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In the present paper we obtain a relationship between the covariogram and
distribution function of the distance between two uniformly and independently
distributed points. Additionally, we calculate the distribution function of the
distance between these two points in a disk, a ball and a triangle.
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Introduction. There are many articles that aim to calculate the covariogram
or the oriented dependent chord length distribution function. For example, in [1]
obtained relationship between the covariogram and the orientation-dependent chord
length distribution function of a cylinder and those of its base. In [2—4] authors get
explicit form of the covariogram of parallelogram, triangle, right trapezoid etc.

In paper [5], using Dirac’s d-function in Pleijel’s identity, calculated the chord
length distribution function for regular polygons. In [6] proved the same result for the
chord length distribution function for regular polygons, using elementary geometry
tools. Using this function, the author obtained the density function and the distribution
function of the distance between two uniformly and independently distributed random
points in the regular polygon.

The aim of the present paper is to give the relationship between distribution
function of distance between two uniformly and independently chosen points and
covariogram. We calculate density function of distance between two randomly and
independently chosen points in a disk, ball and triangle. The density function of
the distance between two points chosen independently in the ball of diameter d
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was calculated in [7]. Authors use the oriented dependent chord length distribution
function, while here we use the covariogram.

Relationship between the Covariogram and the Distribution Function of
the Distance between Two Independently and Uniformly Distributed Points.
Let D be a bounded, convex body in n-dimensional Euclidean space, with
interior points. Let P, and P» be two points chosen at random, independently and
with uniform distribution in D. Denote by (x11,x12,...,X1,) the coordinates of P, and
by (x21,X22,--,%2,) the coordinates of P,. Denote by (x1,x2,...,x,) difference of
corresponding coordinates of P; and P> (x; = x1; — x;). We define distribution function
of difference of two points by

1
FPlsz(t): V2(D) / dPldPZa

n
(P1,PED:x 1 <t1,X2<10,... X, <ty)
where ¢ € R" and denote the coordinates of t = (1,12, ...,t,). Denote density function
of FPI_PZ(t) by fPI_PZ (t)

fri-p, (t) = %Fﬂ—f’z (t)

1 d oo f1+Xp] oo Ip+X22 oo ty+x,
= C— Ip(P)Ip(P,)dP dP:
V2(D) di / / / / / / p(F)Ip(Po)dPidP, (1)
_ 1! /°°/°° /°°I (Py+1)Ip(P,)dP
For calculating the derivative we use Leibniz integral rule, which says

b(x b(x
2 /)f( Dl | = £(b(@) $b00) — F(xa(a)) 5al) + /()af( D
T X, = f(x,b(x T X x,a(x dxa X ( B X, .

a(x) a(x)

Denote z = \/ x% +x§ +---+x2. Now calculate the probability for the distance
of points to be less than or equal to r.

E(r)=Pz<r)=P+x5+---+x2 <)

VAR P
:/ / / fri—p,(X1,X2,..., Xy )dxy - - - dx2dx,
DN G s
if zis less than or equal 0, then the probability is 0. We show that F(r) has a connection
with fp _p, (7).
If we take derivative of above equation, we get the density function of two

points, whose distance is less than or equal r and we should use Leibniz integral rule.
Now we can calculate the derivative of F,(r):
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2,2 2 _2_._2
r \/’ N \/’ =% Xn—2

felr) = dlzf”) :/ / / i \/rz 2 ’; 2

7 — X —x5——Xx
r—\/rz—x% —\/rz—x%—x%—m—xn 1 2 n—1
2 2 2 2
X fpl_Pz(X],Xz,...,\/l" —X]—X5— =X, ,)
22 2 Ve dod
+fP17P2(x17x2a"'7 r X1 —X3 xnfl) Xn—1 X2dX].

2)
The covariogram C(D,t) of D is the function [§]

C(D,t) =V, (DN (D+1)),

where t € R", V, is the n-dimensional Lebesgue measure on R" and
D+t ={y+t,y € D} is the translation of D by ¢. This functional, was introduced
by Matheron [9]. The covariogram C(D,) is invariant with respect to translation
or a reflection of D (the term reflection will always mean a reflection in a point).
Matheron in 1986 asked the following question:

Covariogram Problem. Does the covariogram determine a convex body,
among all convex bodies, up to translations and reflections?

We have that

c(0.0) = [ Ip(Pip (PP 3)
R

For (1) and (3) we get that the density function of P| — P, is
1
_p(t) = —— [ Ip(P)Ip(P—1t)dP.
- (0) Vnz(D)R[ b(P)Ip(P—1)

If P—1t € D, then we obtain P € D +¢. This means that the previous equation
can be written in the following form

fP]—Pz(t) -

/ In(P)Ip:(P)dP. @)
Rn

The integral part of Eq. (4) is C(D,t), and finally

~ C(D,1)
fP|*P2 (t) - VnZ(D) : (5)
We know that [10]
JdC(D,u,h
_(a;u’) = (1—F(u,h))bp(u), (6)

where h > 0, u € S"~! (where $"~! denotes the (n — 1)-dimensional unit sphere in
R" centered at the origin) and bp(u) is the brightness function of a convex body in
R" that gives the (n— 1) dimensional volume of its orthogonal projection onto
hyperplane with norm u.
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Every vector from R" can be determined by its length and direction.
Assume that the direction of a vector ¢ is u# and the length is . If we integrate
both parts of Eq. (6) from O to &, we get

h
C(D,u,h) =V, (D) — / (1= F(u,5))bp (u)ds. 7)
0

From Egs. (5) and (7) we can obtain relationship between the density function

of P — P, and the orientation depend chord length distribution function
h

1
fo-n0) = oy | Vo@) = [ (1= Fus)bo(w)ds
v2(D) J
We know that
r
dx,,,l .. -dedxl (8)
N T R

2/ " du.
n 1
From Egs. (2), (5) and (8) we get

o1 (C(D,u,h)  C(D,u,h) _hnl
i 2/ ( D) + VD) >du /CDuh 9)

We can calculate the kinematic measure, using the covariogram.
‘We know from [7]

'K (D,h)
Vi(D)
where K (D, 1) is the kinematic measure of all oriented segments of length r that lie
entirely inside D (see [10]).
From Eq. (9) and above equation we can obtain K (D, x) as follow

fo(h) =

K(D,h) = / C(D,u, h)du.
sn—1
Therefore, we obtain a relationship between covariogram C(D,u,h) and the
kinematic measure K (D,t). The same result is shown in [ 1].

The Case of a Disk. In the case of disk D = B, of diameter d the distribution
function has the form

0, if y<o,
F,(0)=q1-/1-%, if 0<y<d,
1, if y>d.

Then bc, (1) = d. Apply (6) and integrate the equation from O to x, we get
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I 9C(By,u,h) ’ n
_ 2 TNT T g 1——
/ ot di /d dZdt’
0 0
2

d d 2
C(Bg4,u,0) —C(Bg,u,x) = farcsing +% 1— %
nd? :
C(Bg4,u0) = Ve and the final result of C(By, ux) is

nd*>  d? x xd X2

C(Bd,u.x):T—?arcslng—? l_ﬁ (10)
Because (10) doesn’t dependent on u, it follows that C(Bg,u,h) = C(By,-,h).
2 14
We know that VZ(B,) = 7[1 = Using (5), we get
C(By,-,h) 4 8 _h 8h 1w
fi-n)==ap "= ga ~pa s s\t (D

Using (2) and that disk is origin symmetric, we get
Ir-p( r? _yZ,y) = fr-p(— r? _yZ’y)_
dF,

h
= ] i )

Using (10), (11) and that /r? — y> = x, we can calculate f;(¢) for the disk.

h
8 16 h  16h n? h
fo(h) = | — — 5= arcsin— — —5—=4/1—— /76[}7
nd*> mw’d? d n’d? \/ d? N
S VE Y

8 16h . h 16K* h?
=2 gt e\ e
This is the same as in [7].
The Case of a Ball.

fz(h> =

e BV
Pz<r) =P +y*+7<r?) = / / for—py(x,y,7)dxdydz.

T _\r2—x2 _ /r27X27y2
Using Leibniz integral rule, we have
roVr—

x2
dFZ(r)_/ r
dr /22 2
" —r ; VT Ty

_VP=Z

+fo-p (=1 = X2 =2y, Z)> dxdy.

fz(r) =

<fP1P2( r2_x2_y27yvz)
(12)

In the case of the ball D = B, of diameter d the distribution function is of the form
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0, if y<o0,
}’2

Fp,(y) = o i 0<y<d,
1, if y>d.

Using (6) and integrating the equation from O to 7, we obtain:

[ 9C(Bg,u,h) (2 md?
_ — 1— 2
u/“ ot dat L/m ) 4 4.
0 0
d? . X xd x?
C(Bd,u,O)—C(Bd,u,x)—?arcsmg—kivl—ﬁ.

nd® nx*  md’x
B N
C( d> M,X) 6 + 12 4
Since (13) is independent of u, we get C(By,u,h) = C(By,-,h). We know
C(Bg,-,h) 6 3k 9
VZ(B;)  md3 ' mdS md*

(13)

dE,(h) 6 o 2h
h) = — = / / —dyd
fZ( ) dh <7Td3 6 7'Cd4> )C2 y2 yax
—h_\/p2-32
24h2 120 36h3
PR d*

Distribution of the Distance between Two Random Points in a Triangle.
From Eq. (9) we show, that if we have the covariogram of a body, we can calculate
the distribution of the distance between two random points. Now we calculate the
distribution function of the distance between two random points for a triangle.

Assume that we have an ABC triangle. We denote |AB| = a, ZCAB= «,
ZABC= B, the area of AABC by S. Let us consider the direction of the AB ray as

zero direction and the counterclockwise orientation as a positive orientation.
From [11] we know that covariogram of triangles is equal to

I,

(asinB — hsin(u+f))*sina asinf3
ssmBsn(at p) 0 ‘e alhel T
(asinosin B — hsinusin(a + B))? asinosin
—Bl.h bt didnd
2sinasin B sin(a + ) »uelez=plhe, sin (ot + ) sinu”’
(asin(x.—hsir.l(u—a))zsinﬁ clx_B.alhel, .asinoc 1
C(A,uh) = 2sinasin(o + f3) sin (4 — )
Y (asinB + hsin(u+ B))*sina wemm+olhe0,— asinf3 |
2sinBsin(a + ) ’ ’ ’ " osin(u+ )7
(asinocs.inﬁ —.+-}zsir.11,tsin(()c—|—ﬁ))2 lnta,2m—Blheo,— .asinasin[?
2sinocsin B 31n((x2+ﬁ) sin(a + ) sinu
(asino + hsin(u— a))“sin asino
) _ g%
2sinasin(o + ) y uezm—p.2a)he o, sin(uf(x)]’

this is an explicit form of the covariogram for any triangle.
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Using the Eq. (9) and the explicit form of the covariogram for triangle, we can
calculate the distance between two random point in triangle.

2
n h (asinB — hsin(u+ B))*sina
=— [ C(Auh)du=— d
S2/ ( y Uy ) u S2 / ZSiHﬁSin(a+B) !
{uel0,0): 2B <p}
N / (asmasmﬁ—hsinusin(a+[3))2d
u
2sinasin Bsin(a+ )
{uelom—B): %5’}
N / (asina—tsin(u—a))zsmﬁd
. 2sinasin(o+ )
{uelm—B7): ooy <h}
.\ / (asin +hsin(u+ﬁ))25inadu
] 2sinBsin(a+ fB)
fuelm e+ o by <}
. / (asinasin + hsinusin(o + B))*
u
2sinosin Bsin(a+ B)
{ue[n+o2n—B]:— %J}
.\ / (asina + hsin(u—a))? smﬁ
2sinaesin(o + B)

{ue 2B 2m]:— osine <p}

sm u— O(

(14
Assume that A is an equilateral triangle whose sides are equal to a. The covariogram
for the equilateral triangle is

( sinthsin< +E))2 sinE ]
a 3 u 3 o E a 3
, uc O, ,he 0,‘ T )
V3 -3 sin(u+§)
2 =
(asing—hsinu) - p asinE
3 s uc *,77:_7:|7h€ 07 . 3 )
V3 L3 3 sinu
5 | J
(asing—hsin(u—g)) _ . asing
ue |n——=,m|,he |0
\/g b L 33 :|7 b

sin( ﬂ) 7
u— —
3
. T . T\ 2 T
(a51n7+h51n<u+f)) _ p asin —
3 3 ue 7r,7r+§},he 0,—73

C(Aeqvuah) =

\/§ 7 sm(u—&—g) ’
o i) |
asin — + sinu) _ asin —
3 T ”} 3
—2n——=|.,h 0,—
\/§ , ue_ﬂ+3,ﬂf 3] S s sinu |
(asinz—i—hsin(u—g))2 asinﬁ
3 3 I T 3

S ue 27t7—,27r},h€ 0,—
73 T3
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For calculation of two points distribution function in triangle we consider two cases.
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The distribution and the density function of the distance between two uniformly and
independently distributed points in equilateral triangle.

3
Case 1. Assume that ¢ is less than or equal a\zf. Using Eq. (14) and (15),
it is obvious that 6 integrals are equal and we can calculate one integral and multiply
2
3
it by 6. We know that § — & [,

du

2
h 2 6 ”/3(asin§—hsin(u+§>>
£ = 0/ CAegsush)du = o5 0/ 7

— — -

[ ma? ah+(2n+3\/§)h2 32h
- \4v3 12v/3 a

. av'3 ) .
Case 2. Assuming that ¢ € [{,a] , we can do the same as in the previous

case:

u

2
oh 7/6—arccos 47 <asin73r — hsin (u—i— 731'>>
£(h) Sz/CDuh)d 52< / 7 d

0

p T

3 <as1n3—hsm u+

4 / )
o V3

t/6+-arccos %

:%(f( /6 — arccos\[> fah( +4/1— )

h? V3a m 1 3a V3
+? (—arccos%+ G + - 5 <s1n2arccos—2>>
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Moments of Distance between Two Points in Body from R". It is shown in
[7] how to calculate the k-th moment between two points randomly and independently
distributed in the bounded convex domain, where it is used the chord length distribution
function. We obtain the explicit form of k-th moment, using covariogram. To find the
k-th moment between points (we denote it by M', where n is the dimension of the
space), we need to calculate the following integral

d
Mk = /xkfz"(x)dx.
0

Using (9), we rewrite the last equation in the following form:

d xl’l“rk*l

W / C(D,ux)dx, (16)
gn—1

k
n

0
using Eq. (16) we can calculate the k-th moment between two points randomly and
independently distributed on any geometric object, which covariogram is known. For

example, using (10) and (16) we can calculate the mean distanse between two points
randomly and independently distributed on the disk in the following way:

d
nd®> d d i
M21:/ X P9 aresin® — 200 1= X dudx
0

vaD)J) 4 2 d 2 42

Tt \ 12 36 15

This is the same result as in [7]

32 (ndS (3n—4)d® d5>_64
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€. G ONUL3UL, J. N uldssuu

UNIUrpNG L UUP B, SUJUUUCNUQUe Bd WLullv AUCHJUG Brunk
UtStrh UbQbJ NEAUINCNFE8WL AUCHUUL SNFLUSPUBSHh UbQbJ, LUM

SNnnpjuwdnd uypugyly b juy ynduphngpudh b hwjuwuwpuswth b wbljupa
puphujwd tpynmt Ytaptiph dhol htinwynpnipjub pwphudwd $niblyghwyh dholi:
Pwgh npwihg, hwpgupyyty £ tpynt Ytaptiph dholt htinwynpnipjud puphudwb
$nibyghwtibipp opowbh, ginh b Gonwbljjwbh hwdwn:

B. K. OTAH{H, B. A. XAJIATAH

CBS3b MEZKIY KOBAPMOTPAMMOI I ®YHKIINEN PACIIPEIEJIEHIA
PACCTOAHUA MEZKAY ABYMA HESABUCHUMBIMU U PABHOMEPHO
PACITPEJAEJIEHHBIMI TOYKAMU

B craTbe mosydeHa cBa3b MeXK Iy KOBapuorpaMmmoil u pyHKIel pacipe-
JeJIEHUsI PACCTOSHUSA MEXK/1y JIByMs HE3aBUCUMBIMHU TOYKAMH C PABHOMEPHBIM
pacipejieJieHueM B BBITYKJIOM Tejie. Kpome TOro, Mbl paccuuTasiu (DyHKITH
pacIpejiesieHnsi paCCTOTHUN MeXKTy TAKUMH JIByMs TOYKaMHU JIjId KpyTa, mapa
U TPeyroJibHUKA.
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