
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2021, 55(3), p. 169–173

P h y s i c s
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In the problem of electron diffraction by a standing light wave (the Kapitza–
Dirac effect), an electronic refractive index can be defined as the ratio of electron
momenta in the wave field and outside it. Moreover, both kinetic and canoni-
cal electron momenta can be used for this purpose, which corresponds to the
Abraham–Minkowski controversy in photonic optics. It is shown that in both
cases the same expression for the electronic refractive index is obtained. This is
consistent with Barnett’s resolution of the Abraham–Minkowski dilemma.
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Introduction. According to Ginzburg [1], "There are in physics a few literally
’perpetual problems’ which continue to be discussed in the scientific literature for
decades and decades." On all grounds, these problems include what is commonly
referred to as the Abraham–Minkowski dilemma or controversy. The Abraham–
Minkowski dilemma has been discussed for over a century regarding the correct form
of the energy-momentum tensor of an electromagnetic field in ponderable media.
Many studies [2–6] have been developed in favor of the energy-momentum tensor of
the electromagnetic field in a dielectric medium both in the Abraham form [7, 8] and
in favor of the expression proposed by Minkowski [9]. Moreover, other expressions
have been suggested for a similar purpose [10]. However, due to the lack of irrefutable
arguments in favor of one of the existing approaches, the controversy continues.

In the previous article [11], we have made a preliminary report on some obser-
vations about the momentum of an electromagnetic wave propagating in a dielectric
medium with a time-varying permittivity. It was shown that the momentum of an
electromagnetic wave in the form of Minkowski is preserved with an instantaneous
change in the dielectric permittivity of the medium. At the same time, the Abraham
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momentum is not conserved, despite the spatial homogeneity of the problem. This
circumstance was interpreted as a manifestation of the Abraham force.

Before presenting a complete account of the research on the problem of correct
formulation of macroscopic electrodynamics of continuous moving media, which goes
beyond merely discussing the issue of various expressions proposed for the energy-
momentum tensor of an electromagnetic field in ponderable media, here we make
another observation about the presence of an analogue of the Abraham–Minkowski
dilemma in electronic optics.

Refraction Index for Electrons Passing a Standing Light Wave. In 1933,
Kapitza and Dirac predicted [12] that the standing light wave can act as a diffraction
grating for electrons passing through its periodic structure, similar to the periodic
lattice of crystals in the experiments of Davisson and Germer [13]. The Kapitza–Dirac
effect is nowadays an experimentally established phenomenon [14] and arouses a
tangible interest [15, 16].

Here we are interested in the elementary approach developed in [17] to describe
the Kapitza–Dirac effect in the framework of electron optics. A similar method was
employed in [18] to describe an analogous effect predicted in [19] for the diffraction
of an electron beam by a traveling laser wave propagating in a dielectric medium .

Thus, electrons with mass m and charge e = −|e| at an angle θ fall on a
monochromatic linearly polarized laser beam propagating in a medium with a refrac-
tive index n. Choosing the axes x and y in the direction of propagation and polarization
of the laser wave, respectively, we can represent the electromagnetic field in the
following form:

Aµ(x, t) = (0, A) = (0, 0, Acos(kx−ωt), 0), (1)

where µ = 0, . . . ,3, and wave amplitude A represents the intensity of the laser
beam: I ∼ nω2A2. The four-wavevector has the following form: kµ = (ω/c, k) =
(ω/c, k, 0, 0), where ω and k = ωn/c represent the angular frequency and wave-
number of the wave, respectively. The four-momentum of electrons incident on a light
beam at an angle θ has the following form:

pµ

in =

(
Ein

c
, pin

)
=

(
Ein

c
, pin sinθ , pin cosθ , 0

)
, (2)

where the energy Ein and the three-dimensional momentum pin are related by the stan-
dard relativistic relation E2

in = m2c4 + p2
inc2. For simplicity, without loss of generality,

we have chosen p(z)in = 0, which means that the interaction of electrons with the laser
beam occurs in the x− y plane (Fig.1 a).

Since light propagates in a dielectric medium at a speed u less than the speed of
light in vacuum: u = c/n < c, we can move from the laboratory coordinate system to
the frame of reference moving in the direction of wave propagation at the speed u of
light in the medium, which we will contingently call the wave frame of reference. For
the four-dimensional vector potential of the electromagnetic field of a light wave in
the wave frame of reference, we have:
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Ãµ(x̃, t̃) = (0, 0, Ãcos(k̃x̃), 0), (3)

which is actually the solution of the Maxwell and Minkowski equations for a plane
electromagnetic wave "propagating" in a moving medium. In this relation, k̃ =
ω
√

n2−1/c is the wave number of the laser beam in its own frame of reference, at
the same time determines the spatial periodicity of the diffraction grating: λ̃ = 2π/k̃.
In addition, the diffraction grating represented by the laser beam in this frame of
reference has a stationary character: ω̃ ∼ nω− kc = 0.

Fig. 1. Geometry of electron scattering by a laser beam in a dielectric medium
in laboratory (a) and wave (b) reference frames.

For we are interested in a specific geometry, when electrons in the frame of
reference associated with the laser beam fall on it at a right angle (Fig. 1 b), as in the
usual Kapitza–Dirac effect in the Raman–Nath regime, it is necessary to require that
in the laboratory frame of reference in the direction of light propagation the electron
beam moved with the speed u of propagation of the light beam: v(x)in = c2 p(x)in /Ein = u.
In this case, for a four-momentum of electrons, one can obtain:

p̃µ

in =

(
Ẽin

c
, 0, p̃in, 0

)
. (4)

We are now ready to apply Hamilton’s analogy, representing the "trajectory" of
electrons in an electromagnetic field as the "optical path" traveled by electrons in a
medium with a variable refractive index. For this, one need to determine the refractive
index of electrons moving in the laser field as the inverse ratio of the kinetic momenta
of electrons in and outside the laser field: N(x̃) ≡ p̃in/p̃(x̃). Given the stationary
nature of the light wave in the wave frame associated with the light beam, we can
apply the law of conservation of energy:

m2c4 + p̃2
inc2 = m2c4 +

(
p̃(x̃)− eÃ(x̃)

c

)2

c2. (5)
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Then, taking into account relation Eq. 3 for the four-dimensional vector potential
of the light wave field, for the refractive index defined above we obtain:

N(x̃)≈ 1− eÃ
cp̃in

cos(k̃x̃). (6)

When deriving this formula, working in the Raman–Nath approximation, we
neglected the angle between the vectors p̃ and Ã.

Further calculations within the framework of the problem of electron diffraction
in the considered configuration can be found in [18]. Here we analyze the question
of the electron-optical refractive index. Note that above when defining the electron-
optical refractive index, we mimicked Abraham’s approach defining the refractive
index as the inverse ratio of the kinetic momentum of electrons in and outside the
laser wave field. Meanwhile, following the Minkowski’s approach, we could define
the electron-optical refractive index as a direct ratio of the canonical momentum of
electrons in the field of a laser wave field and outside it:

N(x̃) =
| p̃(x̃)− e

c Ãcos(k̃x̃)|
p̃in

≈ 1− eÃ
cp̃in

cos(k̃x̃)+ . . . . (7)

Here, when obtaining the last result, we have taken into account that within
the framework of the Raman–Nath approximation the kinetic energy of electrons is
neglected due to the short duration of the interaction of electrons with a light wave. As
a result, one can neglect the change in the kinetic momentum of electrons: p̃(x̃)≈ p̃in.

Now we note that formulas 6 and 7 are completely identical, and the approxi-
mations used along the way to derive these formulas are consistent.

Conclusion. Thus, as a result of simulating Abraham’s approach, we get the
Eq. 6 for the electron-optical refractive index. But it is completely identical to the
Eq. 7 for the electron-optical refractive index obtained by mimicking Minkowski’s
approach. This is essentially a confirmation of Barnett’s interpretation [4] of the
Abraham–Minkowski contraversy (or duality) within electron optics.
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ABRAHAM{MINKOVSKOW HAKASOW�YAN NMANAK�

�LEKTRONAYIN �PTIKAYOWM

Kangna� lowsayin aliqi vra �lektronneri difrakciayi xndrowm

(Kapica{Diraki �fekt) kareli � sahmanel �lektronayin bekman cowci��

orpes aliqayin da�towm  da�tic dowrs �lektronayin impowlsneri harabe-

row�yown: Avelin, ayd npatakov kareli � �gtagor�el �lektronneri  | kine-

tik,  | kanonakan impowlsner�, in�� hamapatasxanowm � Abraham{

Minkovskow hakasow�yan� fotonayin �ptikayowm: Cowyc � trva�, or erkow

depqowm �l �lektronayin bekman cowci�i hamar stacvowm � nowyn artahay-

tow�yown�: Sa hamahown� � Abraham{Minkovskow erk�ntranqi Barneti

low�man�:

К. К. ГРИГОРЯН

АНАЛОГ ПРОТИВОРЕЧИЯ АБРАХАМА–МИНКОВСКОГО
В ЭЛЕКТРОННОЙ ОПТИКЕ

В задаче дифракции электронов на стоячей световой волне (эффект
Капицы–Дирака) можно определить электронный показатель преломле-
ния как отношение импульсов электронов в волновом поле и вне его. Более
того, для этой цели можно использовать как кинетический, так и канони-
ческий импульсы электронов, что соответствует противоречию Абрахама–
Минковского в фотонной оптике. Показано, что в обоих случаях получа-
ется одно и то же выражение для электронного показателя преломления.
Это согласуется с решением Барнетта дилеммы Абрахама–Минковского.




