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In this paper four proof complexity characteristics for some class of balanced
tautologies are investigated in two proof systems of propositional logic. One of
the considered systems is based on determinative disjunctive normal form, the
other on the generalization of splitting method. The optimal upper and lower
bounds by logarithmic scale for all main proof complexity characteristics of
considered tautologies are obtained in both systems.
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Introduction. Propositional proof complexity has its origin in the seminal
paper by Cook and Reckhow [1]. It provides a path for approaching the P vs. NP
problem: proving super-polynomial lower bounds to all propositional proof systems
is equivalent to showing that NP is different from coNP and, therefore, P is different
from NP. It is well known that the exponential lower bounds for proof sizes of some
sets of tautologies are obtained in many systems, but for some most natural calculi,
in particular for Frege systems, the question about polynomial bounded sizes is still
open. In many papers, some specific sets of tautologies are introduced, and it is shown
that the question about polynomial bounded sizes for Frege proofs of all tautologies is
reduced to an analogous question for a set of specific tautologies. In particular, Lutz
Strasburger introduced in [2] the notion of balanced formulas and showed, that if there
are polynomial bounded Frege proofs for the set of balanced tautologies, then the
Frege systems should have a polynomial-size p(n) proof for every tautology of size n.
In this paper the main proof complexity characteristics (lines, size, space and width)
for the balanced formulas QHQn = ∨0≤i≤n ∧1≤ j≤n

[
∨1≤k≤i q̄i, j,k ∨∨i<k≤n qk, j,i+1

]
are investigated in the system E [3], which is based on the determinative disjunctive
normal, and in the system GS [4], which is based on the generalization of splitting
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method. While the system E is polynomial equivalent with of well-known resolution
system, cut-free sequent and cut-free Frege systems [3], the place of the system GS
in the hierarchy of the propositional proof systems [1] is still unknown. Moreover,
the comparison of the two main proof complexity characteristics (lines and sizes) for
two classes of formulas in the system GS and Frege systems is considered in [5, 6].
It is shown that for one class of considered formulas the bounds in the system GS
are better, than in Frege systems and vice versa for the second class. For all above
considered cases the investigation of proof size for formulas QHQn in the system E
and especially in the system GS are very important.

In this paper we obtain optimal upper and lower bounds by logarithmic skale for
all main proof complexity characteristics of considered tautologies in both systems.

Preliminaries. We will use the current concepts of the unit Boolean cube (En),
a propositional formula, conjunct, disjunctive normal form (DNF), a proof system
for propositional logic, and proof complexity. The language of considered systems
contains the propositional variables, logical connectives ¬, & , ∨, and parentheses (,).
Note that some parentheses can be omitted in generally accepted cases. Following the
usual terminology we call the variables and negated variables literals. The conjunct K
(clause) can be represented simply as a set of literals (no conjunct contains a variable
and its negation simultaneously). In [3] the following notions were introduced.

We call a replacement-rule each of the following trivial identities for a proposi-
tional formula ψ:

0 & ψ = 0, ψ & 0 = 0, 1 & ψ = ψ , ψ & 1 = ψ ,

0∨ψ = ψ , ψ ∨0 = ψ , 1∨ψ = 1, ψ ∨1 = 1,

0 = 1, 1 = 0, ψ = ψ.

Application of a replacement-rule to some word requires the replacing of its sub words,
having the form of the left-hand side of identity by the right-hand side.

Let ϕ be a propositional formula, P = {p1, p2, . . . , pn} be the set of all variables
of ϕ , and P′ = {pi1 , pi2 , . . . , pim} (1≤ m≤ n) be some subset of P.

D e f i n i t i o n 1. Given σ = {σ1,σ2, . . . ,σm} ⊂ Em, the conjunct
Kσ =

{
pσ1

i1 , pσ2
i2 , . . . , pσm

im

}
is called ϕ–1-determinative (ϕ–0-determinative), if as-

signing σ j (1 ≤ j ≤ m) to each pi j and successively using replacement-rules we
obtain the value of ϕ (1 or 0) independently of the values of the remaining variables.

ϕ–1-determinative conjunct and ϕ–0-determinative conjunct are called also
ϕ-determinative or determinative for ϕ .

D e f i n i t i o n 2. 1-determinative for ϕ conjunct Kσ =
{

pσ1
i1 , pσ2

i2 , . . . , pσm
im

}
is called minimal determinative, if no subset of Kσ is determinative for ϕ .

D e f i n i t i o n 3. DNF D = {K1,K2, . . . ,K j} is called determinative DNF
(dDNF) for ϕ , if ϕ = D and every conjunct Ki (1≤ i≤ j) is 1-determinative for ϕ .
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The Proof System E. The axioms of E are not fixed, but for every formula ϕ

each conjunct from some dDNF of ϕ can be considered as an axiom. The elimination
rule (e-rule) infers K′∪K′′ from clauses K′∪{p} and K′∪{p̄}, where K′ and K′′ are
clauses and p is a variable.

The proof in E is a finite sequence of clauses such that every clause in the
sequence is one of the axioms of E, or is inferred from earlier clauses in the sequence
by e-rule. DNF D = {K1,K2, . . . ,Kl} is called full (tautology), if using e-rule the
empty conjunction ( /0) can be proved from the axioms {K1,K2, . . . ,Kl}.

The Proof System GS. Let ϕ be some formula and p be some of its variable.
Results of splitting method of formula ϕ by variable p (splinted variable) are the
formulas ϕ[pδ ] for every δ from the set {0,1}, which are obtained from ϕ by
assigning δ to each occurrence of p and successively using replacement-rules. The
generalization of splitting method allow as associate with every formula ϕ some tree
with root, nodes of which are labeled by formulas and edges, labeled by literals. The
root is labeled by itself formula ϕ . If some node is labeled by formula v and α is some
its variable, then both edges, which going out from this node, are labeled by one of
literals αδ for every δ from the set {0,1}, and each of 2 “sons” of this node is labeled
by corresponding formula v[α]δ . Each of the tree’s leafs is labeled with some constant
from the set {0,1}. The tree, which is constructed for formula ϕ by described method,
we will call splitting tree (s.t.) of ϕ . It is obvious, that changing the order of splinted
variables in a given formula ϕ , we can obtain the different splitting trees of ϕ .

The GS proof system can be defined as follows: for every formula ϕ must be
constructed some s.t., and if all tree’s leafs are labeled by the value 1, then formula
ϕ is tautology and, therefore, we can consider the pointed constant 1 as axiom, and
for every formula v, which is label of some s.t. node, and p is its splinted variable,
then the Figure v[p0], v[p1] ` v can be considered as some inference rule, hence
every above described s.t. can be considered as some proof of ϕ in the system GS.
Note, that if we consider splitting method for formulas given in DNF , then GS system
is the well-known system Analytic Tableaux.

Proof Complexity Measures. In the theory of proof complexity two main
characteristics of the proof are: t-complexity, defined as the number of proof steps
(lines) and l-complexity, defined as total number of proof symbols (size). Now we
consider two measures (space and width) also. s-Complexity (space), informal defined
as maximum of minimal number of symbols on blackboard needed to verify all
steps in the proof and w-complexity (width), defined as the maximum of widths of
proof formulas. Follow to [7], we give the formal definitions of the mentioned proof
complexity measures.

If a proof in the system Φ is a sequence of lines L (lines, for example, are
conjuncts in E, formulas in GS), where each line is an axiom, or is derived from
previous lines by one of a finite set of allowed inference rules, then a Φ-configuration
is a set of such lines. A sequence of Φ-configurations {D0,D1, . . . ,Dr} is said to be
Φ-derivation, if D0 is empty set and for all t (1≤ t ≤ r), the set Dt is obtained from
Dt−1 by one of the following derivation steps:
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Axiom Download. Dt = Dt−1∪{LA}, where LA is an axiom of Φ.
Inference. Dt = Dt−1∪{L} for some L inferred by one of the inference rules

for Φ from a set of assumptions, belonging to Dt−1.
Erasure. Dt ⊂ Dt−1.
A Φ-proof of a tautology ϕ is a Φ-derivation {D0,D1, . . . ,Dr} such that D0 is

empty and ϕ̃ ∈ Dr, where ϕ̃ is empty conjunct in E and ϕ̃ is ϕ in GS.
By |ϕ| we denote the size of a formula ϕ , defined as the number of all logical

signs entries. It is obvious that the full size of a formula, which is understood to be
the number of all symbols, is bounded by some linear function in |ϕ|.

The size (l) of a Φ-derivation is a sum of the sizes of all lines in a derivation,
where lines that are derived multiple times are counted with repetitions. The lines
(t) of a Φ-derivation is the number of axioms downloads and inference steps in it.
The space (s) of a Φ-derivation is the maximal space of a configuration in a derivation,
where the space of a configuration is the total number of logical signs in a configuration,
counted with repetitions. The width (w) of a Φ-derivation is the size of the widest line
in a derivation.

Let Φ be a proof system and ϕ be a tautology. We denote by tΦ
ϕ

(
lΦ
ϕ ,s

Φ
ϕ ,w

Φ
ϕ

)
the minimal possible value of t-complexity (l-complexity, s-complexity, w–complexity)
for all proofs of tautology ϕ in Φ. Furter we denote proof complexities of formulas
QHQn in the system Φ by tΦ(n)

(
lΦ(n),sΦ(n),wΦ(n)

)
.

Balanced Formulas. A formula A is balanced, if every propositional variable
occurring in A, occurs exactly twice, once positive and once negative. The tautologies

QHQn = ∨
0≤i≤n

∧
1≤ j≤n

[
∨

1≤k≤i
q̄i, j,k∨ ∨

i<k≤n
qk, j,i+1

]
are balanced. At first, we give some

quantitative characteristics for these formulas. It is not difficult to see that

|QHQn| =
3n2(n+1)

2
− 1. Let for all n ≥ 1 and 0 ≤ i ≤ n, 1 ≤ j ≤ n Qi, j be the

formula Qi, j = ∨
1≤k≤i

q̄i, j,k∨ ∨
i<k≤n

qk, j,i+1, then

QHQn = ∨
0≤i≤n

(
Qi1∧Qi2∧ . . .∧Qi j ∧ . . .∧Qi(n−1)∧Qin

)
,

and Hi be the formula (Qi1∧Qi2∧ . . .∧Qin) = Hi, then QHQn = H0∨H1∨ . . .∨Hn.
It is obvious, that minimal numbers of literals in 1-determinative conjunct for every
Qi, j is 1, and minimal numbers of literals in 1-determinative conjunct for every Hi,
therefore for QHQn is n.

Proof Complexities Bounds of QHQn in the System GS. Here we describe
some algorithm for construction s.t. for QHQn. At first, we choose as splinted some
variable from Q01. As result, we will have on the first level 2 different formulas
without of first splinted variable. Then, choosing as splinted some variable from Q02
for both formulas on next stage, we will have 4 different formulas without of second
splinted variable and etc. in same way. The further description can be easer, if we
consider it on the example of s.t. for QHQ3, which is given below (see Figure).
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𝑄𝑄𝑄𝑄𝑄𝑄3 

                                                                                𝑞𝑞1,1,1=0                        𝑞𝑞1,1,1=1             

                                                                                                                           

                                               𝑞𝑞1,2,1=0                      𝑞𝑞1,2,1=1                      𝑞𝑞1,2,1=0                   𝑞𝑞1,2,1=1 

 

  𝑞𝑞1,3,1=0          𝑞𝑞1,3,1=1             𝑞𝑞1,3,1=0              𝑞𝑞1,3,1=1   𝑞𝑞1,3,1=0         𝑞𝑞1,3,1=1              𝑞𝑞1,3,1=0      𝑞𝑞1,3,1=1 

 

 

                                       𝑞𝑞2,3,2=0                                   𝑞𝑞2,3,2=1    

 

                                                           𝑞𝑞3,3,2=0                                         𝑞𝑞3,3,2=1 

 

 

 

                                                                                                        𝑞𝑞2,1,1=0       𝑞𝑞2,1,1=1    

 

                                                                        

                                                               𝑞𝑞2,2,1=0         𝑞𝑞2,2,1=1              𝑞𝑞2,2,1=0      𝑞𝑞2,2,1=1  

 

                                                            𝑞𝑞3,1,1=0           𝑞𝑞3,1,1=1   𝑞𝑞3,1,1=0                     𝑞𝑞3,1,1=1 

 

 

                                𝑞𝑞3,2,3=0               𝑞𝑞3,2,3=1                               𝑞𝑞3,1,3=0             𝑞𝑞3,1,3=1 

 

 
Splittin tree for QHQ3. 
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After splitting by one variable from every Q0 j (1 ≤ j ≤ n) on the n-th level,

we obtain two nodes, labeled by 1 and

(
n

∑
i=0

2i−2

)
different formulas labeled by +,

which have the same size and “the same construction”. From each of such formulas
after n−2 splitting we can obtain s.t. for QHQn−1. So, for tGS(n) we can write the
following recurrent relation

tGS(n)≤

((
n

∑
i=0

2i

)
−2+(2n−2)

(
(n−2)+

(
tGS(n−1)−1

)))
+1≤

≤ (2n−2) tGS(n−1)+4+n2n ≤ ·· · ≤ 2
1
2 (n+1)(n+2).
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For the lower bound of tGS(n) we must note, that occurs of different variables
in formulae QHQn is “the same” and, therefore, the turn of splendid variables is im-
material, consequently in every s.t. of QHQn only the number of nodes, labeled by +,
must be no less than (2n−2)(2n−1−2) · · ·(23−2)(22−2). Taking into consideration
that (2n−2)≥ 2n−1 for ≥ 2, we obtain

tGS(n)≥ 2n−12n−2 · · ·21 ≥ 2
1
2 (n−1)n.

So, for sufficiently large n log2 tGS(n) = Ω(n2) and log2 tGS(n) = O(n2).
For the bounds of proof size we use the trivial relations

tϕ(ϕ) ≤ lϕ(ϕ) ≤ tϕ(ϕ) |A|, where A is the largest formula in the proof. As the
formula QHQn is the largest in it s.t., we obtain

lGS(n)≤ 3n2(n+1)
2

2
1
2 (n+1)(n+2) and lGS(n)≥ 2

1
2 (n−1)n.

So, for sufficiently large n log2 lGS(n) = Ω(n2) and log2 lGS(n) = O(n2).
It is not difficult to prove, that the longest branch in suggested s.t. for QHQn

has n2 nodes, and in every tree-like k-depth proof the maximum of minimal number of
lines on the blackboard needed to verify all steps in the proof is k + 2, therefore

sGS(n) ≤ (n2 + 2)
3n2(n+1)

2
. Taking into consideration that the formula QHQn

and the results of it splitting by one variable must be in each s.t., we have

sGS(n)≥ 3n2(n+1)
2

−1+n(n−1)2−2 =
5n2(n−1)

2
−2.

So, it is proved that log2 sGS(n) = Ω(log2 n) and log2 sGS(n) = O(log2 n).

It is obvious that wGS(n) =
3n2(n+1)

2
− 1 and for sufficiently large n

log2 wGS(n) = θ(log2 n).
So, it is proved the following

T h e o r e m 1. Let n be sufficiently large, then for lines, size, space, and width
complexities of sequences QHQn in the system GS the following holds:

log2 tGS(n) = θ(n2), log2 lGS(n) = θ(n2),
log2 sGS(n) = θ(log2 n) and log2 wGS(n) = θ(log2 n).

Proof Complexities Bounds of QHQn in the System E. Here we describe
some trivial algorithm for transformation s.t. for QHQn into proof in E. Note that the
set of all literals for every branch of s.t., going from the root to the node, labeled by 1,
is 1-determinative conjunct for QHQn and the set of all such conjuncts is dDNF for
QHQn, therefore, if we turn over the s.t., and label every node with 1 by corresponding
1-determinative conjunct, the root with empty conjunct, the other nodes – with the
set of literals on the edges of branch, going from the root to this node, we obtain the
tree of proof for QHQn in the system E. As the formula QHQn is balanced, then all
conjunct, labeled to nodes of constructed tree are different from each other, therefore,
we have

tE(n)≤ 2
1
2 (n+1)(n+2) and tE(n)≥ 2

1
2 (n−1)n.

So, for sufficiently large n log2 tE(n) = Ω(n2) and log2 tE(n) = O(n2).
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It is not difficult to prove, that the largest branch in above constructed s.t. is
n2, therefore, the maximal number of literals in 1-determinative conjunct for QHQn

is also n2, and hence the maximal size of formulas labeled to leafs of tree proof in E
is no more, than 2n2−1. So, we have

lE(n)≤ 2
1
2 (n+1)(n+2)(2n2−1) and lE(n)≥ 2

1
2 (n−1)n.

So, for sufficiently large n we have log2 lE(n) = Ω(n2) and log2 lE(n) = O(n2).
For the width we have trivial bounds n2−1≤ wE(n)≤ 2n2−1.
So, for sufficiently large n log2 wE(n) = Ω(log2 n) and log2 wE(n) = O(log2 n).
As for the space it is proved in [8] that for the sequence of tautologies ϕ(k)

in k variables sE
ϕ = O(k2), therefore, since the number of different variables in QHQn

is
n2(n+1)

2
, for sufficiently large n we have sE(n) = O(n6). Using the fact that at

least two determinative conjunct with the result of its e-rule must be in every E-proof,
we obtain sE(n)≥ 2(n2−1)+n2−2≥ 3n2−4.

So, we have log2 sE(n) = Ω(log2 n) and log2 sE(n) = O(log2 n).
So, it is proved the following

T h e o r e m 2. Let n be sufficiently large, then for lines, size, space, and width
complexities of sequences QHQn in the system E the following holds:

log2 tE(n) = θ(n2), log2 lE(n) = θ(n2),
log2 sE(n) = θ(log2 n) and log2 wE(n) = θ(log2 n).

I am grateful to my students A. Balyan and H. Azizyan for very helpful remarks
in the process of QHQn derivation in the system GS.
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ASOWY�AYIN HA
VI ORO
 HAMAKARGEROWM BALANSAVORVA


BANA�EVERI MI DASI ARTA
OWMNERI BARDOW�YOWNNERI VERABERYAL

Sowyn a�xatanqowm asowy�ayin ha�vi erkow hamakargerowm`

�n�hanracva� trohman me�odi vra himnva� hamakargowm  oro�i�

dizyownktiv normal � i vra himnva� hamakargowm owsowmnasirvel en

balansavorva� bana� eri mi dasi hamar arta�owmneri bardow�yownneri

�ors bnow�agri�neri ar�eqner�: Bolor owsowmnasirva� me�ow�yownneri hamar

stacvel en logari�makan sand�akov mi nowyn kargi verin  storin

gnahatakanner:

А. А. ЧУБАРЯН

O СЛОЖНОСТЯХ ВЫВОДОВ ОДНОГО КЛАССА БАЛАНСИРОВАННЫХ
ФОРМУЛ В НЕКОТОРЫХ ПРОПОЗИЦИОНАЛЬНЫХ СИСТЕМАХ

В настоящей работе для одного класса балансированных формул
исследованы четыре сложностные характеристики выводов в двух про-
позициональных системах: в системе, основанной на обобщенном методе
расщепления, и в системе, основанной на определяющей дизъюнктивной
нормальной форме. Для всех исследуемых величин получены одинаковые
по порядку (по логарифмической шкале) верхние и нижние оценки.


