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The work is devoted to a special class of nonlinear integral equations on
the positive semi-axis with conservative kernel that corresponds to a nonlinear
operator, for which the property of complete continuity in the space of bounded
functions fails. In different special cases this class of equations has applica-
tions in particular branches of mathematical physics. In particular, this kind of
equations can be met in the radiative transfer theory, kinetic theory of gases,
kinetic theory of plasma and in the p-adic open-closed string theory. Using a
combination of special iterations with the monotonic operator theory methods,
that work in defined conical segments it is possible to prove a constructive
existence theorem of nonnegative nontrivial bounded solution that has finite
limit at infinity. The asymptotics of the constructed solution will also be studied.
It is also given an example of nonlinear equation, for which the uniqueness of
the solution in the space of bounded functions fails. At the end of the paper will
consider some classes of equations both applied and pure theoretical character.
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Introduction. Consider the following class of nonlinear integral equations on
the positive semi-axis:
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with respect to an unknown non-negative and bounded function f(x). In the Eq. (1)
A and K are measurable functions on the set R™ and satisfy the following conditions:

DO0<AX) < LA Z1, xeRY, A(x) 1 onRT x(1—A(x)) € Li(R"),
b) K(x) >0, x € R*, K € L (R"), /K(x)dx: 1,
0

where L (R") is the space of summable functions on R*.
The nonlinear function G has the following properties:

1) there exists a number 1) > 0, such that G 7 (is increasing) on the
segment [0,7];
2) G(u) Zu, ue0,n], G(n) =n;
3)G(0)=0, GeC(R");
where C(R™) is the space of continuous functions on R
In the Eq. (1) r(x,y) is a continuous function on R™ x R*, which takes positive
values and satisfies the following conditions:
I) for every fixed x € R™ the function r(x,y) 1 with respect to y and for every

fixed y € R the function r(x,y) 1 in x.
1) r(x,0) > x for x € R™ and there exists a number & > 0 such that

r(x,8) >x+6 for xeR™.

In different special cases Eq. (1) has applications in several branches of
mathematical physics. In particular, in the linear case (G(u) = u), when r(x,y) =x+y
for x,y € RT the equation arises in the radiative transfer theory (see [I, 2]).
In the case, when the nonlinearity of G satisfies the conditions 1)-3) and r(x,y) =x+y
for x,y € R such equations occur in the kinetic theory of gases and in kinetic theory
of plasma (see [3-5]).

It should be noted that in linear case (G(u) = u) when r(x,y) = x+y for
x,y € RT, Eq. (1) has been studied in sufficient detail in the work [1]. In nonlinear
case under conditions a), b), 1)-3), when r(x,y) = x+y for x,y € R" Eq. (1) has been
studied in the works [6, 7]. The distinguishing feature of Eq. (1) is the absence of
complete continuity of the corresponding operator in the space of essentially bounded
functions on R

In the current work under conditions a), b), 1)-3) and I), II) we will take care
of the issues of constructing nontrivial nonnegative and bounded solution that has a
limit at 4o equal to 1. We will also give an example of nonlinearity of G (satisfying
the conditions 1)-3)) for which the uniqueness of the solution fails in the space of
bounded functions. At the end of the work special examples of Eq. (1) that have both
applied and pure theoretical interest are considered.

Auxiliary Facts. Along with the Eq. (1) let’s consider the following integral
equations on semi-axis:

oo

0(x) = 1-2(0)+ [ K()Q(r(xy)dy, x R, @
0
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relative to an unknown function @(x), where A, K and r satisfy the conditions
a), b) and I), 1I).
Let’s introduce the following simple iterations for the Eq. (2):

Ori1(x) = 1= 20+ [ KO)@u(r(x.)d N
@o(x)=1-24(x),n=0,1,2,..., x e R,
By induction on n, due to conditions a), b), I) and II), it is not difficult
to verify that

@u(x) T by n, x e RT. 4)
Below we will prove that
¢.(x) L byxonRY n=0,1,2,... ®)

In the case when n = 0 the statement (5) directly follows from the condition a).
Assume that @,(x) | by x on R for some natural number n. The latter implies that
if x;,x; € R" and x; > x; then @,(x;) < @,(x2). Then from (3), due to conditions a)
and I), we have

oo

Oria(x1) = 1= () + [ K()gu(r(xi.))dy
0

<1-2(0)+ [ KO)Ou(r(x2)) = pusa (v2)
0

Now let’s verify the following inclusions:
0. €LI(RY), n=0,1,2,... (6)

The summability of the zero approximation in iterations (3) directly follows
from the condition a). Let @, € L;(R") for some n € N. Then, under the conditions
I), IT), a) and b), and also the statement (5), from (3) we get

0< Qa1 (3) S T=A(3)+ [ KO)u(r(x.0))dy < 1=A(0) + 4 (v).

from which it follows that ¢, 1 € L; (R™).

Let a > 0 be an arbitrary number. Integrate both sides of (3) with respect to x
over [a,+o0). Then, taking into account the conditions a), b), I), IT) and the proven
facts (4)—(6), from Fubini’s theorem (see [8]) we obtain

/(pn+1 dx</ (1-A

axt [ [K)@u(r(x.))dydx
a 0

))dx+ / K(y / Oni1 (r(x,y))dxdy
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oo

:/(1 —/I(x))dx+/6K(y)/wfpnﬂ(r(x,y))dxder/wK(y)/w<pn+1(r(x7y))dxdy
a 0 a [ a

oo

< / (1—2(x))dx+ /6 K(y) /w @1 (r(x,0))dxdy
0 a

+ /m K(y) /m @ur1 (r(x,8))dxdy < /m (1—2(x))dx+ /(S K(y)dy /w Pnr1(x)dx
5 p a 0 a

o P o

n / K(y)dy / @uet (4 8)dx = [(1-2.()dx+ [ KOy [ g (v)dn
) a

a 0 a
+ / K(y)dy / @1 (x)dx,
4] a+é

from which it follows the inequality:

76<p,,+1 )dx < (/K ) -/l—l(x))dx. 7)

Due to (5), from (7) it follows that

0< @ui1(a+96) < ) ))dx, a > 0. ()

Since x(1 — A(x)) € L, ]R+ < Ax < 1, x € R™ (see condition a)),
then by Fubini’s theorem

/ ))dx € Ly (R™) )

and

/F da—// (1-24 dxda—o/(l—l(x))xdx<—|—°°.

Therefore, integrating both sides of (8) by a over (0,+), we get

=) (=) _1 (=)
0< /¢n+1(a+5)da < é (/K(y)dy) -/x(l _A(x))dx
0

0

(o5} oo 71 oo
0< / Pui1 (x)dx < % ( / K(y)dy) : / x(1= A (x))dx. (10)
S ) 0

or



ON NONTRIVIAL SOLVABILITY OF ONE CLASS OF NONLINEAR INTEGRAL EQUATIONS...11

Now integrate both sides of (3) by a € (0,+o0). Then, taking into account (10),
a), b) and (4) — (6), we will have

0 < [oumlax < 0/(1 — A()dx + / K () @ns1(r(x,y))dydx

< /°°(1 — A(x))dx + /SK(}’)d)’/afan(x)dx + ]OK(Y)dyi¢n+1(x + 6)dx
0 0 0 0
< 7(1 — Ax))dx + /SK(Y)d)’/s(PnH(x)dx + /OQK(Y)d)’f(PnH(X)dX
0 0 0 5 5
< /00(1 Mx))dx+/SK(Y)dy/6<Pn+1(x)dx+7K(Y)dy]o¢n+1(x)dx
0 0 0 5 5

)

5 (oo}
1
< [a=2tdr+ [KOdy [ @uadx+5 [x(1-2@)dx,
0 0 0 0
from which it follows that

Of/é(PnH(x)de (/wK(y)dy> -(é]OX(l —l(X))der/(l A(X))dX) :
1 0

0

From (10) and (11) we get

o oo —1
0< [puatote< [ [xoay| [ (?H)(l—m))dx:—csw. 12)
0 ) 0

Thus, according to (3) and uniform estimate (12), we can state that by to
B. Levi’s theorem (see [8]) the sequence of summable and nonincreasing functions
{ou(x) }::o converge almost everywhere on R to a summable on R™ function ¢(x):

lim ¢,(x) = ()
and the limit function ¢ satisfies Eq. (2), ¢(x) | on R™ and the following estimates

hold:
@(x) > 1—-A(x), xeRT, (13)
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0< /(P(X)deCa, (14)
0

where the number Cj is defined in the inequality (12).
Notice, that if the kernel K is also an essentially bounded function on R™:
KeM(R")and r(0,y) >y, y € R, then ¢ € M(R™).
Indeed, due to (14) and condition a), from (2) we have
0< @(x) <1+Cs- sup (K(y)) < +oo, x ERT,
yeRT
from which follows that ¢ € M(R™). Thus we get the following lemma.

Lemma. Let the conditions a), b), 1) and Il) hold. Then the linear integral
Eq. (2) has a non-negative, summable on R™, solution @(x) such that ¢(x) | on R™
and satisfies (13) and (14). Moreover; if additionally K € M(R") and r(0,y) >y,
y €RY, then o € M(R").

Remark 1. Applying a similar argument as in the proof of the formulated
Lemma, we can verify that under conditions a), b), I) and II), if

oo

/xp<1 —A(x))dx < oo

0
for some natural p > 1, we have

oo

/xpfl(p(x)dx < oo
0
Remark 2. It should be noted that the condition b) is actually essential,

o
because if we assume for example that K(x) > 0 and suppK = [2, +00>, then by

choosing

o
X,O§t<§,
r(x,y): s o)
2(:—7), — <1,
X+ 3 7S

Eq. (2) will not have a summable and non-negative solution, A(x) % 1.
Solvability of Eq. (1). The following theorem holds.

Theorem. Under conditions a), b), 1)-3) and I), II) the nonlinear
integral Eq. (1) has a non-negative nontrivial and bounded on R solution f(x)
satisfying

lim f(x)=7n and n-—fe€L(R").

X—r o0
Proof. Firstalong with Eq. (1) consider the following auxiliary linear integral
equation

oo

B(x) = 1 —A(x)+A(x) / K()®(r(x,y))dy, x € R, (15)
0
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with respect to an unknown measurable function ®(x).

Due to condition b), by direct examination we can verify that ®(x) = 1 is a
particular solution of Eq. (15). Below we will prove that Eq. (15), besides of such
a trivial particular solution, has also a non-negative summable and bounded on R
solution ®*(x), ®*(x) < 1 such that lim,_, ;.. ®*(x) = 0.

To this end consider the following simple iterations for Eq. (15):

@1 (x) = 1= A(x) + A(x / KO)®,(r(x.y))dy. o

®y(x) =1—-A(x), n=0,1,2,..., x e R,
By the method of mathematical induction, it is not hard to verify the
correctness of the following facts:
A)®,(x)1 by n, x€R",
B)®,(x)<1,n=0,1,2,..., x eR",
C) ®,(x) <¢p(x),n=0,1,2,..., x e R,
where ¢(x) is a nonincreasing and summable on R™ solution of the integral Eq. (2)
and @(x) satisfies estimates (13) and (14) (see the statement of the proven Lemma).
From properties A), B) and C) it follows that the sequence of summable and bounded
on R functions {®,(x)}~_ has a pointwise limit when 7 — oo :
lim ®,(x) = ®*(x),
n—soo
and the limit function ®*(x) due to B. Levi’s theorem satisfies the Eq. (15).
From A)-C) we also get that ®* satisfies the following double inequality:
1—A(x) <®*(x) <min{l,p(x)}, x e R*. 17)
From properties of the function ¢ (see Lemma) it directly follows that
Jim o(x) =0.
Therefore, from (17) we get
lim ®*(x) =0. (18)

X—H-o0
Since @ € L;(R™"), by (17) we get the summability on R™ for the function

P*(x):
@ € Li(R"). 19)

It is obvious that B(x) := 1 — ®*(x) will satisfy the following homogeneus
linear integral equation:

/K r(x,y)) dy,xG]RJr (20)
and due to (17)—(19) the function B (x) has the following properties:
1—min{l,¢(x)} <B(x) <A(x), x e RT, (1)

lim B(x)=1,1-Be€L;(R"). (22)

X—-o0
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Let’s return now to the primary integral Eq. (1) and consider the following
special sequential approximations:

Jar1(x) = /W(X)/K(y)G(fn(r(x,y)))dy,
0

(23)
fo(x) =nB(x), n=0,1,2,..., x ¢ R,
By induction on #n, let’s prove that
fu(x) 1 by n, x e RT, (24)
fulx) <n-A(x), n=0,1,2,..., x eR". (25)

First let’s make sure that fi(x) > fo(x) and fo(x) < n-A(x), x € RT.
The last inequality directly follows from (21). Due to conditions a), b) and 2), from
(23) we will get

@) 2200 [ KOl ))dy=n-A() [ KG)B((x2)dy=nB(x) = fol@).
0 0

Assuming that f;(x) > f,—1(x) and f,(x) <1 -A(x), x € R for some natural
n and taking into account the conditions a), b) and 1), from (23) we will have

frt@) 2 A0) [ KOIGUo 1 (r(w9))dy = fu), xR,
0

oo oo

0 0
=n-Ax), x€RT.
Since B(x) is a measurable function on R*, by induction on 7 it is not hard
to prove that all the elements of the sequence { Jn(x) }::0 are measurable functions
on RT. So, based on (24) and (25) we can conclude that the sequence of functions
{fa(x)}"_, has a pointwise limit when n — oo:

lim £,(x) = f(x).
Due to condition (3) and B. Levi’s theorem the limit function f(x) satisfies
Eq. (1). From (24), (25), (21) and (22) it follows that f(x) has the following properties

0 (1 —min{1,0(x)}) < 1B() < f(x) <NAR), x€RY, lim f(x)=n, (26)

n—feL(RY). Q27)
Thus the theorem is proven. O

Remark 3. Since G(0) =0 (see condition 3)) Eq. (1) has a trivial (zero)
solution f(x) = 0. From the proven Theorem it follows the existence of the second
nontrivial and bounded solution (with properties (26) and (27)) of Eq. (1).
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Remark 4. Consider the following interesting example of nonlinearity of G:
G(u) = u+ sin*u, u € R*. It is not hard to verify that the conditions 1)-3) are satisfied
for the given function. Notice that in this case there exists a countable number of fixed
points M = wk, k =0, 1,2, ..., for the mapping y = G(u) and in each of the segments
[0,M), k=1,2,3, ..., the function G(u) satisfies the conditions 1), 2). This fixed points
generate a single parameter family of solutions { s (x) }::o for the Eq. (1). Due to
(26) and (27), for this solutions we get the following properties:

mk (1 —min{1,@(x)}) < 7kB(x) < f®(x) < k- A(x), x € RY,
lim f®(x) = mk, tk— % e Li(RT), k=0,1,2,...

X—>-o00

Thus the given counterexample suggests us that in general the uniqueness of
the solution of Eq. (1) is failed in the space of bounded functions on R*.

Remark 5. It is interesting to note that the obtained result in the first part
of the proof of the Theorem for the linear integral Eq. (20) generalizes and comple-
ments the corresponding theorem from the work [ 1] about existence of nontrivial and
bounded solution of the following Volterra type integral equation:

B(x) = A(x) / K(t —x)B(t)dt, x € R*.

Indeed, in Eq. (20) as r(x,y) it is enough to choose the function r(x,y) =
x+y, x,y € R" (conditions I), II) are satisfied automatically).

Examples. At the end of the work we will give concrete particular examples
of the following functions A, K, G and r that satisfy all of the conditions of the proven
Theorem.

Examples for functions A.

i) A(x) =1—e *, x€R", a>0is an arbitrary numerical parameter,
D) Alx)=1- 86_"2, x € RT, € € (0,1] is a numerical parameter.
Examples for kernel K.

b
J1) K(x) = /e_st(s)ds, x € R*, where Q(s) is a continuous and positive

a

b
function on the set [a,b), 0 < a < b < +oo and /Q(s)ds =1,
s
a
2) K(0) = 5=, xERT
X)=—=e ", x .
J2 2\/% s
Examples of nonlinearity of G.
ki) G(u) = {/u, u € R™, where p > 2 is a natural number,
ky) G(u) = y(1—e ™), u € R, where y > 1 is an arbitrary real number,
k3) G(u) = u+ sin*u, u € RY.
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Examples of the function r.

L) r(x,y) =xeé’ +4/y, (x,y) ERT xR, § =1,

L) r(x,y) = (x+ &) +2(1—e?), (x,y) eRT xR", §=1, >0,
L) r(xy) =(x+1)e+ ¢y, (x,y) ERTxRT, =1, p>2,

ly) r(x,y) =x(1+ay) + By, (x,y) ERT xR, §=1, >0, f > 1.

Let’s take a closer look at the example I4). First it is obvious that the function
r(x,y) satisfies the conditions I), IT) and besides r(0,y) = By >y, y € R*. Therefore,
if additionally K € M(R™"), then according to the Lemma the linear integral equation

o) =1-2(0)+ [ KO)(x(1+ay) +By)dy x€RT,  (28)
0

has a non-negative summable and bounded solution ¢(x), and the estimates (13) and
(14) are also true. Setting

x(1+ay)+By=:t (29)

Eq. (28) becomes to the linear inhomogeneous integral Volterra equation:

qo(x)-l—?t(x)+/ooK<t_x>- ! (t)dt, x e RT,
0

ox+f ax+l3(p

and Eq. (1) with r(x,y) = x(1+ oty) + By is the following nonlinear integral Hammerstein—
Volterra equation:

Fx) = a’; (jf)ﬁ ] K < atx_—kxﬁ> G(f(t))dt, x e R*.

This work was supported by the Science Committee of the Ministry of Education,
Science, Culture and Sport of RA, in the frames of the research project No. 21T-1A047.

Received 07.02.2022
Reviewed 01.03.2022

Accepted 07.03.2022
REFERENCES

1. Arabadzhyan L.G. An Integral Equation of Transport Theory in an Inhomogeneous
Medium. Differ. Uravn. 23 (1970), 1618-1622 (in Russian).

2. Sobolev V.V. The Milne Problem for an Inhomogeneous Atmosphere. Dokl. Akad. Nauk
SSSR 239 (1978), 558-561 (in Russian).

3. Cerncignani C. The Boltzmann Equation and Its Applications. New York, Springer-Verlag
(1998).

4. Khachatryan A.Kh., Khachatryan Kh.A. Qualitative Difference between Solutions of
Stationary Model Boltzmann Equations in the Linear and Nonlinear Cases. Theoret. and
Math. Phys. 180 (2014), 990-1004.



ON NONTRIVIAL SOLVABILITY OF ONE CLASS OF NONLINEAR INTEGRAL EQUATIONS...17

5. Khachatryan Kh.A. On Solvability one Hammerstein—Nemitski Type Nonlinear Integral
Differential Equation with Noncompact Operator in W,' (R") St. Petersburg Math. J.
24 (2013), 167-183.

6. Khachatryan Kh.A. Some Classes of Nonlinear Urysohn Integral Equations on the Semi-
axis. Doklady NAS of Belarus 55 (2011), 5-9 (in Russian) .

7. Khachatryan Kh.A. Sufficient Conditions for the Solvability of the Urysohn Integral
Equation on a Half-line. Dokl. Math. 79 (2009), 246—249 (in Russian).

8. Kolmogorov A.N., Fomin V.S. Elements of the Theory of Functions and Functional
Analysis. Moskva, Nauka (1981), 544 p. (in Russian).

u. W odusSrauy, W N S4unNpsuy

YhUUNULSLh JMrU UNLUB IUSPY UNrhQNd N2 GoUWShL hULSEBEANUL
SUJuuucnruLerh Ub AUWUP N2 SMhJSUL LOAFOGLPNFE8UWL UUWUDL

Whiwgubpnd nhpuplynud £ jhuwnwbgph pw Ynbubpduphy Ynphgny
ng qouyhb hinpigpu hwjwuwpnudtttiph dh nuiu, nph hwdwwyuypuujuw ng gowyht
htnpgpuy owytipwypnpp odypywd sk (hnyhtt wbponhwgpnipyut hugpynipjudp
uwhdwbwthwly $nityghwdtiph pupwdnyeyniind: Swpptipn dwubwynp nhiyptipnid
Opywd hwjwuwnpnuittiph nuup niih jhpwnnieynbbtp dwptiduyphuiud $hgh-
Juyh dh owpp nunnnpynbbtpnd: Unubwdnpuytiu, wynuhuh hwjuwuwpnidbbp
hwlinhynmu th Swnwqujpdwb ptnuthnudwb phunipniind, qugtiph fhotgphy
phiunpyminuy, wjwqiwyh 4hbtgphy phungymimy b pug (hwy) p-wnhy jwptph
tiunieyniiinud: Nunpniy pptipughnt dbpnnitph gniquijgnudp npnpwiyh Ynbwgho
huypuwotbtipnd gnponn Unbnintt oybipuypnptiph ptiunieywd dbpnnbbtph htip
hiwpwynpnipnib £ qpuphu wywugnigtiy ng qpphyjwy, ng puguuwub, uvwhiwbw-
thwl [odwl gnympjub ptnpbd, hbsgwtu twb qupit; Juenigwd modwb
uwhdwin wiybtponpnibnud:  htpugnipynud £ dwb nddwb  hogplignuyught
wuhdypnuphuib: Whwpwipnd pipdmd £ wle ng gowybnipnidp tjupugpnn
dmuyghwyh wytiyghuh ophtwy, nph nhypmy ppwpigpynid £ imddwt dhwnipynin
uwhdwbuwthwy $nbyghwbtinh pupwodnyeniinud: Wppiwpwdph ytipemu nhyppupy-
ynud GO Opywd hwjuwuwpnudtitiph nuuh dh owipp Ynbyptip ophtiwjottin, npntighg
vh dwup Ypmud G0 jhpwnwlub@ phnype, hull Ynw dwup gnup qpbuwubl phngpe:
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X. A. XAUYATPAH, A.P. AKOIIdH

O HETPUBUAJILHOW PA3PEIIUMOCTU OJAHOTO KJIACCA
HEJIMHENHBIX MHTEI'PAJIBHBIX YPABHEHUII C
KOHCEPBATUBHBIM $IIPOM HA TIOJIOXKUTEJBHOU TTOJIVIIPSIMON

B pabore paccmaTpuBaercs crienuaabHBIA KJIaCcC HEJTMHEHHBIX MHTETPAIb-
HBIX YpPaBHEHUIl HA MOJOXKUTEJILHO MOJYIIPSAMON ¢ KOHCEPBATUBHBIM SIJIPOM U
C COOTBETCTBYIOIINM HEJWHEHHBIM WHTETrPaJIbHBIM OIIEpaTOPOM, KOTOPBINT He
obJiajiaeT CBOMCTBOM IIOJIHOI HENPEPBIBHOCTUA B IMPOCTPAHCTBE OIPAHMIEHHDBIX
dbyukiuit. B pa3indHbIX 9aCTHBIX CAyYasX JTaHHBIM KJACC YPABHEHHUIN MMeeT
NPUIOXKEHNsT B KOHKPETHLIX HAIIPABJICHUSIX MaTEeMaTHIeCKON (DUBUKM.
B uwactHOCTH Takue ypaBHEHHUsI BCTPEYAIOTCS B TECOPHUH IIEPEHOCA UBJIYUEHUS,
KWHETUYIECKON Teopuyu ra30B, KWHETUYECKON TeOpWN IIa3Mbl M B TEOpHUHU
P-aIMIECKAX OTKPBITO-3aMKHYTBIX ¢TpyH. CoderaHue CrieluabHbIX UTepaIii-
OHHBIX METO/0B C METOJaMW TEOPUW MOHOTOHHBIX OIEPATOPOB, AEHCTBYIOITNX
B OIIpeJIeJIeHHBIX KOHYCHBIX OTPe3KaX, MO3BOJISIET JIOKA3aTh KOHCTPYKTUBHYIO
TeopeMy CYIeCTBOBAHUSI HEOTPUIATETHHOTO HETPUBUAJIBHOIO OIPAHUIEHHOTO
pellleHns, UMEIOIEro KOHEUHBIN Ipenes B beckonedynocTr. M3ydaercst TakzKe
WHTErpajbHasl ACUMIITOTUKA ITOCTPOEHHOrO perneHus. lIpwBomures mpumep
HEJIMHEHOCTU ypaBHEHUs, B CJIydae KOTOPOI'O €IUHCTBEHHOCTH PENIeHUus B
[IPOCTPAHCTBE OIPAHUYEHHBIX (DYHKIINI Hapylraercs. B KoHIe paccmarpuBa-
IOTCSI KOHKPETHBIE ITPUMEPHI YKAa3aHHOTO KJIacca ypaBHEHUN KaK MPUKJIaTHOTO,
TaK U YUCTO TEOPETUIECKOT'O XapaKTepa.



