ON INDEPENDENT SYSTEMS OF DEFINING RELATIONS FOR FREE BURNSIDE GROUPS OF PERIOD 3

A. A. BAYRAMYAN *
Chair of Algebra and Geometry, YSU, Armenia

Abstract

We construct systems of independent defining relations for free Burnside groups $B(m, 3)$ of ranks $m=2,3$. The proof for the case $m=2$ is established using the matrix representation of $B(2,3)$. For the case $m=3$ the approach is based on the natural embedding of $B(2,3)$ into $B(3,3)$.

https://doi.org/10.46991/PYSU:A/2021.55.3.153
MSC2010: 20F50; 20 F05.
Keywords: independent system of defining relations, free Burnside group, periodic group, p-group.

Introduction.

Definition 1. Let F_{m} be the free group of rank m. The quotient group of F_{m} by the normal subgroup F_{m}^{n} generated by all elements of the form w^{n}, where $w \in F_{m}$, is called a free Burnside group of period n and rank m. The free Burnside group of period n and rank m will be denoted as $B(m, n)$.

Definition 2. Let G be given by the presentation $G=\langle X \mid R=1, R \in \mathfrak{R}\rangle$. The system of defining relations \mathfrak{R} is called independent if none of its relations is a consequence of the others.

It is well-known that $B(m, 3)$ is a finite group for any m and $|B(m, 3)|=$ $3\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$ (see $[1,2]$), so it has finite presentation.

Some properties of $B(m, 3)$ and their automorphism groups are studied in [3]. In particular, it is proved that the Burnside groups of period 3 possess Magnus's property as well as any automorphism of $B(m, 3)$ is a Nielsen automorphism.

In this paper we are concerned with independent systems of defining relations for $B(m, 3)$. V. Shirvanyan proved in [4] that the system of defining relations constructed in Adian's famous monograph [5] is independent for $B(m, n)$ of all odd periods $n \geq 665$ and rank $m>1$.

We consider the same problem for $B(m, 3)$, where $m=2,3$.

[^0]Lemma 1. $B(2,3) \cong U T_{3}\left(\mathbb{Z}_{3}\right)$, where

$$
U T_{3}\left(\mathbb{Z}_{3}\right)=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{3}\right\}
$$

is the Heisenberg group over \mathbb{Z}_{3}.
Proof. First we note that $\left|U T_{3}\left(\mathbb{Z}_{3}\right)\right|=27$. Besides, it is easy to show that matrices $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ generate $U T_{3}\left(\mathbb{Z}_{3}\right)$ and also for any $U \in U T_{3}\left(\mathbb{Z}_{3}\right)$ we have $U^{3}=1$. This implies that $B(2,3) / N \cong U T_{3}\left(\mathbb{Z}_{3}\right)$ for some normal subgroup N.

But on the other side, $|B(2,3)|=3\binom{2}{1}+\binom{2}{2}+\binom{2}{3}=3^{3}=27$, which implies that N is the trivial subgroup and $B(2,3) \cong U T_{3}\left(\mathbb{Z}_{3}\right)$.

Lemma 2. If G is a group and $x_{i} \in G, i=1, \ldots, n$, then $\operatorname{ord}\left(x_{1} x_{2} \ldots x_{n}\right)=\operatorname{ord}\left(x_{k} x_{k+1} \ldots x_{n} x_{1} \ldots x_{k-1}\right)$ for any $k, \quad 1 \leq k \leq n$, where $\operatorname{ord}(x)$ denotes the order of x in G.

Proof. The elements $x_{1} x_{2} \ldots x_{n}$ and $x_{k} x_{k+1} \ldots x_{n} x_{1} \ldots x_{k-1}$ are conjugate.
Lemma 3. $y x y=(x y x)^{-1}$ for any x, y in $B(m, 3)$.
Proof. Immediately follows from $(x y)^{3}=1$.
An independent system for $B(2,3)$. The first Theorem gives a presentation of the Burnside group of rank 2 and period 3, where the defining relations are independent.

Theorem 1. $B(2,3)=\left\langle x, y \mid x^{3}=y^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=1\right\rangle ;$ moreover, indicated four relations are independent.

Proof. Applying Lemma 1 , we can consider $U T_{3}\left(\mathbb{Z}_{3}\right)$ instead of $B(2,3)$. Taking $x=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $y=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, we get

$$
\begin{gathered}
x^{2}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), y^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), x y=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),(x y)^{2}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), \\
y x=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),(y x)^{2}=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), x y x=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \\
(x y x)^{2}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), x^{2} y=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(x^{2} y\right)^{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right),
\end{gathered}
$$

$$
\begin{gathered}
y x^{2}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(y x^{2}\right)^{2}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), x^{2} y x=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
\left(x^{2} y x\right)^{2}= \\
x y x^{2}= \\
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), x y^{2} x=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) 2 \\
0
\end{gathered} 0
$$

Thus, $\quad B(2,3)=\left\{1, x, x^{2}, y, y^{2}, x y,(x y)^{2}, y x,(y x)^{2}, x y x,(x y x)^{2}, x^{2} y\right.$, $\left(x^{2} y\right)^{2}, y x^{2},\left(y x^{2}\right)^{2}, x^{2} y x,\left(x^{2} y x\right)^{2}, x y^{2} x,\left(x y^{2} x\right)^{2}, x y x^{2},\left(x y x^{2}\right)^{2}, y x y^{2},\left(y x y^{2}\right)^{2}$, $\left.y^{2} x^{2} y,\left(y^{2} x^{2} y\right)^{2}, x y x^{2} y^{2},\left(x y x^{2} y^{2}\right)^{2}\right\}$.

Since $g^{3}=1$ implies $\left(g^{2}\right)^{3}=1$, we get the following presentation:

$$
\begin{aligned}
& B(2,3)=\langle x, y| x^{3}=y^{3}=(x y)^{3}=(y x)^{3}=(x y x)^{3}=\left(x^{2} y\right)^{3}=\left(y x^{2}\right)^{3}= \\
& \left.=\left(x^{2} y x\right)^{3}=\left(x y^{2} x\right)^{3}=\left(x y x^{2}\right)^{3}=\left(y x y^{2}\right)^{3}=\left(y^{2} x^{2} y\right)^{3}=\left(x y x^{2} y^{2}\right)^{3}=1\right\rangle .
\end{aligned}
$$

By Lemma 2 we have

$$
\begin{gathered}
(x y)^{3}=1 \Rightarrow(y x)^{3}=1 \\
\left(x^{2} y\right)^{3}=1 \Rightarrow(x y x)^{3}=1,\left(y x^{2}\right)^{3}=1 \\
x^{3}=y^{3}=1 \Rightarrow\left(x^{2} y x\right)^{3}=1,\left(x y x^{2}\right)^{3}=1,\left(y x y^{2}\right)^{3}=1,\left(y^{2} x^{2} y\right)^{3}=1
\end{gathered}
$$

The relation $\left(x y^{2} x\right)^{3}=1$ also follows from the relations $x^{3}=y^{3}=(x y)^{3}=1$:

$$
\operatorname{ord}\left(x y^{2} x\right)=\operatorname{ord}\left(y^{2} x^{2}\right)=\operatorname{ord}\left(y^{-1} x^{-1}\right)=\operatorname{ord}\left((x y)^{-1}\right)=\operatorname{ord}(x y)=3 .
$$

Finally, we show that $\left(x y x^{2} y^{2}\right)^{3}=1$ is a consequence of $x^{3}=y^{3}=(x y)^{3}=$ $\left(x^{2} y\right)^{3}=1$.

$$
\begin{gathered}
\left(x y x^{2} y^{2}\right)^{3}=x y x^{2} y^{2} x y x^{2} y^{2} x y x^{2} y^{2}=x^{-1} x x y x x y x y x x y y x y x x y= \\
=x^{-1}(x x y)^{-1} y x y x x y y x y x x y y=x^{-1} y^{-1} x y x y x x y y x y x x y y= \\
=x^{-1} y^{-1}(x y)^{3} y^{-1} x y y x y x x y y=x^{-1} \text { yxyyxyxxyy. }
\end{gathered}
$$

By Lemma 3, $(y x y)^{2}=(x y x)^{-2}=x y x$, so that

$$
\left(x y x^{2} y^{2}\right)^{3}=x^{-1}(y x y)^{2} x x y y=x^{-1} x y x x x y y=y x^{3} y^{2}=y^{3}=1
$$

which was to be shown.
Thus, $B(2,3)=\left\langle x, y \mid x^{3}=y^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=1\right\rangle$.
It remains to prove that we have got an independent system of defining relations for $B(2,3)$, that is, no three relations can entirely describe $B(2,3)$.

Consider the group $G L(3, \mathbb{C})$ and take

1. $A=\left(\begin{array}{ccc}-\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{ccc}-\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 & 1 \\ 0 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$. It is easily checked that $A^{3}=B^{3}=(A B)^{3}=I_{3}$, but $\left(A^{2} B\right)^{3}=\left(\begin{array}{ccc}1 & 0 & -\frac{3}{2}-i \frac{3 \sqrt{3}}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \neq$ I_{3}, where I_{3} is the identity of $G L(3, \mathbb{C})$.
2. $A=\left(\begin{array}{ccc}-\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & -\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ccc}-\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 & 1 \\ 0 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$.

We get $A^{3}=B^{3}=\left(A^{2} B\right)^{3}=I_{3}$, but $(A B)^{3} \neq I_{3}$.
3. $A=\left(\begin{array}{ccc}1 & 0 & -\frac{1}{2}+i \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{ccc}-\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$.

We get $B^{3}=(A B)^{3}=\left(A^{2} B\right)^{3}=I_{3}$, but $A^{3} \neq I_{3}$.
4. $A=\left(\begin{array}{ccc}-\frac{1}{2}+i \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & -\frac{1}{2}+i \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

In this case $A^{3}=(A B)^{3}=\left(A^{2} B\right)^{3}=I_{3}$, while $B^{3} \neq I_{3}$.
This concludes the Proof.
An Independent System for $B(3,3)$. We now move on to the Burnside group of rank 3 and period 3, that is,

$$
B(3,3)=\left\langle x, y, z \mid w^{3}=1 \quad \forall w\right\rangle .
$$

Theorem 2.

$$
\begin{aligned}
& B(3,3)=\langle x, y, z| x^{3}=y^{3}=z^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=(x z)^{3}=(y z)^{3}= \\
& \left.=\left(x^{2} z\right)^{3}=\left(y^{2} z\right)^{3}=(x y z)^{3}=\left(x^{2} y z\right)^{3}=\left(x y^{2} z\right)^{3}=\left(y^{2} x^{2} z\right)^{3}=1\right\rangle
\end{aligned}
$$

moreover, indicated thirteen relations are independent.
Proof. Let H denote the subgroup of $B(3,3)$ isomorphic to $B(2,3)$:

$$
H=\left\langle x, y \mid w^{3}=1 \quad \forall w\right\rangle=\left\langle x, y \mid x^{3}=y^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=1\right\rangle
$$

It is obvious that $\forall w \in B(3,3) w=u_{1} z^{ \pm 1} u_{2} z^{ \pm 1} u_{3} \ldots z^{ \pm 1} u_{m}$, where $u_{i} \in H$.
It turns out that the elements of the group $B(3,3)$ can be classified into the following forms (see [3], Lemma 5):

1. $w=u_{1}$, where $u_{1} \in H$;
2. $w=u_{1} z^{ \pm 1} u_{2}$, where $u_{1}, u_{2} \in H$;
3. $w=u_{1} z u_{2} z^{-1} u_{3}$, where $u_{1}, u_{2}, u_{3} \in H$.

For the words in the first case, any relation obviously follows from $x^{3}=y^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=1$.

As for the second case, we have $\operatorname{ord}\left(u_{1} z u_{2}\right)=\operatorname{ord}\left(z u_{2} u_{1}\right)$, also

$$
\operatorname{ord}\left(u_{1} z^{-1} u_{2}\right)=\operatorname{ord}\left(\left(u_{1}^{-1}\right)^{-1} z^{-1}\left(u_{2}^{-1}\right)^{-1}\right)=\operatorname{ord}\left(u_{2} z u_{1}\right)=\operatorname{ord}\left(z u_{1} u_{2}\right)
$$

So the system of relations $(z u)^{3}=1$, where $u \in H$, imply all the relations of the form $\left(u_{1} z^{ \pm 1} u_{2}\right)^{3}=1$.

Let's consider the third case. We have

$$
\left(z u z^{-1} v\right)^{3}=z u z^{-1} v z u z^{-1} v z u z^{-1} v=w_{1} z w_{2} u z^{-1} v w_{1} z w_{2} z^{-1}=w_{1} t_{1} z t_{2} w_{2} z^{-1}
$$

where

$$
\begin{gathered}
w_{1}=u^{-1} v u, w_{2}=v u v^{-1}, t_{1}=\left(w_{2} u\right)^{-1}\left(v w_{1}\right)\left(w_{2} u\right), t_{2}=\left(v w_{1}\right)\left(w_{2} u\right)\left(v w_{1}\right)^{-1}, \\
w_{1} t_{1}=u^{-1} v u u^{-1} v u^{-1} v^{-1} v u^{-1} v u v u v^{-1} u=u^{-1} v^{2} u^{-2} v u v u v^{-1} u= \\
=u^{-1} v^{-1} u v u v u v v u=u^{-1} v^{-1} v u=1 \\
t_{2} w_{2}=v u^{-1} v u v u v^{-1} u u^{-1} v^{-1} u v^{-1} v u v^{-1}=v u^{-1} v u v u v^{-2} u^{2} v^{-1}= \\
=v u^{-1} v u v u v u u v^{-1}=v u^{-1} u v^{-1}=1 .
\end{gathered}
$$

Thus we obtained that the relation $\left(z u_{1} z^{-1} u_{2}\right)^{3}=1$ for all $u_{1}, u_{2} \in H$ follows from the system of relations $(z u)^{3}=1, u \in H$, as well.

Then $\operatorname{ord}\left(u_{1} z u_{2} z^{-1} u_{3}\right)=\operatorname{ord}\left(z u_{2} z^{-1}\left(u_{3} u_{1}\right)\right)=3$, which shows that all the relations of the third form follow from the same system of relation as in the second case.

So, we got the presentation of $B(3,3)$:

$$
B(3,3)=\left\langle x, y, z \mid x^{3}=y^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=(z u)^{3}=1, \quad u \in H\right\rangle
$$

We notice that the steps described above can be performed for any rank m (see [3]), so we can state the following proposition:

Proposition.

$$
B(m, 3)=\left\langle x_{1}, \ldots x_{m} \mid \mathcal{R}_{m-1},\left(x_{m} u\right)^{3}=1, \forall u \in B(m, 3)\right\rangle,
$$

where \mathcal{R}_{m-1} is a set of defining relations for $B(m-1,3)$ naturally embedded into $B(m, 3)$.

Some additional natural calculations lead us to the following presentation:

$$
\begin{gather*}
B(3,3)=\langle x, y, z| x^{3}=y^{3}=z^{3}=(x y)^{3}=\left(x^{2} y\right)^{3}=(x z)^{3}=(y z)^{3}= \\
\left.=\left(x^{2} z\right)^{3}=\left(y^{2} z\right)^{3}=(x y z)^{3}=\left(x^{2} y z\right)^{3}=\left(x y^{2} z\right)^{3}=\left(y^{2} x^{2} z\right)^{3}=1\right\rangle . \tag{1}
\end{gather*}
$$

We also note that a similar result is obtained in [6] using a different approach, namely the coset enumeration.

In the mentioned presentation (1) of $B(3,3)$ the relations are independent. To check this statement, we use GAP system.

Below is the GAP code:

```
> f := FreeGroup(3);;
> a := f.1;;
> b := f.2;;
> c := f.3;;
> rels := [a^3, b^3, c^3, (a*b)^3, (a*c)^3, (b*c)^3, (a^2*b)^3,
    (a^2*c)^3, (b^2*c)^3, (a*b*c)^3, (a^2*b*c)^3, (a*b^2*c)^3,
    (b^2*a^2*c)^3];;
> g := f / rels;
> Size(g);
    2187
> sizes := [];
> for i in [1..13] do
> r := Remove(rels, i);
> Add(sizes, Size(f/rels));
> Add(rels, r, i);
> od;
> sizes;
    [ 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561,
    6561, 6561, 6561 ]
```

 Using the fact that the order of \(B(3,3)\) is equal to \(3\binom{3}{1}+\binom{3}{2}+\binom{3}{3}=2187\),
 our code shows that the number of relations cannot be reduced, which means they
are independent.

Received 27.09.2021
Reviewed 14.10.2021
Accepted 02.11.2021

REFERENCES

1. Levi F., van der Waerden B.L. Über eine besondere Klasse von Gruppen. Abh. Math. Semin. Univ. Hambg. 9 (1933), 154-158.
https://doi.org/10.1007/bf02940639
2. Hall M. The Theory of Groups. New York, The Macmillan Company (1959).
3. Atabekyan V.S., Aslanyan H.T., Grigoryan H.A., Grigoryan A.E. Analogues of Nielsen's and Magnus's Theorems for Free Burnside Groups of Period 3. Proceedings of the YSU. Physical and Mathematical Sciences 51 (2017), 217-223. https://doi.org/10.46991/PYSU:A/2017.51.3.217
4. Širvanjan V.L. Independent Systems of Defining Relations for a Free Periodic Group of Odd Exponent. Math. USSR-Sb. 29 (1976), 119-122.
https://doi.org/10.1070/SM1976v029n01ABEH003655
5. Adian S.I. The Burnside Problem and Identities in Groups. Berlin-Heidelberg-New York, Springer-Verlag (1979).
6. Leech J. Coset Enumeration on Digital Computers. Mathematical Proceedings of the Cambridge Philosophical Society 59 : 2 (1963), 257-267.
https://doi.org/10.1017/S0305004100036872
U. L. £U3กUU3Lひ

А. А. БАЙРАМЯН
 О НЕЗАВИСИМЫХ СИСТЕМАХ ОПРЕДЕЛЯЮЩИХ СООТНОШЕНИЙ ДЛЯ СВОБОДНЫХ БЕРНСАЙДОВЫХ ГРУПП ПЕРИОДА 3

Мы строим независимые системы определяющих соотношений для свободных бернсайдовых групп $B(m, 3)$ ранга $m=2,3$. Доказательство для случая $m=2$ основано на матричном представлении $B(2,3)$. Для случая $m=3$ мы используем естественное вложение $B(2,3)$ в $B(3,3)$.

[^0]: * E-mail: abayramyan2000@gmail.com

