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Introduction. Perfectly stable subgroups arise when considering a group G, its
subgroup H and a right transversal M in G, i.e. such a subset M in G that |M∩Hg|= 1
for any g∈G. A right quasigroup operation on the set M can be induced from the group
operation of G. Indeed, it can be shown that the binary operation on M mapping any
pair (a,b) ∈M×M to the element c such that c ∈ H(ab), defines a right quasigroup
structure with a left neutral element on the set M (see the property (P1) in the next
section). However the obtained right quasigroup strongly depends on the choice of the
transversal M. In the case when H is a normal subgroup of G, one can easily prove
that all the right quasigroups will be isomorphic to the quotient-group G/H. However,
in general the right quasigroups obtained from two different transversals might be
non-isomorphic, so, the concept of the quotient-group can not be easily generalized in
this aspect.

To generalize the concept of normal subgroups (hence the concept of quotient-
groups), Lal and Shukla [1] introduce the concept of perfectly stable subgroups:

D e f i n i t i o n 1. The subgroup H in the group G is called perfectly stable,
if all right transversals with the right quasigroup operation mentioned above are
isomorphic.

From the Definition 1 it follows that any normal subgroup in a group is perfectly
stable. A question arises: is the inverse also true, i.e. is any perfectly stable subgroup
in a group also a normal subgroup? In [1] Lal and Shukla answer this question partially,
proving the equivalence of the concepts in the case of a finite group G. However,
the question remains open for the general (infinite) case.
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In this paper we provide a proof for both cases of finite and infinite groups G
(see Theorem 2). Moreover, our proof is much simpler than the interesting proof
presented in [1], using Remak–Krull–Schmidt theorem for quasigroups, the classifica-
tion of finite simple groups and other concepts.

In this paper the proof of the Main Theorem is given by using the concept of
hypergroups over a group, originated in the same spirit as perfectly stable subgroups.
Indeed, the concept of hypergroup over a group naturally arises when one tries to
extend the concept of quotient group for the case of an arbitrary subgroup. For any
group G and its subgroup H here we also consider a right transversal M and the right
quasigroup structure on it mentioned above. However, the object of interest here
is the triple (G,H,M) instead of the transversal M. It also turns out that any right
quasigroup possessing a left neutral element can be obtained up to isomorphism from
a triple (G,H,M) by the discussed way (see [2], Theorem 1.1, also [3], Theorem 3.4).
This fact allows to investigate the right quasigroups with left neutral elements by
means of group theory, particularly the theory of triples (G,H,M) [2, 4, 5].

The connection between the triples (G,H,M) and the hypergroups over the
group is straight forward after we introduce the standard construction of hypergroups
over a group in the next section. However, the categorical equivalence between the
theories of hypergroups over a group and the triples (G,H,M) is shown in [6].

Let us emphasize that R. Lal has introduced the concept of c-groupoids [3],
which coincides with a special case of the hypergroups over a group, namely the
unitary hypergroups over the group [7]. The concept of c-groupoids has found its
applications in characterization of Tarski monsters [8], in a research on right transver-
sals in topological groups [9] and in other problems. The concept of hypergroups over
a group has arisen independently from the concept of c-groupoids.

Also let us mention that the term “hypergroup” is already used for another
concept too. Here this concept of hypergroup is not considered, so, sometimes we will
call the hypergroups over a group shortly hypergroups.

Definition and Preliminary Results on Hypergroups over a Group.
The concept of hypergroup over a group was introduced by Dalalyan in [10] and,
as we mentioned before, arises when one tries to extend the concept of quotient-group
in the case of arbitrary subgroup of a group.

As in the case of perfectly stable subgroups, here we also consider a group G,
its subgroup H and a right transversal M. The right quasigroup operation on M is
defined and it coincides with the operation Ξ defined below.

It can be shown [11] that M is a right transversal of the subgroup H in G
if and only if M is a right complementary set of the subgroup H in G, i.e. for any
x ∈ G there are unique elements α ∈ H,a ∈M such that x = α ·a.

Thus, if M is a (right) transversal of the subgroup H in G, we get that for any
elements α ∈ H and a,b ∈M the elements α ·a,a ·b ∈ G are uniquely represented as
products of an element from H and an element from M:

a ·α = a
α ·aα , a ·b = (a,b) · [a,b],

where aα,(a,b) ∈ H and aα , [a,b] ∈M. The concept of the hypergroup over a group
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arises when considering the triple (G,H,M) and the mappings (further in this paper
we will often use these notations for the mappings Φ,Ψ,Ξ,Λ)

• (Φ) Φ : M×H→M, Φ(a,α) = aα ;
• (Ψ) Ψ : M×H→ H, Ψ(a,α) = aα;
• (Ξ) Ξ : M×M→M, Ξ(a,b) = [a,b];
• (Λ) Λ : M×M→ H, Λ(a,b) = (a,b).
It is proven (see [10], Theorem 2) that the following conditions are satisfied:
(P1) The mapping Ξ is a binary operation on M such that (M,Ξ) is a right

quasigroup with a left neutral element, i.e.
(i) any equation [x,a] = b with elements a,b ∈M has a unique solution

in M;
(ii) there is an element o ∈M such that [o,a] = a for any a ∈M.

(P2) The mapping Φ is an action of the group H on the set M, i.e.
(i) (aα)β = aα·β for any elements α,β ∈ H and for every a ∈M;
(ii) aε = a for each a ∈M, where ε is the neutral element of H.

(P3) For any α ∈ H there is an element β ∈ H such that α = oβ .
(P4) The following identities (A1)–(A5) hold:
• (A1) a(α ·β ) = aα · aα

β ;
• (A2) [a,b]α = [a

bα ,bα ];
• (A3) (a,b) · [a,b]α = a(bα) · (abα ,bα);
• (A4) [[a,b],c] = [a(b,c), [b,c]];
• (A5) (a,b) · ([a,b],c) = a(b,c) · (a(b,c), [b,c]).

D e f i n i t i o n 2. For an arbitrary set M, a group H and a system of mappings
Ω = (Φ,Ψ,Ξ,Λ) we call the triple (M,H,Ω) a (right) hypergroup over the group H,
if the conditions (P1)–(P4) are satisfied. Such a hypergroup over a group is denoted
by MH . It is proved that the hypergroup axioms (P1),(P2),(P3),(A1)–(A5)
are independent (see [12], Theorem 1).

D e f i n i t i o n 3. If the hypergroup MH is obtained by considering a group G,
its subgroup H, a transversal M and the operations Φ,Ψ,Ξ,Λ defined by (Φ)–(Λ),
then we say that MH is obtained by the standard construction from the triple (G,H,M).

By defining the concept of hypergroup isomorphism in a natural way, it can be
proven (see [10], Theorem 5) that any hypergroup can be obtained by the standard
construction up to isomorphism. So, any hypergroup MH can be used to construct an
extension of the group H to a group G containing M as a (right) transversal. Such an
extension is introduced in [10] and is called the exact product of the group H and the
set M associated with the hypergroup MH .

Thus, there is a connection between the hypergroups and the triples (G,H,M),
moreover there is a categorical equivalence between these concepts [6]. Therefore,
if a hypergroup MH is given, one may obtain new hypergroups by considering other
transversals of the subgroup H in the group G (exact product of H and M associated
with the hypergroup MH). More precisely, let the hypergroup MH be obtained by
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the standard construction from the triple (G,H,M). Let M′ be an arbitrary transver-
sal of H in G. Then for any element a ∈ M there is a unique element α(a) ∈ H
such that α(a) · a ∈ M′. Consider the mapping κ : M → H; a 7→ α(a) = κa,
we will get M′ = {κa · a | a ∈ M}. Similarly for any mapping κ : M → H the set
M′ = {κa ·a | a ∈M} will be a right transversal of the subgroup H in the group G.

It can be shown (see [10], corollary of Proposition 3) that for any hypergroup
MH ,Ω = (Φ,Ψ,Ξ,Λ) and any mapping κ : M→ H, the set M and the group H with
the system of structural mappings Ωκ = (Φκ ,Ψκ ,Ξκ ,Λκ) defined below satisfy the
conditions (P1)− (P4) by so defining a new hypergroup structure on M and H,
denoted by (MH)κ :

• (Φκ) Φκ(a,α) = Φ(a,α);
• (Ψκ) Ψκ(a,α) = κa ·Ψ(a,α) ·κ−1

Φ(a,α) = κa · aα ·κ−1
aα ;

• (Ξκ) Ξ(a,b) = Ξ(Φ(a,κb),b) = [aκb ,b];
• (Λκ) Λκ(a,b)= κa ·Ψ(a,κb)·Λ(Φ(a,κb),b)·κ−1

Ξ(Φ(a,κb),b)
= κa ·aκb ·(aκb ,b)

×κ
−1
[aκb ,b].

Moreover, the following theorem holds:

T h e o r e m 1. Let MH be a hypergroup over the group obtained by the stan-
dard construction from the triple (G,H,M), and κ : M→ H be an arbitrary mapping.
Then the hypergroups (MH)κ and M′H are isomorphic, where M′ = {κa ·a | a ∈M}.
Particularly the right quasigroups (M′,Ξ′) and (M,Ξκ) are isomorphic.

P ro o f. Consider the pair of mappings

f = ( f0, f1) : M′H → (MH)κ , f0(α) = α, f1(κa ·a) = a.

Due to the definition of M′, the mapping f1 is well defined, moreover, it is a bijection.
It remains to check that the morphism f = ( f0, f1) preserves the structural mappings
of hypergroups (MH)κ and M′H .

To prove the main result of this paper the following corollary is used:

C o r o l l a r y. Let G be a group, H be a subgroup of G, and M be a right
transversal of H in G. Then the subgroup H is perfectly stable if and only if the right
quasigroup (M,Ξ) is isomorphic to the right quasigroup (M,Ξκ) for any mapping
κ : M→ H.

The Main Result. In this section the Main Theorem 2 is proved.

T h e o r e m 2. The subgroup H of the group G is perfectly stable if and only if
H is a normal subgroup.

To prove the Theorem 2, we use the following lemma.

L e m m a . Let MH be such a hypergroup obtained by the standard construction
from the triple (G,H,M) that M ∩H = {ε}, where ε is the neutral element of G.
Also assume that (M,Ξ) is isomorphic to the right quasigroup (M,Ξκ) for any mapping
κ : M→ H, κ(M)⊂< (a,b) | a,b ∈M >. Then (M,Ξ) is a group.
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P ro o f. Let us show that the binary operation Ξ is associative. Due to the
identity (A4), it is sufficient to show that a(b,c) = a for any elements a,b,c ∈ M.
Let a,b,c ∈M be arbitrary elements. Consider the mapping κ : M→ H, κx = (b,c)
for any element x ∈M.

First, let us notice that o is also the left neutral element of the right quasi-
group (M,Ξκ). Indeed, it is not difficult to see that oα = o for any element α ∈ H
(see also [10], identity (A7)), hence Ξκ(o,x) = [o(b,c),x] = [o,x] = x. Moreover, o is
also a right neutral element for the right quasigroup (M,Ξκ), since it is isomorphic to
(M,Ξ) and [x,o] = x for any element x ∈M. The latter immediately follows from the
condition M∩H = {ε}. Thus,

a(b,c) = [a(b,c),o] = Ξκ(a,o) = a.
It remains to notice that any associative binary operation, satisfying the conditions
(P1)(i) and (P1)(ii), is a group operation.

Now let us start the proof of the Main Theorem 2.
P ro o f. As we mentioned above, in the case when the subgroup H in the group

G is normal, the right quasigroup (M,Ξ) will be isomorphic to the quotient-group
G/H for any right transversal M. Hence the subgroup H will be perfectly stable.

Now assume the subgroup H is perfectly stable, let us show that H is a normal
subgroup. Let M be a right transversal of H in G such that M∩H = {ε}.

It is sufficient to show that aα = a for any elements a ∈M,α ∈ H. Indeed, we
have that a ·α · (aα)−1 = aα ∈H, hence aα = a will imply the equality a ·H ·a−1 = H
for any element a ∈M.

To show the equality aα = a, let us fix an arbitrary element α ∈H and consider
the mapping κ : M→H, κx = α . Due to Corollary and Lemma, the right quasigroups
(M,Ξ) and (M,Ξκ) are groups with neutral element o. Hence, by using the identity
oα = o, we get:

aα = [aα ,o] = [aα , [oα ,o]] = Ξκ(a,Ξκ(o,o)) = Ξκ(Ξκ(a,o),o) =
[[aα ,o]α ,o] = [aα ,o]α = aα2

.

Hence, by using (P2), we obtain a = aα2·α−1
= aα for any element a ∈M.

Conclusion. In this paper an open question about the equivalence of the
concepts of perfectly stable and normal subgroups is considered. The Main Theorem
is proved by means of the theory of hypergroups over a group.
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Показана эквивалентность понятий совершенно стабильных и
нормальных подгрупп. Главная теорема доказана с помощью нового
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