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We construct systems of independent defining relations for free Burnside
groups B(m,3) of ranks m = 2,3. The proof for the case m = 2 is established
using the matrix representation of B(2,3). For the case m = 3 the approach is
based on the natural embedding of B(2,3) into B(3,3).
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Introduction.

D e f i n i t i o n 1. Let Fm be the free group of rank m. The quotient group of
Fm by the normal subgroup Fn

m generated by all elements of the form wn, where
w ∈ Fm, is called a free Burnside group of period n and rank m. The free Burnside
group of period n and rank m will be denoted as B(m,n).

D e f i n i t i o n 2. Let G be given by the presentation G = 〈X |R = 1,R ∈R〉.
The system of defining relations R is called independent if none of its relations is a
consequence of the others.

It is well-known that B(m,3) is a finite group for any m and |B(m,3)| =
3(

m
1)+(

m
2)+(

m
3) (see [1, 2]), so it has finite presentation.

Some properties of B(m,3) and their automorphism groups are studied in [3].
In particular, it is proved that the Burnside groups of period 3 possess Magnus’s
property as well as any automorphism of B(m,3) is a Nielsen automorphism.

In this paper we are concerned with independent systems of defining relations
for B(m,3). V. Shirvanyan proved in [4] that the system of defining relations con-
structed in Adian’s famous monograph [5] is independent for B(m,n) of all odd periods
n≥ 665 and rank m > 1.

We consider the same problem for B(m,3), where m = 2,3.
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L e m m a 1. B(2,3)∼=UT3(Z3), where

UT3(Z3) =


1 a b

0 1 c
0 0 1

∣∣∣∣∣a,b,c ∈ Z3


is the Heisenberg group over Z3.

P ro o f. First we note that |UT3(Z3)| = 27. Besides, it is easy to show that

matrices

1 1 0
0 1 0
0 0 1

 and

1 0 0
0 1 1
0 0 1

 generate UT3(Z3) and also for any

U ∈ UT3(Z3) we have U3 = 1. This implies that B(2,3)�N
∼= UT3(Z3) for some

normal subgroup N.
But on the other side, |B(2,3)|= 3(

2
1)+(

2
2)+(

2
3) = 33 = 27, which implies that N

is the trivial subgroup and B(2,3)∼=UT3(Z3).

L e m m a 2. If G is a group and xi ∈ G, i = 1, . . . ,n, then
ord(x1x2 . . .xn) = ord(xkxk+1 . . .xnx1 . . .xk−1) for any k, 1 ≤ k ≤ n, where ord(x)
denotes the order of x in G.

P ro o f. The elements x1x2 . . .xn and xkxk+1 . . .xnx1 . . .xk−1 are conjugate.

L e m m a 3. yxy = (xyx)−1 for any x,y in B(m,3).

P ro o f. Immediately follows from (xy)3 = 1.

An independent system for B(2,3). The first Theorem gives a presentation of
the Burnside group of rank 2 and period 3, where the defining relations are indepen-
dent.

T h e o r e m 1. B(2,3) = 〈x,y |x3 = y3 = (xy)3 = (x2y)3 = 1〉; moreover,
indicated four relations are independent.

P ro o f. Applying Lemma 1, we can consider UT3(Z3) instead of B(2,3).

Taking x =

1 1 0
0 1 0
0 0 1

 and y =

1 0 0
0 1 1
0 0 1

, we get

x2 =

1 2 0
0 1 0
0 0 1

 , y2 =

1 0 0
0 1 2
0 0 1

 , xy =

1 1 1
0 1 1
0 0 1

 , (xy)2 =

1 2 0
0 1 2
0 0 1

 ,

yx =

1 1 0
0 1 1
0 0 1

 , (yx)2 =

1 2 1
0 1 2
0 0 1

 , xyx =

1 2 1
0 1 1
0 0 1

 ,

(xyx)2 =

1 1 1
0 1 2
0 0 1

 , x2y =

1 2 2
0 1 1
0 0 1

 , (x2y)2 =

1 1 0
0 1 2
0 0 1

 ,
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yx2 =

1 2 0
0 1 1
0 0 1

 , (yx2)2 =

1 1 2
0 1 2
0 0 1

 , x2yx =

1 0 2
0 1 1
0 0 1

 ,

(x2yx)2 =

1 0 1
0 1 2
0 0 1

 , xy2x =

1 2 2
0 1 2
0 0 1

 , (xy2x)2 =

1 1 2
0 1 1
0 0 1

 ,

xyx2 =

1 0 1
0 1 1
0 0 1

 , (xyx2)2 =

1 0 2
0 1 2
0 0 1

 , yxy2 =

1 1 2
0 1 0
0 0 1

 ,

(yxy2)2 =

1 2 1
0 1 0
0 0 1

 , y2x2y =

1 2 2
0 1 0
0 0 1

 , (y2x2y)2 =

1 1 1
0 1 0
0 0 1

 ,

xyx2y2 =

1 0 1
0 1 0
0 0 1

 , (xyx2y2)2 =

1 0 2
0 1 0
0 0 1

 .

Thus, B(2,3) = {1,x,x2,y,y2,xy,(xy)2,yx,(yx)2,xyx,(xyx)2,x2y,
(x2y)2,yx2,(yx2)2,x2yx,(x2yx)2,xy2x,(xy2x)2,xyx2,(xyx2)2,yxy2,(yxy2)2,
y2x2y,(y2x2y)2,xyx2y2,(xyx2y2)2}.

Since g3 = 1 implies (g2)3 = 1, we get the following presentation:
B(2,3) = 〈x,y |x3 = y3 = (xy)3 = (yx)3 = (xyx)3 = (x2y)3 = (yx2)3 =

= (x2yx)3 = (xy2x)3 = (xyx2)3 = (yxy2)3 = (y2x2y)3 = (xyx2y2)3 = 1〉.
By Lemma 2 we have

(xy)3 = 1⇒ (yx)3 = 1,

(x2y)3 = 1⇒ (xyx)3 = 1,(yx2)3 = 1,

x3 = y3 = 1⇒ (x2yx)3 = 1,(xyx2)3 = 1,(yxy2)3 = 1,(y2x2y)3 = 1.
The relation (xy2x)3 = 1 also follows from the relations x3 = y3 = (xy)3 = 1:

ord(xy2x) = ord(y2x2) = ord(y−1x−1) = ord((xy)−1) = ord(xy) = 3.
Finally, we show that (xyx2y2)3 = 1 is a consequence of x3 = y3 = (xy)3 =

(x2y)3 = 1.
(xyx2y2)3 = xyx2y2xyx2y2xyx2y2 = x−1xxyxxyyxyxxyyxyxxyy =

= x−1(xxy)−1yxyxxyyxyxxyy = x−1y−1xyxyxxyyxyxxyy =

= x−1y−1(xy)3y−1xyyxyxxyy = x−1yxyyxyxxyy.

By Lemma 3, (yxy)2 = (xyx)−2 = xyx, so that
(xyx2y2)3 = x−1(yxy)2xxyy = x−1xyxxxyy = yx3y2 = y3 = 1,

which was to be shown.
Thus, B(2,3) = 〈x,y |x3 = y3 = (xy)3 = (x2y)3 = 1〉.
It remains to prove that we have got an independent system of defining relations

for B(2,3), that is, no three relations can entirely describe B(2,3).
Consider the group GL(3,C) and take
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1. A =

−1
2 + i

√
3

2 0 0
0 −1

2 − i
√

3
2 0

0 0 1

, B =

−1
2 + i

√
3

2 0 1
0 −1

2 − i
√

3
2 0

0 0 1

. It is

easily checked that A3 =B3 =(AB)3 = I3, but (A2B)3 =

1 0 −3
2 − i 3

√
3

2
0 1 0
0 0 1

 6=
I3, where I3 is the identity of GL(3,C).

2. A =

−1
2 − i

√
3

2 0 0
0 −1

2 + i
√

3
2 0

0 0 1

, B =

−1
2 + i

√
3

2 0 1
0 −1

2 − i
√

3
2 0

0 0 1

.

We get A3 = B3 = (A2B)3 = I3, but (AB)3 6= I3.

3. A =

1 0 −1
2 + i

√
3

2
0 1 0
0 0 1

, B =

−1
2 + i

√
3

2 0 0
0 −1

2 − i
√

3
2 0

0 0 1

.

We get B3 = (AB)3 = (A2B)3 = I3, but A3 6= I3.

4. A =

−1
2 + i

√
3

2 0 0
0 −1

2 − i
√

3
2 0

0 0 1

, B =

1 0 −1
2 + i

√
3

2
0 1 0
0 0 1

.

In this case A3 = (AB)3 = (A2B)3 = I3, while B3 6= I3.

This concludes the Proof.

An Independent System for B(3,3). We now move on to the Burnside group
of rank 3 and period 3, that is,

B(3,3) = 〈x,y,z |w3 = 1 ∀w〉.

T h e o r e m 2.

B(3,3) = 〈x,y,z |x3 = y3 = z3 = (xy)3 = (x2y)3 = (xz)3 = (yz)3 =

= (x2z)3 = (y2z)3 = (xyz)3 = (x2yz)3 = (xy2z)3 = (y2x2z)3 = 1〉;

moreover, indicated thirteen relations are independent.

P ro o f. Let H denote the subgroup of B(3,3) isomorphic to B(2,3):

H = 〈x,y |w3 = 1 ∀w〉= 〈x,y |x3 = y3 = (xy)3 = (x2y)3 = 1〉.
It is obvious that ∀w ∈ B(3,3) w = u1z±1u2z±1u3 . . .z±1um, where ui ∈ H.
It turns out that the elements of the group B(3,3) can be classified into the

following forms (see [3], Lemma 5):
1. w = u1, where u1 ∈ H;
2. w = u1z±1u2, where u1,u2 ∈ H;
3. w = u1zu2z−1u3, where u1,u2,u3 ∈ H.
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For the words in the first case, any relation obviously follows from
x3 = y3 = (xy)3 = (x2y)3 = 1.

As for the second case, we have ord(u1zu2) = ord(zu2u1), also

ord(u1z−1u2) = ord((u−1
1 )−1z−1(u−1

2 )−1) = ord(u2zu1) = ord(zu1u2).

So the system of relations (zu)3 = 1, where u ∈ H, imply all the relations of the form
(u1z±1u2)

3 = 1.
Let’s consider the third case. We have

(zuz−1v)3 = zuz−1vzuz−1vzuz−1v = w1zw2uz−1vw1zw2z−1 = w1t1zt2w2z−1,

where

w1 = u−1vu,w2 = vuv−1, t1 = (w2u)−1(vw1)(w2u), t2 = (vw1)(w2u)(vw1)
−1,

w1t1 = u−1vuu−1vu−1v−1vu−1vuvuv−1u = u−1v2u−2vuvuv−1u =

= u−1v−1uvuvuvvu = u−1v−1vu = 1,

t2w2 = vu−1vuvuv−1uu−1v−1uv−1vuv−1 = vu−1vuvuv−2u2v−1 =

= vu−1vuvuvuuv−1 = vu−1uv−1 = 1.

Thus we obtained that the relation (zu1z−1u2)
3 = 1 for all u1,u2 ∈ H

follows from the system of relations (zu)3 = 1, u ∈ H, as well.
Then ord(u1zu2z−1u3) = ord(zu2z−1(u3u1)) = 3, which shows that all the

relations of the third form follow from the same system of relation as in the
second case.

So, we got the presentation of B(3,3):

B(3,3) = 〈x,y,z |x3 = y3 = (xy)3 = (x2y)3 = (zu)3 = 1, u ∈ H〉.

We notice that the steps described above can be performed for any rank m
(see [3]), so we can state the following proposition:

P r o p o s i t i o n.

B(m,3) = 〈x1, ...xm |Rm−1,(xmu)3 = 1,∀u ∈ B(m,3)〉,

where Rm−1 is a set of defining relations for B(m− 1,3) naturally embedded into
B(m,3).

Some additional natural calculations lead us to the following presentation:

B(3,3) = 〈x,y,z |x3 = y3 = z3 = (xy)3 = (x2y)3 = (xz)3 = (yz)3 =

= (x2z)3 = (y2z)3 = (xyz)3 = (x2yz)3 = (xy2z)3 = (y2x2z)3 = 1〉. (1)

We also note that a similar result is obtained in [6] using a different approach,
namely the coset enumeration.

In the mentioned presentation (1) of B(3,3) the relations are independent.
To check this statement, we use GAP system.
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Below is the GAP code:
> f := FreeGroup(3);;
> a := f.1;;
> b := f.2;;
> c := f.3;;
> rels := [a^3, b^3, c^3, (a*b)^3, (a*c)^3, (b*c)^3, (a^2*b)^3,
(a^2*c)^3, (b^2*c)^3, (a*b*c)^3, (a^2*b*c)^3, (a*b^2*c)^3,
(b^2*a^2*c)^3];;

> g := f / rels;
> Size(g);
2187

> sizes := [];
> for i in [1..13] do
> r := Remove(rels, i);
> Add(sizes, Size(f/rels));
> Add(rels, r, i);
> od;
> sizes;
[ 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561,
6561, 6561, 6561 ]

Using the fact that the order of B(3,3) is equal to 3(
3
1)+(

3
2)+(

3
3) = 2187,

our code shows that the number of relations cannot be reduced, which means they
are independent.
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3 PARBEROW�YAMB AZAT BE�NSAYDYAN XMBERI ORO
I�

A�N�OW�YOWNNERI ANKAX HAMAKARGERI MASIN

m = 2,3 �angeri B(m,3) azat be�nsaydyan xmberi hamar menq

ka�owcowm enq oro�i� a�n�ow�yownneri ankax hamakarger: m = 2 depqowm

apacowyc� henvowm � B(2,3)-i matricayin nerkayacman vra: m= 3 depqowm
menq �gtagor�owm enq B(2,3)-i bnakan nerdrowm� B(3,3)-i mej:

А. А. БАЙРАМЯН

О НЕЗАВИСИМЫХ СИСТЕМАХ ОПРЕДЕЛЯЮЩИХ СООТНОШЕНИЙ
ДЛЯ СВОБОДНЫХ БЕРНСАЙДОВЫХ ГРУПП ПЕРИОДА 3

Мы строим независимые системы определяющих соотношений для
свободных бернсайдовых групп B(m,3) ранга m = 2,3. Доказательство для
случая m = 2 основано на матричном представлении B(2,3). Для случая
m = 3 мы используем естественное вложение B(2,3) в B(3,3).
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