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The work is devoted to a special class of nonlinear integral equations on
the positive semi-axis with conservative kernel that corresponds to a nonlinear
operator, for which the property of complete continuity in the space of bounded
functions fails. In different special cases this class of equations has applica-
tions in particular branches of mathematical physics. In particular, this kind of
equations can be met in the radiative transfer theory, kinetic theory of gases,
kinetic theory of plasma and in the p-adic open-closed string theory. Using a
combination of special iterations with the monotonic operator theory methods,
that work in defined conical segments it is possible to prove a constructive
existence theorem of nonnegative nontrivial bounded solution that has finite
limit at infinity. The asymptotics of the constructed solution will also be studied.
It is also given an example of nonlinear equation, for which the uniqueness of
the solution in the space of bounded functions fails. At the end of the paper will
consider some classes of equations both applied and pure theoretical character.
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Introduction. Consider the following class of nonlinear integral equations on
the positive semi-axis:

f (x) = λ (x)
∞∫

0

K(y)G( f (r(x,y)))dy, x ∈ R+ := [0,∞), (1)
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with respect to an unknown non-negative and bounded function f (x). In the Eq. (1)
λ and K are measurable functions on the set R+ and satisfy the following conditions:

a) 0≤ λ (x)≤ 1,λ (x) 6≡ 1, x ∈ R+, λ (x) ↑ on R+,x(1−λ (x)) ∈ L1(R+),

b) K(x)> 0, x ∈ R+, K ∈ L1(R+),

∞∫
0

K(x)dx = 1,

where L1(R+) is the space of summable functions on R+.
The nonlinear function G has the following properties:

1) there exists a number η > 0, such that G ↑ (is increasing) on the

segment [0,η ];

2) G(u)≥ u, u ∈ [0,η ], G(η) = η ;

3) G(0) = 0, G ∈C(R+);
where C(R+) is the space of continuous functions on R+.

In the Eq. (1) r(x,y) is a continuous function on R+×R+, which takes positive
values and satisfies the following conditions:

I) for every fixed x ∈ R+ the function r(x,y) ↑ with respect to y and for every
fixed y ∈ R+ the function r(x,y) ↑ in x.

II) r(x,0)≥ x for x ∈ R+ and there exists a number δ > 0 such that
r(x,δ )≥ x+δ for x ∈ R+.

In different special cases Eq. (1) has applications in several branches of
mathematical physics. In particular, in the linear case (G(u) = u), when r(x,y) = x+y
for x,y ∈ R+ the equation arises in the radiative transfer theory (see [1, 2]).
In the case, when the nonlinearity of G satisfies the conditions 1)–3) and r(x,y) = x+y
for x,y ∈ R+ such equations occur in the kinetic theory of gases and in kinetic theory
of plasma (see [3–5]).

It should be noted that in linear case (G(u) = u) when r(x,y) = x + y for
x,y ∈ R+, Eq. (1) has been studied in sufficient detail in the work [1]. In nonlinear
case under conditions a), b), 1)–3), when r(x,y) = x+y for x,y ∈R+ Eq. (1) has been
studied in the works [6, 7]. The distinguishing feature of Eq. (1) is the absence of
complete continuity of the corresponding operator in the space of essentially bounded
functions on R+.

In the current work under conditions a), b), 1)–3) and I), II) we will take care
of the issues of constructing nontrivial nonnegative and bounded solution that has a
limit at +∞ equal to η . We will also give an example of nonlinearity of G (satisfying
the conditions 1)–3)) for which the uniqueness of the solution fails in the space of
bounded functions. At the end of the work special examples of Eq. (1) that have both
applied and pure theoretical interest are considered.

Auxiliary Facts. Along with the Eq. (1) let’s consider the following integral
equations on semi-axis:

ϕ(x) = 1−λ (x)+
∞∫

0

K(y)ϕ(r(x,y))dy, x ∈ R+, (2)
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relative to an unknown function ϕ(x), where λ , K and r satisfy the conditions
a), b) and I), II).

Let’s introduce the following simple iterations for the Eq. (2):

ϕn+1(x) = 1−λ (x)+
∞∫

0

K(y)ϕn(r(x,y))dy,

ϕ0(x) = 1−λ (x), n = 0,1,2, ..., x ∈ R+.

(3)

By induction on n, due to conditions a), b), I) and II), it is not difficult
to verify that

ϕn(x) ↑ by n, x ∈ R+. (4)

Below we will prove that

ϕn(x) ↓ by x on R+, n = 0,1,2, ... (5)

In the case when n = 0 the statement (5) directly follows from the condition a).
Assume that ϕn(x) ↓ by x on R+ for some natural number n. The latter implies that
if x1,x2 ∈ R+ and x1 > x2 then ϕn(x1)≤ ϕn(x2). Then from (3), due to conditions a)
and I), we have

ϕn+1(x1) = 1−λ (x1)+

∞∫
0

K(y)ϕn(r(x1,y))dy

≤ 1−λ (x2)+

∞∫
0

K(y)ϕn(r(x2,y)) = ϕn+1(x2).

Now let’s verify the following inclusions:

ϕn ∈ L1(R+), n = 0,1,2, ... (6)

The summability of the zero approximation in iterations (3) directly follows
from the condition a). Let ϕn ∈ L1(R+) for some n ∈ N. Then, under the conditions
I), II), a) and b), and also the statement (5), from (3) we get

0≤ ϕn+1(x)≤ 1−λ (x)+
∞∫

0

K(y)ϕn(r(x,0))dy≤ 1−λ (x)+ϕn(x),

from which it follows that ϕn+1 ∈ L1(R+).
Let a≥ 0 be an arbitrary number. Integrate both sides of (3) with respect to x

over [a,+∞). Then, taking into account the conditions a), b), I), II) and the proven
facts (4)–(6), from Fubini’s theorem (see [8]) we obtain

∞∫
a

ϕn+1(x)dx≤
∞∫

a

(1−λ (x))dx+
∞∫

a

∞∫
0

K(y)ϕn+1(r(x,y))dydx

=

∞∫
a

(1−λ (x))dx+
∞∫

0

K(y)
∞∫

a

ϕn+1(r(x,y))dxdy
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=

∞∫
a

(1−λ (x))dx+
δ∫

0

K(y)
∞∫

a

ϕn+1(r(x,y))dxdy+
∞∫

δ

K(y)
∞∫

a

ϕn+1(r(x,y))dxdy

≤
∞∫

a

(1−λ (x))dx+
δ∫

0

K(y)
∞∫

a

ϕn+1(r(x,0))dxdy

+

∞∫
δ

K(y)
∞∫

a

ϕn+1(r(x,δ ))dxdy≤
∞∫

a

(1−λ (x))dx+
δ∫

0

K(y)dy
∞∫

a

ϕn+1(x)dx

+

∞∫
δ

K(y)dy
∞∫

a

ϕn+1(x+δ )dx =
∞∫

a

(1−λ (x))dx+
δ∫

0

K(y)dy
∞∫

a

ϕn+1(x)dx

+

∞∫
δ

K(y)dy
∞∫

a+δ

ϕn+1(x)dx,

from which it follows the inequality:

a+δ∫
a

ϕn+1(x)dx≤

 ∞∫
δ

K(y)dy

−1

·
∞∫

a

(1−λ (x))dx. (7)

Due to (5), from (7) it follows that

0≤ ϕn+1(a+δ )≤ 1
δ

 ∞∫
δ

K(y)dy

−1

·
∞∫

a

(1−λ (x))dx, a≥ 0. (8)

Since x(1 − λ (x)) ∈ L1(R+), 0 ≤ λ (x) ≤ 1, x ∈ R+ (see condition a)),
then by Fubini’s theorem

F(a) :=
∞∫

a

(1−λ (x))dx ∈ L1(R+) (9)

and

∞∫
0

F(a)da =

∞∫
0

∞∫
a

(1−λ (x))dxda =

∞∫
0

(1−λ (x))xdx <+∞.

Therefore, integrating both sides of (8) by a over (0,+∞), we get

0≤
∞∫

0

ϕn+1(a+δ )da≤ 1
δ

 ∞∫
δ

K(y)dy

−1

·
∞∫

0

x(1−λ (x))dx

or

0≤
∞∫

δ

ϕn+1(x)dx≤ 1
δ

 ∞∫
δ

K(y)dy

−1

·
∞∫

0

x(1−λ (x))dx. (10)
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Now integrate both sides of (3) by a ∈ (0,+∞). Then, taking into account (10),
a), b) and (4)− (6), we will have

0 ≤
δ∫

0

ϕn+1(x)dx ≤
∞∫

0

(1 − λ (x))dx +

δ∫
0

∞∫
0

K(y)ϕn+1(r(x,y))dydx

=

∞∫
0

(1−λ (x))dx+
δ∫

0

δ∫
0

K(y)ϕn+1(r(x,y))dydx+
δ∫

0

∞∫
δ

K(y)ϕn+1(r(x,y))dydx

≤
∞∫

0

(1−λ (x))dx+
δ∫

0

δ∫
0

K(y)ϕn+1(r(x,0))dydx+
δ∫

0

∞∫
δ

K(y)ϕn+1(r(x,δ ))dydx

≤
∞∫

0

(1 − λ (x))dx +

δ∫
0

K(y)dy
δ∫

0

ϕn+1(x)dx +

∞∫
δ

K(y)dy
δ∫

0

ϕn+1(x + δ )dx

≤
∞∫

0

(1 − λ (x))dx +

δ∫
0

K(y)dy
δ∫

0

ϕn+1(x)dx +

∞∫
δ

K(y)dy
2δ∫

δ

ϕn+1(x)dx

≤
∞∫

0

(1−λ (x))dx+
δ∫

0

K(y)dy
δ∫

0

ϕn+1(x)dx+
∞∫

δ

K(y)dy
∞∫

δ

ϕn+1(x)dx

≤
∞∫

0

(1−λ (x))dx+
δ∫

0

K(y)dy
δ∫

0

ϕn+1(x)dx+
1
δ

∞∫
0

x(1−λ (x))dx,

from which it follows that

0≤
δ∫

0

ϕn+1(x)dx≤

 ∞∫
δ

K(y)dy

−1

·

 1
δ

∞∫
0

x(1−λ (x))dx+
∞∫

0

(1−λ (x))dx

 .

(11)
From (10) and (11) we get

0≤
∞∫

0

ϕn+1(x)dx≤

 ∞∫
δ

K(y)dy

−1

·
∞∫

0

(
2x
δ

+1
)
(1−λ (x))dx :=Cδ < ∞. (12)

Thus, according to (3) and uniform estimate (12), we can state that by to
B. Levi’s theorem (see [8]) the sequence of summable and nonincreasing functions{

ϕn(x)
}∞

n=0 converge almost everywhere on R+ to a summable on R+ function ϕ(x):

lim
n→∞

ϕn(x) = ϕ(x),

and the limit function ϕ satisfies Eq. (2), ϕ(x) ↓ on R+ and the following estimates
hold:

ϕ(x)≥ 1−λ (x), x ∈ R+, (13)
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0 <

∞∫
0

ϕ(x)dx≤Cδ , (14)

where the number Cδ is defined in the inequality (12).
Notice, that if the kernel K is also an essentially bounded function on R+:

K ∈M(R+) and r(0,y)≥ y, y ∈ R+, then ϕ ∈M(R+).
Indeed, due to (14) and condition a), from (2) we have

0≤ ϕ(x)≤ 1+Cδ · sup
y∈R+

(K(y))<+∞, x ∈ R+,

from which follows that ϕ ∈M(R+). Thus we get the following lemma.

L e m m a. Let the conditions a), b), I) and II) hold. Then the linear integral
Eq. (2) has a non-negative, summable on R+, solution ϕ(x) such that ϕ(x) ↓ on R+

and satisfies (13) and (14). Moreover, if additionally K ∈ M(R+) and r(0,y) ≥ y,
y ∈ R+, then ϕ ∈M(R+).

R e m a r k 1. Applying a similar argument as in the proof of the formulated
Lemma, we can verify that under conditions a), b), I) and II), if

∞∫
0

xp(1−λ (x))dx <+∞

for some natural p > 1, we have
∞∫

0

xp−1
ϕ(x)dx <+∞.

R e m a r k 2. It should be noted that the condition b) is actually essential,

because if we assume for example that K(x) ≥ 0 and suppK =

[
δ

2
,+∞

)
, then by

choosing

r(x,y) =


x, 0≤ t <

δ

2
,

x+2
(

t− δ

2

)
,

δ

2
≤ t,

Eq. (2) will not have a summable and non-negative solution, λ (x) 6≡ 1.
Solvability of Eq. (1). The following theorem holds.

T h e o r e m. Under conditions a), b), 1)–3) and I), II) the nonlinear
integral Eq. (1) has a non-negative nontrivial and bounded on R+ solution f (x)
satisfying

lim
x→+∞

f (x) = η and η− f ∈ L1(R+).

P ro o f. First along with Eq. (1) consider the following auxiliary linear integral
equation

Φ(x) = 1−λ (x)+λ (x)
∞∫

0

K(y)Φ(r(x,y))dy, x ∈ R+, (15)
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with respect to an unknown measurable function Φ(x).
Due to condition b), by direct examination we can verify that Φ(x) ≡ 1 is a

particular solution of Eq. (15). Below we will prove that Eq. (15), besides of such
a trivial particular solution, has also a non-negative summable and bounded on R+

solution Φ∗(x), Φ∗(x)≤ 1 such that limx→+∞ Φ∗(x) = 0.
To this end consider the following simple iterations for Eq. (15):

Φn+1(x) = 1−λ (x)+λ (x)
∞∫

0

K(y)Φn(r(x,y))dy,

Φ0(x) = 1−λ (x), n = 0,1,2, ..., x ∈ R+.

(16)

By the method of mathematical induction, it is not hard to verify the
correctness of the following facts:

A) Φn(x) ↑ by n, x ∈ R+,

B) Φn(x)≤ 1, n = 0,1,2, ..., x ∈ R+,

C) Φn(x)≤ ϕ(x), n = 0,1,2, ..., x ∈ R+,

where ϕ(x) is a nonincreasing and summable on R+ solution of the integral Eq. (2)
and ϕ(x) satisfies estimates (13) and (14) (see the statement of the proven Lemma).
From properties A), B) and C) it follows that the sequence of summable and bounded
on R+ functions

{
Φn(x)

}∞

n=0 has a pointwise limit when n→ ∞ :

lim
n→∞

Φn(x) = Φ
∗(x),

and the limit function Φ∗(x) due to B. Levi’s theorem satisfies the Eq. (15).
From A)–C) we also get that Φ∗ satisfies the following double inequality:

1−λ (x)≤Φ
∗(x)≤min{1,ϕ(x)} , x ∈ R+. (17)

From properties of the function ϕ (see Lemma) it directly follows that

lim
x→+∞

ϕ(x) = 0.

Therefore, from (17) we get

lim
x→+∞

Φ
∗(x) = 0. (18)

Since ϕ ∈ L1(R+), by (17) we get the summability on R+ for the function
Φ∗(x):

Φ
∗ ∈ L1(R+). (19)

It is obvious that B(x) := 1−Φ∗(x) will satisfy the following homogeneus
linear integral equation:

B(x) = λ (x)
∞∫

0

K(y)B(r(x,y))dy, x ∈ R+, (20)

and due to (17)–(19) the function B(x) has the following properties:

1−min{1,ϕ(x)} ≤ B(x)≤ λ (x), x ∈ R+, (21)

lim
x→+∞

B(x) = 1, 1−B ∈ L1(R+). (22)
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Let’s return now to the primary integral Eq. (1) and consider the following
special sequential approximations:

fn+1(x) = λ (x)
∞∫

0

K(y)G( fn(r(x,y)))dy,

f0(x) = ηB(x), n = 0,1,2, ..., x ∈ R+.

(23)

By induction on n, let’s prove that

fn(x) ↑ by n, x ∈ R+, (24)

fn(x)≤ η ·λ (x), n = 0,1,2, ..., x ∈ R+. (25)

First let’s make sure that f1(x) ≥ f0(x) and f0(x) ≤ η · λ (x), x ∈ R+.
The last inequality directly follows from (21). Due to conditions a), b) and 2), from
(23) we will get

f1(x)≥ λ (x)
∞∫

0

K(y) f0(r(x,y))dy=η ·λ (x)
∞∫

0

K(y)B(r(x,y))dy=ηB(x)= f0(x).

Assuming that fn(x)≥ fn−1(x) and fn(x)≤ η ·λ (x), x ∈ R+ for some natural
n and taking into account the conditions a), b) and 1), from (23) we will have

fn+1(x)≥ λ (x)
∞∫

0

K(y)G( fn−1(r(x,y)))dy = fn(x), x ∈ R+,

fn+1(x)≤ λ (x)
∞∫

0

K(y)G(ηλ (r(x,y)))dy≤ λ (x)
∞∫

0

K(y)G(η)dy

= η ·λ (x), x ∈ R+.

Since B(x) is a measurable function on R+, by induction on n it is not hard
to prove that all the elements of the sequence

{
fn(x)

}∞

n=0 are measurable functions
on R+. So, based on (24) and (25) we can conclude that the sequence of functions{

fn(x)
}∞

n=0 has a pointwise limit when n→ ∞:

lim
n→∞

fn(x) = f (x).

Due to condition (3) and B. Levi’s theorem the limit function f (x) satisfies
Eq. (1). From (24), (25), (21) and (22) it follows that f (x) has the following properties

η (1−min{1,ϕ(x)})≤ ηB(x)≤ f (x)≤ ηλ (x), x ∈ R+, lim
x→+∞

f (x) = η , (26)

η− f ∈ L1(R+). (27)

Thus the theorem is proven.

R e m a r k 3. Since G(0) = 0 (see condition 3)) Eq. (1) has a trivial (zero)
solution f (x) ≡ 0. From the proven Theorem it follows the existence of the second
nontrivial and bounded solution (with properties (26) and (27)) of Eq. (1).
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R e m a r k 4. Consider the following interesting example of nonlinearity of G:
G(u) = u+sin2u, u∈R+. It is not hard to verify that the conditions 1)–3) are satisfied
for the given function. Notice that in this case there exists a countable number of fixed
points ηk = πk, k = 0,1,2, ..., for the mapping y = G(u) and in each of the segments
[0,ηk], k = 1,2,3, ..., the function G(u) satisfies the conditions 1), 2). This fixed points
generate a single parameter family of solutions

{
f (k)(x)

}∞

k=0 for the Eq. (1). Due to
(26) and (27), for this solutions we get the following properties:

πk (1−min{1,ϕ(x)})≤ πkB(x)≤ f (k)(x)≤ πk ·λ (x), x ∈ R+,

lim
x→+∞

f (k)(x) = πk, πk− f (k) ∈ L1(R+), k = 0,1,2, ...

Thus the given counterexample suggests us that in general the uniqueness of
the solution of Eq. (1) is failed in the space of bounded functions on R+.

R e m a r k 5. It is interesting to note that the obtained result in the first part
of the proof of the Theorem for the linear integral Eq. (20) generalizes and comple-
ments the corresponding theorem from the work [1] about existence of nontrivial and
bounded solution of the following Volterra type integral equation:

B(x) = λ (x)
∞∫

x

K(t− x)B(t)dt, x ∈ R+.

Indeed, in Eq. (20) as r(x,y) it is enough to choose the function r(x,y) =
x+ y, x,y ∈ R+ (conditions I), II) are satisfied automatically).

Examples. At the end of the work we will give concrete particular examples
of the following functions λ , K, G and r that satisfy all of the conditions of the proven
Theorem.

Examples for functions λ .

i1) λ (x) = 1− e−αx, x ∈ R+, α > 0 is an arbitrary numerical parameter,

i2) λ (x) = 1− εe−x2
, x ∈ R+, ε ∈ (0,1] is a numerical parameter.

Examples for kernel K.

j1) K(x) =
b∫

a

e−xsQ(s)ds, x ∈ R+, where Q(s) is a continuous and positive

function on the set [a,b), 0 < a < b≤+∞ and
b∫

a

Q(s)
s

ds = 1,

j2) K(x) =
1

2
√

π
e−x2

, x ∈ R+.

Examples of nonlinearity of G.

k1) G(u) = p
√

u, u ∈ R+, where p≥ 2 is a natural number,

k2) G(u) = γ(1− e−u), u ∈ R+, where γ > 1 is an arbitrary real number,

k3) G(u) = u+ sin2u, u ∈ R+.
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Examples of the function r.

l1) r(x,y) = xey +
√

y, (x,y) ∈ R+×R+, δ = 1,

l2) r(x,y) = (x+ ε)ey +2(1− e−y), (x,y) ∈ R+×R+, δ = 1, ε ≥ 0,

l3) r(x,y) = (x+1)ey + p
√

y, (x,y) ∈ R+×R+, δ = 1, p≥ 2,

l4) r(x,y) = x(1+αy)+βy, (x,y) ∈ R+×R+, δ = 1, α ≥ 0, β ≥ 1.
Let’s take a closer look at the example l4). First it is obvious that the function

r(x,y) satisfies the conditions I), II) and besides r(0,y) = βy≥ y, y ∈ R+. Therefore,
if additionally K ∈M(R+), then according to the Lemma the linear integral equation

ϕ(x) = 1−λ (x)+
∞∫

0

K(y)ϕ(x(1+αy)+βy)dy, x ∈ R+, (28)

has a non-negative summable and bounded solution ϕ(x), and the estimates (13) and
(14) are also true. Setting

x(1+αy)+βy =: t (29)

Eq. (28) becomes to the linear inhomogeneous integral Volterra equation:

ϕ(x) = 1−λ (x)+
∞∫

0

K
(

t− x
αx+β

)
· 1

αx+β
ϕ(t)dt, x ∈ R+,

and Eq. (1) with r(x,y)= x(1+αy)+βy is the following nonlinear integral Hammerstein–
Volterra equation:

f (x) =
λ (x)

αx+β

∞∫
x

K
(

t− x
αx+β

)
G( f (t))dt, x ∈ R+.
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X. A. XA�ATRYAN, A. �. HAKOBYAN

KISA�ANCQI VRA KONSERVATIV KORIZOV O� G
AYIN INTEGRAL

HAVASAROWMNERI MI DASI O� TRIVYAL LOW
ELIOW�YAN MASIN

A�xatanqowm ditarkvowm � kisa�ancqi vra konservativ korizov

o� g�ayin integral havasarowmneri mi das, ori hamapatasxan o� g�ayin

integral �perator� ��tva� �� liovin an�ndhatow�yan hatkow�yamb

sahmana�ak fownkcianeri tara�ow�yownowm: Tarber masnavor depqerowm

n�va� havasarowmneri das� owni kira�ow�yownner ma�ematikakan fizi-

kayi mi �arq ow��ow�yownnerowm: Masnavorapes, aydpisi havasarowmner

handipowm en �a�agay�man te�a�oxman tesow�yownowm, gazeri kinetik

tesow�yownowm, plazmayi kinetik tesow�yownowm  bac (�ak) p-adik lareri
tesow�yownowm: Hatowk iteracion me�odneri zowgakcowm� oro�aki konayin

hatva�nerowm gor�o� monoton �peratorneri tesow�yan me�odneri het

hnaravorow�yown � talis apacowcel o� trivyal, o� bacasakan, sahmana-

�ak low�man goyow�yan �eorem, in�pes na gtnel ka�owcva� low�man

sahman� anverjow�yownowm: hetazotvowm � na low�man integralayin

asimptotikan: A�xatanqowm bervowm � na o� g�aynow�yown� nkaragro�

fownkciayi aynpisi �rinak, ori depqowm xaxtvowm � low�man miakow�yown�

sahmana�ak fownkcianeri tara�ow�yownowm: A�xatanqi verjowm ditark-

vowm en n�va� havasarowmneri dasi mi �arq konkret �rinakner, oroncic

mi mas� krowm en kira�akan bnowy�, isk myows mas�` zowt tesakan bnowy�:
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Х. А. ХАЧАТРЯН, А. Р. АКОПЯН

О НЕТРИВИАЛЬНОЙ РАЗРЕШИМОСТИ ОДНОГО КЛАССА
НЕЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ С

КОНСЕРВАТИВНЫМ ЯДРОМ НА ПОЛОЖИТЕЛЬНОЙ ПОЛУПРЯМОЙ

В работе рассматривается специальный класс нелинейных интеграль-
ных уравнений на положительной полупрямой с консервативным ядром и
с соответствующим нелинейным интегральным оператором, который не
обладает свойством полной непрерывности в пространстве ограниченных
функций. В различных частных случаях данный класс уравнений имеет
приложения в конкретных направлениях математической физики.
В частности такие уравнения встречаются в теории переноса излучения,
кинетической теории газов, кинетической теории плазмы и в теории
p-адических открыто-замкнутых струн. Сочетание специальных итераци-
онных методов с методами теории монотонных операторов, действующих
в определенных конусных отрезках, позволяет доказать конструктивную
теорему существования неотрицательного нетривиального ограниченного
решения, имеющего конечный предел в бесконечности. Изучается также
интегральная асимптотика построенного решения. Приводится пример
нелинейности уравнения, в случае которого единственность решения в
пространстве ограниченных функций нарушается. В конце рассматрива-
ются конкретные примеры указанного класса уравнений как прикладного,
так и чисто теоретического характера.


