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An interval vertex-coloring of a graph G is a coloring of the vertices of the 
graph with intervals of integers such that the intervals of any two adjacent 
vertices do not intersect. In this paper we consider the case, where for each 
vertex v there is a length l(v) and a set of colors S(v), from which the colors 
should be and it is required to find an interval vertex-coloring γ  such that for 
each vertex v the restrictions are met, i.e. |γ(v)| = l(v),γ(v) ⊆ S(v). We will 
provide a pseudo-polynomial algorithm for cactus graphs. If it is impossible 
to have an interval vertex-coloring that satisfies all the r estrictions, then the 
algorithm will tell that as well.
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Introduction. All graphs considered in this paper are undirected (unless
explicitly said), finite, and have no loops or multiple edges. For an undirected
graph G, let V (G) and E(G) denote the sets of vertices and edges of G, respectively.
The degree of a vertex v ∈V (G) is denoted by dG(v).

A cactus is a connected graph in which any two simple cycles have at most one
vertex in common. Equivalently, it is a connected graph in which every edge belongs
to at most one simple cycle [1]. Fig. 1 illustrates different examples of cactus and
non-cactus graphs.

Let Ik be the set {1, . . . ,k} of integers and let 2Ik be the set of all the subsets of
Ik. We will denote by τ(Ik) the set of all the elements from 2Ik that form an interval
of integers. More formally τ(Ik) = {s : s ∈ 2Ik ,s is a non empty interval of integers}.
An interval vertex-k-coloring of a graph G is a function γ : V (G)→ τ(Ik) such that
γ(u)∩ γ(v) = /0 for all the edges (u,v) ∈ E(G).
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Fig. 1. Example of cactus and non-cactus graphs.

For a directed graph
−→
G , if there is an edge from a vertex u to a vertex v, we will

denote it by u→ v. The graph G is called the underlying graph of a directed graph
−→
G

if V (G) =V (
−→
G ) and E(G) = {(u,v)|iff u→ v or v→ u} (between any pair of vertices

u and v, if the directed graph has an edge u→ v or an edge v→ u , the underlying
graph includes the edge (u,v)).

For a tree T (a connected undirected acyclic graph) and its arbitrary vertex r,
let Tr be the directed graph, whose underlying graph is T , and in Tr each edge is
directed in such a way that for all vertices v ∈ Tr there is a path in Tr from r to v.
We will say that Tr is a rooted tree with the root r. Fig. 2 illustrates the rooted tree Tv1

with the root v1.

Fig. 2. A rooted tree Tv1 with the root v1.

A vertex u is said to be the parent of the vertex v (denoted by p(v)) if u→ v in
Tr. In that case, the vertex v is said to be a child of the vertex u. The children of a
vertex v ∈V (Tr) are the set W ⊆V (Tr) of all such vertices w ∈V (Tr) for which v→ w.
A vertex having no children is said to be a leaf vertex.

Depth-first search (DFS) [2] is an algorithm for traversing or searching tree or
graph data structures. The algorithm starts at the root vertex (selecting some arbitrary
vertex as the root vertex in the case of a graph) and explores as far as possible along
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each branch before backtracking. In a depth-first search of an undirected graph G,
every edge of G is either a tree edge or a back edge ( [2], Theorem 22.10). If we start
the DFS algorithm from a vertex r on a connected graph, then the DFS tree will be the
rooted tree Tr that contains all the tree edges from the traversing. The DFS graph will
be the directed graph that, in addition to the DFS tree, also includes the back edges.

In this paper, we will provide a pseudo-polynomial algorithm [3] for finding an
interval vertex-k-coloring of the given cactus graph that meets the given restrictions.
In [4] different cases of interval vertex-colorings were considered. In that paper, it was
shown that the problem is NP-complete [5, 6] for complete and for bipartite graphs,
and a polynomial solution was provided for star graphs. In [7] it was shown that for
bipartite graphs, the edge 3-colorability problem is NP-complete even if there is at
most one forbidden color for each vertex. In [8] the problem of interval edge-coloring
was considered, where the edges should be colored with intervals of integers, and it
was shown that the problem is NP-Complete even for star graphs with at most one
forbidden color per edge. Interval vertex-colorings with restrictions is the general
case of list colorings, in which each vertex is colored with one color instead of an
interval. List colorings were first studied in the 1970s in the independent papers [9]
and [10]. The list coloring problem is NP-complete for complete bipartite graphs, and
can be solved in polynomial time for block graphs [11]. Interval edge-colorings with
restrictions were also considered in different papers [12–15].

A Pseudo-polynomial Algorithm for Interval Vertex-k-coloring with Given
Restrictions on a Cactus Graph.

P r o b l e m. Given a cactus graph G and functions l : V (G) → Ik and
S : V (G)→ 2Ik . Find a function γ : V (G)→ τ(Ik) such that |γ(v)|= l(v), γ(v)⊆ S(v)
for every vertex v ∈V (G), and γ(u)∩ γ(v) = /0 for any edge (u,v) ∈ E(G).

We will denote by I(v, i) the interval of integers [i, i+ l(v)− 1]. To solve the
problem, we will construct the DFS graph of the given cactus (by selecting an arbitrary
vertex as the root vertex) and later use dynamic programming to calculate the answer
from the bottom to the top.

In the DFS graph of a cactus all the back edges will form the cycles of the
cactus. We will draw the back edges with red color and the tree edges with black color.
Fig. 3 illustrates the DFS graph of a cactus.

In Fig. 3 the edges v5 → v1,v8 → v6 and v13 → v1 are the back edges.
There are three cycles formed by each of the back edges. Since the graph is a cactus no
two cycles share an edge even though the cycles (v1,v2,v5,v1) and (v1,v6,v11,v13,v1)
have a common vertex v1. Moving forward, we will assume that we have already
constructed the DFS graph of the given cactus G for some root vertex r, and all the
statements and definitions will be based on that assumption. The DFS graph will be
denoted by G̃. For a vertex v, let SG(v) be the subgraph of the graph G̃ induced [1] by
all the vertices w such that there is a path from v to w in the DFS tree. SG(v) includes
the back edges too. The vertex v is called the ancestor of the vertex u if u 6= v and
u ∈V (SG(v)).
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Fig. 3. The DFS graph of a cactus graph.
The red edges are the back edges.

L e m m a. In the DFS graph of a cactus graph G, for each tree edge v→ u,
there can be at most one back edge connecting a vertex from the subgraph SG(u) to
an ancestor of the vertex u.

P ro o f. Suppose that there are two back edges that connect the vertex
u1 ∈ V (SG(u)) to the ancestor vertex v1 of u and the vertex u2 ∈ V (SG(u)) to the
ancestor vertex v2 of u. Then the edge v→ u will be inside the cycle formed by the
path from v1 to u1 and the back edge u1 → v1, and inside the cycle formed by the
path from v2 to u2 and the back edge u2→ v2. Since the two paths include the edge
v→ u, it means the edge v→ u is inside two different cycles, which can not happen for
cactus graphs.

Let h(v) be the distance from the root vertex r to the vertex v in the DFS
tree. If v→ u is a back edge, then h(v) > h(u). From Lemma we can say that
for any vertex v, there can be at most one back edge that starts from that vertex;
otherwise, the edge p(v)→ v would be inside two different cycles. This means that
|E(G̃)|= O(|V (G̃)|) and since the graph G is the underlying graph of the DFS graph
G̃ it means |E(G)|= O(|V (G)|) for the cactus graph G.

Let us define a function B : V (G̃)→V (G̃) by the following way: if there is a
back edge v→ u that starts from the vertex v, then we let B(v) = u, otherwise, B(v) = v.
Since there can be at most one back edge in the case of cactus graphs, the function B
is uniquely defined for every vertex.

Let us also define a function A : V (G̃)→ V (G̃). For a vertex v if there is a
vertex u ∈ V (SG(v)) such that h(B(u)) < h(v) (the vertex B(u) is the ancestor of
the vertex v), then A(v) = u (from the lemma there can be at most one such vertex).
If there is no such vertex, then A(v) = v.

If A(v) 6= v, then there is a back edge, starting from the subgraph SG(v),
that connects to an ancestor of the vertex v and the back edge is A(v)→ B(A(v)).
Note that the equality A(v) = v still does not mean that there is no back edge from the
subgraph SG(v) that connects to an ancestor of the vertex v, because the back edge
could start from the vertex v. If h(B(A(v))< h(v), then the edge p(v)→ v belongs to
the cycle formed by the edge A(v)→ B(A(v)) and the path from B(A(v)) to A(v).
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In Fig. 3, B(v13) = v1, B(v11) = v11, A(v13) = v13, A(v11) = v13, A(v2) = v5,
A(v6) = v13, A(v3) = v3.

Suppose that we are coloring with intervals from the set τ(Ik). We will say that
the interval vertex-k-coloring satisfies the restrictions in a subgraph of the graph G̃
if the underlying graph of that subgraph satisfies the restrictions. For each vertex v
and two integers l1 ∈ Ik, l2 ∈ Ik we are going to calculate a value colorable[v][l1][l2],
which will be 1 if it is possible to have an interval vertex-k-coloring in the subgraph
SG(v) (including the back edges that connect the vertices of V (SG(v))) such that all
the restrictions are met for SG(v), the color of the vertex v is the interval I(v, l1), and
the color of the vertex A(v) is the interval I(A(v), l2), otherwise, colorable[v][l1][l2]
will be 0. If A(v) = v and l1 6= l2, then colorable[v][l1][l2] would be 0. We will say
that there is a back edge from the subgraph SG(v) if h(B(A(v)))< h(v).

In order to calculate colorable[v][l1][l2] we need to calculate these values for all
the children of v and then based on these values calculate the answers in the vertex v.
Now suppose that for some vertex v we have already calculated the values for its
children u1, . . . ,um and we have all the values colorable[ui][li1][li2] for every 1≤ i≤m
and 1≤ li1, li2 ≤ k. How can we combine these results to calculate colorable[v][l1][l2]
for every 1≤ l1, l2 ≤ k? For each vertex v it is possible to have at most one child vertex
such that A(ui) = A(v), which would mean that the back edge from the subgraph
SG(v) starts from the subgraph SG(ui). It is possible for some child vertices to have
B(A(ui)) = v, which would mean that for some of the child vertices the back edges
from their subgraphs end at the vertex v. Fig. 4 illustrates the general case, where
the single back edge A(v)→ B(A(v)) starts from the subgraph SG(um) and it also
illustrates the case, where B(A(u1)) = v.

Fig. 4. Illustrating possible combinations
of back edges.

Fig. 5. Adding the child vertex um
to the answer

There are a couple of different cases that we need to handle:

C1. B(A(v)) = v, which means there is no back edge from the subgraph SG(v).

C2. B(A(v)) 6= v and v = A(v), which means the back edge from the subgraph SG(v)
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starts from the vertex v.

C3. B(A(v)) 6= v and v 6= A(v), which means the back edge from the subgraph SG(v)
is the same as the back edge from one of its child vertex subgraphs. In that
case without loss of generality, we can assume that this child is the child vertex
um (the last child vertex in the list of child vertices). Hence in this case we get
A(v) = A(um). In the Fig. 4 this case is illustrated.

For the child vertices, there are also a couple of different options:

U1. h(B(A(ui))) > h(v), which means there is no back edge from the subgraph
SG(ui) (the vertex u2 in the Fig. 4). In this case the edge (v,ui) is a bridge in
the original cactus.

U2. h(B(A(ui))) = h(v) or equivalently B(A(ui)) = v, which means the back edge
from the subgraph SG(ui) ends in the vertex v (the vertex u1 in the Fig. 4).
There can be such multiple child vertices, because even though they share the
vertex v, they do not share a common edge.

U3. h(B(A(ui)))< h(v), which means that the back edge from the subgraph SG(ui)
is the same back edge from the subgraph SG(v) (the vertex um in the Fig. 4).
This is the same case as the C3, and there can be at most one such child vertex,
in which case we will assume that it is the vertex um.

Let us handle each of the C1, C2, C3 cases separately. We are going to construct
the colorable[v][l1][l2] by iterating over the child vertices in the order of u1, . . . ,um.
Since the vertex um might require special attention, we will treat it differently, but all
the other child vertices will be handled the same way for cases C1, C2 and C3.

When calculating the answers for the vertex v, we will store numbers
d p[i][l1], which will be defined in the following way. If it is possible to find an
interval vertex-k-coloring in the subgraph of the graph G̃ induced by the vertices
{v}∪V (SG(u1))∪ ·· ·∪V (SG(ui)) such that the vertex v is colored with I(v, l1) and
all the restrictions are met in this subgraph, then d p[i][l1] = 1, otherwise it is 0. If
i = 0, then it means we only have the vertex v in the subgraph. Note that we also
take into account the back edges for these subgraphs, to make sure the coloring is
valid. When i = m and we have the case C3 we will not calculate the d p[m][l1]
and will calculate the colorable[v][l1][l2] directly, otherwise, for the cases C1 and
C2, colorable[v][l1][l2] = d p[m][l1] if the equality l1 = l2 is satisfied and 0 otherwise
(because A(v) = v and we do not need to store two intervals).

Let us first calculate d p[0][l1]. For l1,1 ≤ l1 ≤ k, d p[0][l1] = 1 if and only if
I(v, l1)⊆ S(v) and d p[0][l1] = 0 otherwise.

Now suppose that we have the values for d p[i−1][l1] and we want to calculate
the values of d p[i][l1] for all l1 after adding the vertex ui (we assume ui is not the case
U3). In the case of U1, d p[i][l1] should be equal to 1 if d p[i− 1][l1] = 1 and there
is an integer l3 such that colorable[ui][l3][l3] = 1 (since A(ui) = ui) and the intervals
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I(v, l1) and I(ui, l3) do not intersect, otherwise d p[i][l1] should be 0. In the case of U2,
d p[i][l1] should be equal to 1 if d p[i−1][l1] = 1 and there are integers l3, l4 such that
colorable[ui][l3][l4] = 1 and the interval I(v, l1) does not intersect with the intervals
I(ui, l3) and I(A(ui), l4), since the vertex v is connected with the vertex ui and the
vertex A(ui), otherwise d p[i][l1] should be 0.

Now suppose that it is the case C3 and we calculated the values d p[m−1][l1].
In this case A(v) = A(um). colorable[v][l1][l2] = 1 if d p[m− 1][l1] = 1 and there
exists an integer l3 such that the intervals I(v, l1) and I(um, l3) do not intersect and
colorable[um][l3][l2] = 1. Fig. 5 illustrates this case.

We would calculate all these values from bottom to top in the tree. To find
out if there is an interval vertex-coloring for the cactus that satisfies the restrictions
we should find an integer l1 such that colorable[r][l1][l1] = 1. If we also store the
intervals that we used for the child vertices during the calculation, we would be able
to construct the answer from top to bottom.

Now let us estimate the complexity of the algorithm. Let N = |V (G)| and we
already know that |E(G)|= O(N) for the cactus graphs. Constructing the DFS graph
and calculating the values A(v),B(v) for all the vertices can be done in O(N). For
each vertex v, we would need to iterate over l1 from 1 to k, and for each child vertex,
we would need to iterate over l3, which means we would do O(k2) operations dG(v)
times and since ∑

v∈V (G)

dG(v) is O(N) we would do O(N · k2) operations for the case

U1. For the case U2, we would need to choose the l1, l3 and l4, and we need to do it
once for every back edge (only for the end vertex of the back edge), so that would take
O(N · k3) operations in total. And for the case U3, we would need to choose l1, l2 and
l3, which could happen only once for each vertex, resulting in O(N · k3) operations in
total. In the case of trees, we would only have the case U1, and hence the complexity
would be O(N · k2)
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KAKTOWS GRAFNERI MIJAKAYQAYIN GAGA�AYIN NERKOWMNER

GAGA�NERI VRA TRVA SAHMANA�AKOWMNEROV

G grafi mijakayqayin gaga�ayin nerkowm� grafi gaga�neri

aynpisi nerkowm � ambo�j �veri mijakayqerov, or cankaca� erkow kic

gaga�neri mijakayqer� �en hatvowm: Hodva�owm ditarkvel � ayn depq�,

erb kaktowsi amen v gaga�i hamar trva� � l(v) erkarow�yown  S(v)
gowyneri bazmow�yown, oronq kareli � �gtagor�el  pahanjvowm � gtnel

aynpisi γ mijakayqayin gaga�ayin nerkowm, or cankaca� v gaga�i hamar
|γ(v)| = l(v),γ(v) ⊆ S(v): Kaktows grafneri hamar trvel � nerkman goyow-

�yown� stowgo�  ka�owco� ps dobazmandamayin algori�m:
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А. Х. СААКЯН, Р. Р. КАМАЛЯН

ИНТЕРВАЛЬНАЯ ВЕРШИННАЯ РАСКРАСКА КАКТУСОВ
С ОГРАНИЧЕНИЯМИ НА ВЕРШИНАХ

Интервальная раскраска вершин графа G – это раскраска вершин
графа такими интервалами целых чисел, что интервалы любых двух
соседних вершин не пересекаются. В работе рассматривается случай, когда
для каждой вершины v кактуса заданы длина l(v) и множество цветов S(v),
из которого должны быть выбраны цвета. Требуется найти такую интер-
вальную раскраску γ вершин кактуса, при которой для каждой вершины
v ограничения соблюдаются, т.е. |γ(v)| = l(v),γ(v) ⊆ S(v). Представлен
псевдополиномиальный алгоритм решения задачи для кактусов.


