIBUYKEHUE BpalllaTe/bHO-
KoJIebaTeIbHOM cucTeMbl. Tak»Ke UCCIIeI0BAINCh 3aTYXaHUE U BbIHYXKJICHHBIE
KOJIeDaHUS CUCTEMBI, OBLIN ITPOU3BEIEHBI N3MepeHus. T peMs Pa3HbBIMUA METOIAMUI
MCCIEIOBAJICS PE30HAHC B KOJIEOATE/ILHOM CHCTEME U U3MEPSIICs KO3hPuImeHT
KauecTBa (JIOOPOTHOCTH) 3aTyXAIOIIell CUCTEeMbI IPU PA3JIMYHBIX HapaMeTpax
s3aryxanusd. [Ipu IByX pa3inydHbIX JeMIPUDPYIONUX CUIax ObLIN TOCTPOEHBI
pe3oHaHCHBIe KpuBble. [locTpoeHa BepOsSITHOCTHASI MOJIE/Tb 1 OIEHEHBI TaPaMETPhI
CUCTEMBI 110 PE30HAHCHBIM KDPUBBIM C HCIOJb30BAHUEM IJIAT(MOPMBI JIJIs
orbopa Stan. IIpu orcyTcTBUM JOMOTHATETBHON CUIBI COITPOTUBJICHUS KOI(D-
durment kadecrna (I06POTHOCTH) KOIEOATEILHON CHCTEMBI OICHUBAIACH B
Q=71+1, a cobcrBenHas dacrora — Wy = 3,10540,008 ¢!



