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In the present paper we obtain a relationship between the covariogram and
distribution function of the distance between two uniformly and independently
distributed points. Additionally, we calculate the distribution function of the
distance between these two points in a disk, a ball and a triangle.
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Introduction. There are many articles that aim to calculate the covariogram
or the oriented dependent chord length distribution function. For example, in [1]
obtained relationship between the covariogram and the orientation-dependent chord
length distribution function of a cylinder and those of its base. In [2–4] authors get
explicit form of the covariogram of parallelogram, triangle, right trapezoid etc.

In paper [5], using Dirac’s δ -function in Pleijel’s identity, calculated the chord
length distribution function for regular polygons. In [6] proved the same result for the
chord length distribution function for regular polygons, using elementary geometry
tools. Using this function, the author obtained the density function and the distribution
function of the distance between two uniformly and independently distributed random
points in the regular polygon.

The aim of the present paper is to give the relationship between distribution
function of distance between two uniformly and independently chosen points and
covariogram. We calculate density function of distance between two randomly and
independently chosen points in a disk, ball and triangle. The density function of
the distance between two points chosen independently in the ball of diameter d

∗ E-mail: victoohanyan@ysu.am,
∗∗ E-mail: v.khalatyan@ysu.am

https://doi.org/10.46991/PYSU:A/2022.56.1.033
victoohanyan@ysu.am
v.khalatyan@ysu.am


34 V. K. OHANYAN, V. H. KHALATYAN

was calculated in [7]. Authors use the oriented dependent chord length distribution
function, while here we use the covariogram.

Relationship between the Covariogram and the Distribution Function of
the Distance between Two Independently and Uniformly Distributed Points.
Let D be a bounded, convex body in n-dimensional Euclidean space, with
interior points. Let P1 and P2 be two points chosen at random, independently and
with uniform distribution in D. Denote by (x11,x12, . . . ,x1n) the coordinates of P1 and
by (x21,x22, . . . ,x2n) the coordinates of P2. Denote by (x1,x2, . . . ,xn) difference of
corresponding coordinates of P1 and P2 (xi = x1i−x2i). We define distribution function
of difference of two points by

FP1−P2(t) =
1

V 2
n (D)

∫
(P1,P2∈D:x1≤t1,x2≤t2,...,xn≤tn)

dP1dP2,

where t ∈ Rn and denote the coordinates of t = (t1, t2, . . . , tn). Denote density function
of FP1−P2(t) by fP1−P2(t).

fP1−P2(t) =
d
dt

FP1−P2(t)

=
1

V 2
n (D)

· d
dt

 ∞∫
−∞

t1+x21∫
−∞

∞∫
−∞

t2+x22∫
−∞

· · ·
∞∫
−∞

tn+x2n∫
−∞

ID(P1)ID(P2)dP1dP2


=

1
V 2

n (D)

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

ID(P2 + t)ID(P2)dP2.

(1)

For calculating the derivative we use Leibniz integral rule, which says

d
dx

 b(x)∫
a(x)

f (x, l)dl

= f (x,b(x))
d
dx

b(x)− f (x,a(x))
d
dx

a(x)+

b(x)∫
a(x)

∂

∂x
f (x, l)dl.

Denote z =
√

x2
1 + x2

2 + · · ·+ x2
n. Now calculate the probability for the distance

of points to be less than or equal to r.

Fz(r) = P(z≤ r) = P(x2
1 + x2

2 + · · ·+ x2
n ≤ r2)

=

r∫
−r

√
r2−x2

1∫
−
√

r2−x2
1

· · ·

√
r2−x2

1−x2
2−···−x2

n−1∫
−
√

r2−x2
1−x2

2−···−x2
n−1

fP1−P2(x1,x2, . . . ,xn)dxn · · ·dx2dx1,

if z is less than or equal 0, then the probability is 0. We show that Fz(r) has a connection
with fP1−P2(t).

If we take derivative of above equation, we get the density function of two
points, whose distance is less than or equal r and we should use Leibniz integral rule.

Now we can calculate the derivative of Fz(r):
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fz(r) =
dFz(r)

dr
=

r∫
−r

√
r2−x2

1∫
−
√

r2−x2
1

· · ·

√
r2−x2

1−x2
2−···−x2

n−2∫
−
√

r2−x2
1−x2

2−···−x2
n−2

r√
r2− x2

1− x2
2−·· ·− x2

n−1

×

(
fP1−P2(x1,x2, . . . ,

√
r2− x2

1− x2
2−·· ·− x2

n−1)

+ fP1−P2(x1,x2, . . . ,−
√

r2− x2
1− x2

2−·· ·− x2
n−1)

)
dxn−1 · · ·dx2dx1.

(2)
The covariogram C(D, t) of D is the function [8]

C(D, t) =Vn(D∩ (D+ t)),

where t ∈ Rn, Vn is the n-dimensional Lebesgue measure on Rn and
D+ t = {y+ t,y ∈ D} is the translation of D by t. This functional, was introduced
by Matheron [9]. The covariogram C(D, t) is invariant with respect to translation
or a reflection of D (the term reflection will always mean a reflection in a point).
Matheron in 1986 asked the following question:

Covariogram Problem. Does the covariogram determine a convex body,
among all convex bodies, up to translations and reflections?

We have that
C(D, t) =

∫
Rn

ID(P)ID+t(P)dP. (3)

For (1) and (3) we get that the density function of P1−P2 is

fP1−P2(t) =
1

V 2
n (D)

∫
Rn

ID(P)ID(P− t)dP.

If P− t ∈ D, then we obtain P ∈ D + t. This means that the previous equation
can be written in the following form

fP1−P2(t) =
1

V 2
n (D)

∫
Rn

ID(P)ID+t(P)dP. (4)

The integral part of Eq. (4) is C(D, t), and finally

fP1−P2(t) =
C(D, t)
V 2

n (D)
. (5)

We know that [10]

− ∂C(D,u,h)
∂ t

= (1−F(u,h))bD(u), (6)

where h > 0, u ∈ Sn−1 (where Sn−1 denotes the (n− 1)-dimensional unit sphere in
Rn centered at the origin) and bD(u) is the brightness function of a convex body in
Rn that gives the (n− 1) dimensional volume of its orthogonal projection onto
hyperplane with norm u.
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Every vector from Rn can be determined by its length and direction.
Assume that the direction of a vector t is u and the length is h. If we integrate
both parts of Eq. (6) from 0 to h, we get

C(D,u,h) =Vn(D)−
h∫

0

(1−F(u,s))bD(u)ds. (7)

From Eqs. (5) and (7) we can obtain relationship between the density function
of P1−P2 and the orientation depend chord length distribution function

fP1−P2(t) =
1

V 2
n (D)

Vn(D)−
h∫

0

(1−F(u,s))bD(u)ds

 .

We know that

r∫
−r

√
r2−x2

1∫
−
√

r2−x2
1

· · ·

√
r2−x2

1−x2
2−···−x2

n−2∫
−
√

r2−x2
1−x2

2−···−x2
n−2

r√
r2− x2

1− x2
2−·· ·− x2

n−1

dxn−1 · · ·dx2dx1 (8)

=
1
2

∫
Sn−1

rn−1du.

From Eqs. (2), (5) and (8) we get

fz(h) =
1
2

∫
Sn−1

rn−1
(

C(D,u,h)
V 2

n (D)
+

C(D,u,h)
V 2

n (D)

)
du =

hn−1

V 2
n (D)

∫
Sn−1

C(D,u,h)du. (9)

We can calculate the kinematic measure, using the covariogram.
We know from [7]

fz(h) =
hn−1K(D,h)

V 2
n (D)

,

where K(D, t) is the kinematic measure of all oriented segments of length r that lie
entirely inside D (see [10]).

From Eq. (9) and above equation we can obtain K(D,x) as follow

K(D,h) =
∫

Sn−1

C(D,u,h)du.

Therefore, we obtain a relationship between covariogram C(D,u,h) and the
kinematic measure K(D, t). The same result is shown in [11].

The Case of a Disk. In the case of disk D = Bd of diameter d the distribution
function has the form

FBd (y) =


0, if y≤ 0,

1−
√

1− y2

d2 , if 0≤ y≤ d,

1, if y≥ d.

Then bCd (u) = d. Apply (6) and integrate the equation from 0 to x, we get
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x∫
0

−∂C(Bd ,u,h)
∂ t

dt =
x∫

0

d

√
1− h2

d2 dt,

C(Bd ,u,0)−C(Bd ,u,x) =
d2

2
arcsin

x
d
+

xd
2

√
1− x2

d2 .

C(Bd ,u0) =
πd2

4
and the final result of C(Bd ,ux) is

C(Bd ,ux) =
πd2

4
− d2

2
arcsin

x
d
− xd

2

√
1− x2

d2 . (10)

Because (10) doesn’t dependent on u, it follows that C(Bd ,u,h) =C(Bd , ·,h).

We know that V 2
2 (Bd) =

π2d4

16
. Using (5), we get

fP1−P2(t) =
C(Bd , ·,h)

V 2
n (Bd)

=
4

πd2 −
8

π2d2 arcsin
h
d
− 8h

π2d3

√
1− h2

d2 . (11)

Using (2) and that disk is origin symmetric, we get

fP1−P2(
√

r2− y2,y) = fP1−P2(−
√

r2− y2,y).

fz(h) =
dFz(h)

dh
=

h∫
−h

2h√
h2− y2

(
fP1−P2(

√
h2− y2,y)

)
dy.

Using (10), (11) and that
√

r2− y2 = x, we can calculate fz(t) for the disk.

fz(h) =

 8
πd2 −

16
π2d2 arcsin

h
d
− 16h

π2d3

√
1− h2

d2

 h∫
−h

h√
h2− y2

dy

=
8h
d2 −

16h
πd2 arcsin

h
d
− 16h2

πd3

√
1− h2

d2 .

This is the same as in [7].
The Case of a Ball.

P(z≤ r) = P(x2 + y2 + z2 ≤ r2) =

r∫
−r

√
r2−x2∫

−
√

r2−x2

√
r2−x2−y2∫

−
√

r2−x2−y2

fP1−P2(x,y,z)dxdydz.

Using Leibniz integral rule, we have

fz(r) =
dFz(r)

dr
=

r∫
−r

√
r2−x2∫

−
√

r2−x2

r√
r2− x2− y2

(
fP1−P2(

√
r2− x2− y2,y,z)

+ fP1−P2(−
√

r2− x2− y2,y,z)

)
dxdy.

(12)

In the case of the ball D = Bd of diameter d the distribution function is of the form
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FBd (y) =


0, if y≤ 0,
y2

d2 , if 0≤ y≤ d,

1, if y≥ d.

Using (6) and integrating the equation from 0 to t, we obtain:
x∫

0

−∂C(Bd ,u,h)
∂ t

dt =
x∫

0

(
1− y2

d2

)
πd2

4
dy,

C(Bd ,u,0)−C(Bd ,u,x) =
d2

2
arcsin

x
d
+

xd
2

√
1− x2

d2 .

C(Bd ,u,x) =
πd3

6
+

πx3

12
− πd2x

4
. (13)

Since (13) is independent of u, we get C(Bd ,u,h) =C(Bd , ·,h). We know
C(Bd , ·,h)

V 2
3 (Bd)

=
6

πd3 +
3h3

πd6 −
9h

πd4 ,

fz(h) =
dFz(h)

dh
=

(
6

πd3 +
3h3

πd6 −
9h

πd4

) h∫
−h

√
h2−x2∫

−
√

h2−x2

2h√
h2− x2− y2

dydx

=
24h2

d3 +
12h5

d6 −
36h3

d4 .

Distribution of the Distance between Two Random Points in a Triangle.
From Eq. (9) we show, that if we have the covariogram of a body, we can calculate
the distribution of the distance between two random points. Now we calculate the
distribution function of the distance between two random points for a triangle.

Assume that we have an ABC triangle. We denote |AB| = a, ∠CAB= α ,
∠ABC= β , the area of ∆ABC by S. Let us consider the direction of the AB ray as
zero direction and the counterclockwise orientation as a positive orientation.

From [11] we know that covariogram of triangles is equal to

C(∆,u,h)=



(asinβ −hsin(u+β ))2 sinα

2sinβ sin(α +β )
, u ∈ [0,α],h ∈ [0,

asinβ

sin(u+β )
],

(asinα sinβ −hsinusin(α +β ))2

2sinα sinβ sin(α +β )
, u ∈ [α,π−β ],h ∈ [0,

asinα sinβ

sin(α +β )sinu
],

(asinα−hsin(u−α))2 sinβ

2sinα sin(α +β )
, u ∈ [π−β ,π],h ∈ [0,

asinα

sin(u−α)
],

(asinβ +hsin(u+β ))2 sinα

2sinβ sin(α +β )
, u ∈ [π,π +α],h ∈ [0,− asinβ

sin(u+β )
],

(asinα sinβ +hsinusin(α +β ))2

2sinα sinβ sin(α +β )
,u ∈ [π +α,2π−β ],h ∈ [0,− asinα sinβ

sin(α +β )sinu
],

(asinα +hsin(u−α))2 sinβ

2sinα sin(α +β )
, u ∈ [2π−β ,2π],h ∈ [0,− asinα

sin(u−α)
],

this is an explicit form of the covariogram for any triangle.
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Using the Eq. (9) and the explicit form of the covariogram for triangle, we can
calculate the distance between two random point in triangle.

fz(h) =
h
S2

2π∫
0

C(∆,u,h)du =
h
S2

 ∫
{u∈[0,α]: asinβ

sin(u+β )
≤h}

(asinβ −hsin(u+β ))2 sinα

2sinβ sin(α +β )
du


+

∫
{u∈[α,π−β ]:

asinα sinβ

sin(α+β )sinu≤h}

(asinα sinβ −hsinusin(α +β ))2

2sinα sinβ sin(α +β )
du

+
∫

{u∈[π−β ,π]: asinα

sin(u−α)
≤h}

(asinα− t sin(u−α))2 sinβ

2sinα sin(α +β )
du

+
∫

{u∈[π,π+α]:− asinβ

sin(u+β )
≤h}

(asinβ +hsin(u+β ))2 sinα

2sinβ sin(α +β )
du

+
∫

{u∈[π+α,2π−β ]:− asinα sinβ

sin(α+β )sinu≤h}

(asinα sinβ +hsinusin(α +β ))2

2sinα sinβ sin(α +β )
du

+
∫

{u∈[2π−β ,2π]:− asinα

sin(u−α)
≤h}

(asinα +hsin(u−α))2 sinβ

2sinα sin(α +β )
du.

(14)
Assume that ∆ is an equilateral triangle whose sides are equal to a. The covariogram
for the equilateral triangle is

C(∆eq,u,h) =



(
asin

π

3
−hsin

(
u+

π

3

))2

√
3

, u ∈
[
0,

π

3

]
,h ∈

0,
asin

π

3
sin
(

u+
π

3

)
 ,

(
asin

π

3
−hsinu

)2

√
3

, u ∈
[

π

3
,π− π

3

]
,h ∈

0,
asin

π

3
sinu

 ,
(

asin
π

3
−hsin

(
u− π

3

))2

√
3

, u ∈
[
π− π

3
,π
]
,h ∈

0,
asin

π

3
sin
(

u− π

3

)
 ,

(
asin

π

3
+hsin

(
u+

π

3

))2

√
3

, u ∈
[
π,π +

π

3

]
,h ∈

0,−
asin

π

3
sin
(

u+
π

3

)
 ,

(
asin

π

3
+hsinu

)2

√
3

, u ∈
[
π +

π

3
,2π− π

3

]
,h ∈

0,−
asin

π

3
sinu

 ,
(

asin
π

3
+hsin

(
u− π

3

))2

√
3

, u ∈
[
2π− π

3
,2π

]
,h ∈

0,−
asin

π

3
sin
(

u− π

3

)
 .

(15)
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For calculation of two points distribution function in triangle we consider two cases.

The distribution and the density function of the distance between two uniformly and
independently distributed points in equilateral triangle.

Case 1. Assume that t is less than or equal
a
√

3
2

. Using Eq. (14) and (15),
it is obvious that 6 integrals are equal and we can calculate one integral and multiply

it by 6. We know that S =
a2
√

3
4

,

fz(h) =
h
S2

2π∫
0

C(∆eq,u,h)du =
6h
S2

 π/3∫
0

(
asin

π

3
−hsin

(
u+

π

3

))2

√
3

du


=

(
πa2

4
√

3
−ah+

(2π +3
√

3)h2

12
√

3

)
32h
a4 .

Case 2. Assuming that t ∈

[
a
√

3
2

,a

]
, we can do the same as in the previous

case:

fz(h) =
h
S2

2π∫
0

C(D,u,h)du =
6h
S2

( π/6−arccos a
√

3
2h∫

0

(
asin

π

3
−hsin

(
u+

π

3

))2

√
3

du

+

π

3∫
π/6+arccos a

√
3

2h

(
asin

π

3
−hsin

(
u+

π

3

))2

√
3

du

)

=
12h

S2
√

3

(
3a2

4

(
π/6− arccos

a
√

3
2h

)
−
√

3ah
(

1
2
+

√
1− 3a2

4h2

)

+
h2

2

(
−arccos

√
3a

2h
+

π

6
+

1
2

(
sin2arccos

√
3a

2h
−
√

3
2

))
.
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Moments of Distance between Two Points in Body from Rn. It is shown in
[7] how to calculate the k-th moment between two points randomly and independently
distributed in the bounded convex domain, where it is used the chord length distribution
function. We obtain the explicit form of k-th moment, using covariogram. To find the
k-th moment between points (we denote it by Mn

k , where n is the dimension of the
space), we need to calculate the following integral

Mk
n =

d∫
0

xk f n
z (x)dx.

Using (9), we rewrite the last equation in the following form:

Mk
n =

d∫
0

xn+k−1

V 2(D)

∫
Sn−1

C(D,ux)dx, (16)

using Eq. (16) we can calculate the k-th moment between two points randomly and
independently distributed on any geometric object, which covariogram is known. For
example, using (10) and (16) we can calculate the mean distanse between two points
randomly and independently distributed on the disk in the following way:

M1
2 =

d∫
0

x2

V 2(D)

2π∫
0

πd2

4
− d2

2
arcsin

x
d
− xd

2

√
1− x2

d2 dudx

=
32

πd4

(
πd5

12
− (3π−4)d5

36
− d5

15

)
=

64
45

d.

This is the same result as in [7]
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V. K. �HANYAN, V. H. XALATYAN

KOVARIOGRAMI EV HAVASARA�A� EV ANKAX BA
XVA ERKOW

KETERI MIJEV HE�AVOROW�YAN BA
XMAN FOWNKCIAYI MIJEV KAP

Hodva�owm stacvel � kap kovariogrami  havasara�a�  ankax

ba�xva� erkow keteri mij he�avorow�yan ba�xman fownkciayi mij :

Baci dranic, ha�varkvel � erkow keteri mij he�avorow�yan ba�xman

fownkcianner� �rjani, gndi  e�ankyan hamar:

В. К. ОГАНЯН, В. А. ХАЛАТЯН

СВЯЗЬ МЕЖДУ КОВАРИОГРАММОЙ И ФУНКЦИЕЙ РАСПРЕДЕЛЕНИЯ
РАССТОЯНИЯ МЕЖДУ ДВУМЯ НЕЗАВИСИМЫМИ И РАВНОМЕРНО

РАСПРЕДЕЛЕННЫМИ ТОЧКАМИ

В статье получена связь между ковариограммой и функцией распре-
деления расстояния между двумя независимыми точками с равномерным
распределением в выпуклом теле. Кроме того, мы рассчитали функции
распределения расстояний между такими двумя точками для круга, шара
и треугольника.
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