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We construct systems of independent defining relations for free Burnside
groups B(m,3) of ranks m = 2,3. The proof for the case m = 2 is established
using the matrix representation of B(2,3). For the case m = 3 the approach is
based on the natural embedding of B(2,3) into B(3,3).

https://doi.org/10.46991/PYSU:A/2021.55.3.153
MSC2010: 20F50; 20F05.

Keywords: independent system of defining relations, free Burnside group,
periodic group, p-group.

Introduction.

Definition 1. Let F,, be the free group of rank m. The quotient group of
Fyn by the normal subgroup F): generated by all elements of the form w", where
w € F,, is called a free Burnside group of period n and rank m. The free Burnside
group of period n and rank m will be denoted as B(m,n).

Definition 2. Let G be given by the presentation G = (X |R = 1,R € R).
The system of defining relations ‘R is called independent if none of its relations is a
consequence of the others.

It is well-known that B(m,3) is a finite group for any m and |B(m,3)| =
3(1)+(3)+(5) (see [1,2]), so it has finite presentation.

Some properties of B(m,3) and their automorphism groups are studied in [3].
In particular, it is proved that the Burnside groups of period 3 possess Magnus’s
property as well as any automorphism of B(m, 3) is a Nielsen automorphism.

In this paper we are concerned with independent systems of defining relations
for B(m,3). V. Shirvanyan proved in [4] that the system of defining relations con-
structed in Adian’s famous monograph [5] is independent for B(m,n) of all odd periods
n > 665 and rank m > 1.

We consider the same problem for B(m,3), where m = 2, 3.
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Lemma 1. B(2,3) = UT3(Z3), where
1 a b

UT3(Z3): 0 1 c|l|ab,ceZs
0 01

is the Heisenberg group over 7.

Proof. First we note that |UT3(Z3)| = 27. Besides, it is easy to show that
1 10 1 0

0
matrices |0 1 O] and [0 1 1] generate UT3(Z3) and also for any
0 0 1 0 01
U € UT;(Z3) we have U® = 1. This implies that 3(273)/1\/ ~ UTs(Z3) for some
normal subgroup N.
But on the other side, |B(2,3
is the trivial subgroup and B(2,3)

| 3()+(G)+() = 33 = 27, which implies that N
UT5(Zs). O
Lemma 2. If G is a group and x; € G, i = 1,...,n, then

ord(x1x2...x,) = ord(XgXps1 - .- XpuX1 ... Xk—1) for any k, 1 <k < n, where ord(x)
denotes the order of x in G.

IIZ =

Proof. The elements x(x;...x, and XgXg11...X,X] ... X;—1 are conjugate. [
Lemma 3. yxy = (xyx)~! for any x,y in B(m,3).
Proof. Immediately follows from (xy)? = 1. O

An independent system for B(2,3). The first Theorem gives a presentation of
the Burnside group of rank 2 and period 3, where the defining relations are indepen-
dent.

Theorem 1. B(2,3) = (x,y|x> = > = (xy)® = (x%y)® = 1); moreover,
indicated four relations are independent.

Proof. Applying Lemma 1, we can consider UT3(Z3) instead of B(2,3).
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Takingx= |0 1 OJandy=|0 1 1], weget
00 1 00 1
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1 20 1 1 2 1 0 2
w=[0 1 1], =101 2|, *»x={0 1 1],
0 0 1 0 0 1 0 0 1
1 01 1 2 2 1 1 2
(x?yx)? 01 2|, x={0 1 2|, (xx)? 01 1],
0 0 1 0 0 1 0 0 1
1 01 1 0 2 1 1 2
xyx? 0 1 1], (xx 01 2],yw*=(01 0},
0 0 1 0 0 1 0 0 1
1 2 1 1 2 2 I 1 1
m?)?=(0 1 0,y *»=(0 1 0, (™ *)?*=[0 1 0],
0 0 1 0 0 1 0 0 1
1 01 1 0 2
xyx2y? 01 0], xx>)2=10 1 0
0 0 1 0 0 1
Thus, = x X ,Y»y xy,( ) » YX, ( )zvxyxa (xyx)2>x2ya
(xzy)z,yxz,(yx2)2,x o, (x yX)z, x, (xy%0)% 2922, (00)2, vy, (yy?)?,

¥y, (yAx2y)?, xyay?, (nyzyz)z}
Since g3 = 1 implies (g 2)3 1, we get the following presentatlon
B(2,3) = (x,y|X’ =y = ()’ = ()’ = (xx)” = (x*y)° ( ?) =
= ()’ = (°x)° = (op?)* = (my*)* = (P)* = (ao®y?)’ =
By Lemma 2 we have

1.

()} =1=(m)’ =1,
()’ =1= ()’ = 1,02 =1,
©r=y=1= (xzy)c)3 =1, (xyx2)3 =1, (yxy ) = 1,(y2x2y)3 =1.
The relation (xy%x)? = 1 also follows from the relations x*> = y* = (xy)? = 1:
ord(xy’x) = ord(y*x?) = ord(y " 'x~!) = ord((xy) 1) = ord(xy) = 3.
Finally, we show that (xyx?y?)? = 1 is a consequence of x* = y? = (xy)* =
(Py) =1
(apx®y?)? = ap?yP ey yPoyay? = x ooy yryxeyyxyrayy =
=x (xxy) ~yyoyyryxyy = x Ty byxooryyxpryy =
)y Ly = 2y,
By Lemma 3, ( xy)? = (xyx)~2 = xyx, so that
(yx®y?)? = 2~ () Py = 2 ooy = 'yt = = 1,
which was to be shown.
Thus, B(2,3) = (x,y|x* =y’ = (xy)’ = (y)* = 1).
It remains to prove that we have got an independent system of defining relations

for B(2,3), that is, no three relations can entirely describe B(2,3).
Consider the group GL(3,C) and take
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143 0 p 0 S 0 1
= 1 3 = 1 +v/3
1. A 0 _i_lz 0 7B 0 —2—17 0 It is
0 0 1 0 0 1
Lo 3o
easily checked that A3 = B® = (AB)? =3, but (A’B)*= [0 1 0 #
0 0 1
I;, where I3 is the identity of GL(3,C).
e 0 0 A 0 1
0 0 1 0 0 1
We get A> = B3 = (A’B)3 = I3, but (AB)® # .
10 —14i3 i 00
34=(o 1 "o |.B= 0 10
00 1 0 0 1
We get B3 = (AB)® = (A’B)® =I5, but A*> # 5.
i 00 0 10 —1+if
4. A= 0 - ,'@ ol.B=1[0 1 0
0 0 1 0 0 1
In this case A3 = (AB)? = (A’B)? = L, while B> # L.
This concludes the Proof. O

An Independent System for B(3,3). We now move on to the Burnside group
of rank 3 and period 3, that is,

B(3,3) = (x,y,z|w’ =1 Yw).
Theorem 2.
B(3,3) = (x,yz| =y =2 = ()’ = ()’ = (220’ = (02)’ =
= ("2’ = ("2)* = (02)’ = (¥y2)’ = (w?2) = P2 = 1)
moreover, indicated thirteen relations are independent.
Proof. Let H denote the subgroup of B(3,3) isomorphic to B(2,3):
H=(xylw'=1 vw)=(xy[x =y = ()’ =) =1).

It is obvious that Vw € B(3,3) w= wizHurz s ..z u,,, where u; € H.

It turns out that the elements of the group B(3,3) can be classified into the
following forms (see [3], Lemma 5):

1.w=u;, where u; € H;

2.w=u1z" uy, where u,ur € H;

3. w=u1zurz" 'uz, where uy,ur,u3 € H.
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For the words in the first case, any relation obviously follows from
P=y =)= (%) =1
As for the second case, we have ord(u;zuy) = ord(zupu, ), also
ord(urz 'up) = ord((u; ") 'z (s ")) = ord(upzuy ) = ord(zuyus).
So the system of relations (zu)? = 1, where u € H, imply all the relations of the form
(u1z5'up)? = 1.
Let’s consider the third case. We have

(zuz" ) = zuz Yvzuz "vzuz 'y = wizwouz lowizwaz T = winiztawaz L,

where

wi=u" v, wa = vuv™ !t = (wau) ™ (vwi) (wan) 1 = (vwr) (wau) (vwr)

wit = u e Y e iy = Y u vuvwyu =

1.,—1 1.,—1

=u v uvuvuvwu=u v vu=1,

hwy = v vuvuwy un Y o = VLfl\/Lt\/Lt172Lt2lfl =

= vu vuwvwuy ' = vty = 1.

Thus we obtained that the relation (zu;z 'up)? = 1 for all uj,up € H

follows from the system of relations (zu)* = 1, u € H, as well.

Then ord(uizuz~'uz) = ord(zuaz~'(uzu;)) = 3, which shows that all the
relations of the third form follow from the same system of relation as in the
second case.

So, we got the presentation of B(3,3):
B(3,3) = (x,yz|x’ =y = (w)* = (%) = ()’ =1, ueH).

We notice that the steps described above can be performed for any rank m
(see [3]), so we can state the following proposition:

Proposition.
B(m,3) = (x1, .5 | Rn_1, (xmt)* = 1,Yu € B(m,3)),

where Ry, is a set of defining relations for B(m — 1,3) naturally embedded into
B(m,3).

Some additional natural calculations lead us to the following presentation:

B(3,3) = (xy,z|xX’ =y’ =2 = ()’ = (%)’ = (x2)’ = (32)* =
= (2’ = ("2)° = (02)’ = (32’ = (w?2) = %2 =1). (D)

We also note that a similar result is obtained in [6] using a different approach,

namely the coset enumeration.

In the mentioned presentation (1) of B(3,3) the relations are independent.
To check this statement, we use GAP system.
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V V. V V Vv
0O T ® H

Below is the GAP code:
FreeGroup(3);;
=f.1;;

= £.2;;

= £.3;;

rels := [a~3, b~3, c~3, (a*b)~3, (a*xc)~3, (b*c)~3, (a~2*b)"3,

(a~2%c)~3, (b~2xc)~3, (axbxc)~3, (a~2xb*c)~3, (axb~2*c)"3,

(b
> g

~2%a~2%c) 3] ;;

:= f / rels;

> Size(g);
2187

V V V V V V V

sizes := [];
for i in [1..13] do

r := Remove(rels, i);
Add(sizes, Size(f/rels));
Add(rels, r, i);

od;
sizes;

[ 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561,
6561, 6561, 6561 ]

Using the fact that the order of B(3,3) is equal to 3(+E+6E) = 2187,

our code shows that the number of relations cannot be reduced, which means they
are independent. 0
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W W AUB rUUSBUHL

3 MULAELAFERSUUR UQUS AENLUUBYBUL URLEBLh NLNTHY
UNLANFEBNFLLEMP WLUUL SUUUUUCNSBh UUURL

m = 2,3 pwbiqtph B(m,3) wqup phnbuwynyud puoiptiph hwdwp dkbp
Jupnignd Glp npnohs wnbgmpnibitiph witup hwdwlupgtin: m = 2 niypmu
wuwwgnygp htinud £ B(2,3)-h dunpphguyht thpjuyugdwd ypw: m = 3 nhypnnd
uklp ogupuugnpdnd tbp B(2,3)-h ptwub Ghipnpnuip B(3,3)-h dbe:

A. A. BAIPAMSIH

O HE3ABUCHMBIX CUCTEMAX OHIPEJEJISIONINX COOTHOIIIEHNII
JIST CBOBOJHBIX BEPHCAMJIOBBIX TI'PYIIII HEPUOJIA 3

MpbI cTpouM HE3aBHCHUMbBIE CHCTEMBI OIIPEIEIAIONINX COOTHOIEHU T J1JIs
cBObO/IHBIX GepHcaiinosbix rpymi B(m,3) panra m = 2,3. Jloka3arejbCTBO J1ist
ciydast m = 2 OCHOBaHO Ha MaTpudHOM mpezcraierun B(2,3). s caygas
m =3 MBI HCIIOJIb3yeM ecTecTBeHHOE BIoxkenne B(2,3) B B(3,3).
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