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A proper edge coloring of a graph G is a mapping o : E(G) — N such
that a(e) # a(e’) for every pair of adjacent edges e and ¢’ in G. In a proper
edge coloring of a graph G, the palette of a vertex v € V(G) is the set of colors
assigned to the edges incident to v. The palette index of G is the minimum
number of distinct palettes occurring in G among all proper edge colorings
of G. A graph G has a spanning star, if it has a spanning subgraph which is a
star. In this paper, we consider the palette index of graphs having a spanning
star. In particular, we give sharp upper and lower bounds on the palette index
of these graphs. We also provide some upper and lower bounds on the palette
index of the complete split and threshold graphs.
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Introduction. All graphs considered in this paper are finite, undirected, and
have no loops or multiple edges. Let V(G) and E(G) denote the sets of vertices
and edges of G, respectively. The set of neighbors of a vertex v in G is denoted by
Ng(v). The degree of a vertex v € V(G) is denoted by dg(v), the maximum degree of
vertices in G by A(G) (or A), and the chromatic index of G by x'(G). The vertex v
in G is dominating if dg(v) = |V(G)| — 1. By Vizing’s theorem [ 1], ¥'(G) = A(G) or
x'(G) = A(G) + 1 for any graph G. A graph G is said to be Class 1 if x'(G) = A(G),
and Class 2 if ¥’ (G) = A(G) + 1. The terms and concepts that we do not define can
be found in [2].

Graph coloring problems are one of the well-known and prominent areas of
research in the graph theory. Probably, the main reason for that is the tight relationship
between the graph coloring problems and the scheduling theory. For example, the
problem of constructing an optimal schedule for an examination session can be reduced
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to the problem of finding the chromatic number of a graph. On the other hand, the
sport scheduling problems can be reduced to the problem of finding the chromatic
index of a graph, etc. Many problems of scheduling theory can be reduced not just
to classical graph coloring problems, but to ones of existence and construction of
vertex or edge colorings with additional restictions. For example, the list colorings
of graphs are proper vertex colorings, for which each vertex receives a color from its
list of available colors, and this type of vertex coloring is used to model a scheduling,
where each job can be processed in certain time slots or if each job can be processed
by certain machines.

There are many papers devoted to edge colorings with restrictions on the
number of distinct palettes. A relatively new type of proper edge coloring with the
minimum number of distinct palettes was considered by Horndk, Kalinowski, Meszka,
and WoZniak [3] in 2014, where the authors defined the palette index of graphs.
The palette index of G is the minimum number of palettes occurring among all proper
edge colorings of G and is denoted by §(G).

This parameter has been studied for regular graphs. In [3], the authors studied
the palette index of some regular graphs. In particular, they determined the palette
index of complete graphs:

I, if n=0 (mod 2),
§(Kp) =13, if n=3 (mod 4),
4, if n=1 (mod 4).
They also observed that the palette index of a regular graph is 1 if and only if

the graph is of Class 1. Moreover, the palette index of a regular graph is different
from 2. Additionally, they determined the palette index of cubic graphs:

1, if GisofClass 1,
$(G) =143, if Gisof Class 2 and has a perfect matching,
4, if G is of Class 2 and has no perfect matching.

It is easy to see that the palette index of d-regular graphs of Class 2 is in
{3,..., d+1}. In [4], the authors studied the palette index of 4-regular graphs of
Class 2 and showed it accepts all of these values: 3,4,5.

There are a few results about the palette index of non-regular graphs. In [5],
the authors studied the palette index of complete bipartite graphs K, ,. They completely
determined the palette index of K, 5, where min(a,b) < 5. In [6], the palette index of
bipartite graphs was investigated. In particular, Casselgren and Petrosyan determined
the palette index of the grid graphs and characterized the class of graphs, whose palette
index equals the number of vertices. In [7], Bonisoli, Bonvicini and Mazzuoccolo gave
a sharp upper bound of the palette index of tree graphs. Moreover, they constructed
a family of trees, whose palette index reaches the upper bound. Some applications
of the palette index to model several problems related to the self-assembly of DNA
structure can be found in [8].

By Vizing’s theorem, we can use at most A+ 1 colors to have a proper edge
coloring of a graph G, hence §(G) < 2*! —2. On the other hand, in [9] the authors
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constructed a family of multigraphs with a palette index growing asymptotically
as A?. Recently, Mattiolo, Mazzuoccolo and Tabarelli [10] proved, that if G is a graph
with A(G) > 2 and it has no spanning even subgraph without isolated vertices, then
$(G) > 8(G), where 6(G) is the minimum degree of vertices in G. Then using this
result they constructed the first known family of simple graphs, whose palette index
grows quadratically with respect to their maximum degree. In general, the problem of
determining the palette index of a graph can be NP-complete. Determining if a regular
graph is of Class 1 is an NP-complete problem [11]. Thus, determining whether the
palette index of a regular graph is 1 or not is an NP-complete problem.

This paper studies the palette index of graphs having a spanning star.
We give sharp upper and lower bounds for the palette index of such graphs.
Additionally, we provide sharp lower and upper bounds for the palette index of
complete split and threshold graphs.

Definitions. Let G be a graph and v € V(G). We begin with some additional
definitions.

Definition 1. By Dg(v), we denote the set of degrees of vertices adjacent
tov: Dg(v) ={d | u € Ng(v),dg(u) =d}.

Definition 2. By ng(v,d), we denote the number of vertices adjacent to v
having degree d: ng(v,d) = [{u | u € Ng(v),dc(u) =d}|.

Definition 3. We denote by D(G) the set of all degrees in G:
D(G) ={dc(v) |v € V(G)}.

Definition 4. For any positive integer n, let us define the graph D,
as follows:

V(Dy) ={vi,..-,vn},
E(D,) ={vivj|i+j<n+1}.

It is easy to see that D,, is a graph with a spanning star (the vertex v; is adjacent
to all the remaining vertices); thus A(D,) = n— 1. Moreover, for each integer d
(1 <d < A(D,)) there exists a vertex with degree d in D,,. Among all graphs with n
vertices, Dy has the maximum number of distinct vertex degrees since only vy, /> and
Vin/2]41 have the same degree.

Definition 5. Let a and b be integers. We denote by rm(a,b) the remainder
of a divided by b.

Definition 6. Ler a and b be integers. We denote by gcd(a,b) the greatest
common divisor of a and b.

Definition 7. Letaand b (a > b > 0) be positive integers. We denote by
1, if a=b,
r(a,b) = 1+%, if a>band rm(a,b) =0,
L*J +r(b,rm(a,b)), if rm(a,b)#0.
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As it was shown in [5], for every positive integers a and b (a > b > 0),
the inequality $(K, ) < r(a,b) holds.

Definition 8. Let G be a graph and vy,...,v, be a sequence of the
vertices of G. Let f be a proper edge coloring of G and py, ..., pm be the palettes of
ViyeooyVne We say [ is ordered by vy,...,v, if there are integers

0=jo<j1 << ju1 < jm=n such that for each i = 1,....m and
J=Jji-1+1,..., ji the palette of v; is p;.

On the Upper and Lower Bounds on the Palette Index of Graphs G Having
a Spanning Star. In this section, we give a lower bound on the palette index of graphs.
Then we improve this lower bound for the graphs having a spanning star. We give
examples, where these bounds are sharp. Also we give some sharp upper bounds for
the graphs having a spanning star. Additionally, we study the palette index of complete
split and threshold graphs.

Proposition 1. Let G be a graph. Then the following inequality is true:

§(G) > max ( y ["G(d“l)%yD(G)\DG(vn).

veV(G) deDg(v)

Proof. Letv € V(G). Consider the neighbors of v in G. The vertex v has
ng(v,d) neighbors with degree d. Therefore, the palettes of cardinality d must contain

nG(V7 d)
d

incident to the vertices of degree d that are adjacent to v. For each d € D(G) \ Dg(v),
we need at least one palette of cardinality d. O

ng(v,d) distinct colors. Thus, it requires at least [ —‘ palettes to color edges

Note, that if G has a connected component different from K5, then the maximum
in the lower bound in Proposition 1 is attained on the vertices with degree greater
than 1.

A natural question arises: is the maximum of the lower bound in Proposition 1
attainable only at the vertices with the maximum degree? We construct a graph that
gives a negative answer to this question.

For any positive integer n, let us define S” graphs in the following way.

Take a single vertex v and n star graphs S1,5»,...,S,. For each S1,5>,...,S,
take a pendant vertex and identify all of them with the same vertex v. The resulting
graph is the graph S".

Let us denote by V' the vertex (v/ # v) of S” with degree n. It is straightforward
to show that §(S") = 2n — 2. Moreover, the above-mentioned lower bound is sharp for
the vertex /. In Fig. 1, we can see a proper edge coloring of $* with the minimum
number of palettes.

Let us now take a single vertex u and m > n+1 copies S7,...,S;, of . We label
the vertices v and v/ of the copy S} correspondingly by v; and v}, where i = 1,...,m.
Then we connect u with each v; by an edge, where i = 1,...,m. We denote the

resulting graph by H”. In Fig. 2 we can see the graph H?.
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Note that A(H),) = dyn (u) = m > n = dy (v]) and only the vertex u has the
maximum degree.

m-1

Vi

Fig. 1. The graph $* and a proper edge coloring Fig. 2. The graph Hy.
of it with the minimum number of palettes.

Let us denote the function, which attains a maximum value in the lower bound
of Proposition 1 by f(v). Then it is easy to see that

/
ngn\v ,d
ron= % "D o)\ Dy h) = 2n
deDpn (V)
fw= % [PED] oDyl = [ | e
= om0 i \ D = — )
deDpy (u) d n+1
Thus, f(v) > f(u) forany m <n*> —n—2.
Let us now consider graphs having a spanning star.

Theorem. Let G be a graph with a dominating vertex v. Then the following
lower bound on the palette index of G holds:
ng(v,d

56) > z{dﬂ+WM@—mwmm>

dGD(;(V)

Proof. Note that for every vertex w € V(G) and degree d € Dg(w) the
. . nG(Wud)
inequality | ————=
spanning star, then ng(w,A(G)) < |V(G)| —1 and A(G) = |V(G)| — 1; therefore,
o [n0mAG)] |
< A(G) <

Let u € V(G) be a vertex of G different from the vertex v.

The vertex v is incident to all the remaining vertices including the neighbors
of the vertex u except the vertex v. Therefore, for every degree d € D(G) \ {A(G)}

the following is true:
nG(Vad) > }’lG(l/t,d)
d - d )

> 1 holds, as well as, since G is a graph having a
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If there is another dominating vertex besides v, then

VG(Z@()GW _ VG(Z@()GW .

otherwise,

sen(A(G) - max(D())) = 1D(G)\ Do) = |

Therefore,

n(;(u,A(G))-‘
AG) |

ng(v,d
Z [G(dw +sgn(A(G) —max(Dg(v))) > Z [ w +|D(G)\Dg(u)|.
dGDG(V) dGDG

Thus, the maximum in the lower bound in Proposmon 1 is attained on the
dominating vertices. O

The following proposition is about the upper bound on the palette index of
graphs having a spanning star.

Proposition 2. Let G be a graph having a spanning star. If G is a star
graph or can be obtained from a star graph by connecting two vertices with degree
1 by an edge, then §(G) = A(G) + 1. Otherwise, $(G) < A(G). Moreover; this upper
bound is sharp.

Proof. In[6], Casselgren and Petrosyan characterized all the graphs G that
satisfy §(G) = |V(G)|.
and the graphs obtained from a star graph by connecting two vertices with degree 1 by
an edge have that property. Therefore, if G is one of these two graphs, then

$(G) =[V(G)|=A(G) +1

Obviously, for the remaining graphs G having a spanning star the following
inequality §(G) < A(G) holds.

To complete the proof, we show that there are graphs G having a spanning star
with the palette index §(G) = A(G).

Let us consider the palette index of the graph D,,.

Since D(D,) = {1,...,n— 1}, we obtain that §(D,) >n—1=A(D,).

If n > 4, then $(D,,) S A(Dy).

Thus,

(D) A(Dy), ifn=2orn>4,
S =
" A(D,)+1, ifn=3o0rn=4.
L]

We can say that the lower bound of Theorem is sharp. Examples could be:

e graphs D, if n #4;

e complete graphs K>,;

e star graphs Sj,.

Next, we study the palette index of some specific graphs having a spanning star
such as complete split graphs and threshold graphs. A complete split graph K'S,, ,,, is a
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graph on n 4 m vertices consisting of a clique on n vertices and an independent set on
the remaining m vertices, in which each vertex of the clique is adjacent to each vertex
of the independent set. Clearly, KS,, ,, has a spanning star.

Let V(KS,n) = VUUV = {v,....v,},U = {wy,...,u,,} and
E(KSym)={viuj |1 <i<n, 1 <j<m}U{vyv;|1<i< j<n}. Thus, KS,.[V]
is a complete graph K, and K, ,,[U] is an independent set.

Let us note that K, is isomorphic to a complete graph K, i and KSi ,,
is isomorphic to a star graph S,,,.

Proposition 3. For every positive integers n and m, we have:
a) ifn<m, then

m
14 H < 5(KSum) < §(Knm) +5(K) — sgn(m — n);
b) ifn>m, then
S(KSpm) < min (5(Kym) +5(Kn) — 1,5(Koppm) +111).

Proof. a)Let n < m. Since each vertex of U has degree n and each vertex of

V is adjacent to all m vertices of U, we obtain that at least {—-‘ palettes are required
n

for any proper edge coloring of edges incident to the vertices of U. Moreover, at least
one palette of size n 4 m is required for a proper edge coloring of edges incident to
the vertices of V. Thus,

14 [T] <5(KSpn) ifn<m.
- ,

Let us now prove the upper bound on §(KS,, ).

Let G be a spanning subgraph of KS, , with edge set {viu; | 1 <i < n,
1 < j <mj}. Clearly, G is isomorphic to K, ,,. If m = n, then for any proper edge
coloring with 7 colors, the vertices of G have the same palette. Thus,

S(KSnm) < $(Kym)+5(Kn).

Assume that n < m. We first color properly the edges of G with the minimum
number of palettes using coloring f. Without loss of generality, we can assume that
f1is ordered by vy,...,v,.

Let H = KS,,»[V]. Then we color properly the edges of H with the minimum
number of palettes using coloring f, with new colors. Again we can assume that f>
is ordered by vy,...,v,. It is straightforward to verify that the colorings fi and f>
together constitute a proper edge coloring of K, ,,. Since f; and f> are ordered by
vi,...,V,, we obtain that the number of palettes in the resulting proper edge coloring
of G is at most §(K, ) + 5(K,) — 1.

b) Let n > m. We can color the edges of KS,, ,, using the method as in the
previous case. Hence,

§(KSn,m) < S‘/(I(nm) +§(Kn) -1

On the other hand, we can color the complete graph K,,,, and then pick m
vertices and remove all edges between them. Hence,

g(Kmm) < g(Kn+m) +m.
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Corollary. Forevery positive integers n and m, we have
f(KSzmgnm) =m+1.

Proof. Since §(Kzponm) < r(2n,2nm) = m+ 1 and §(K»,) = 1, the lower
bound from Proposition 3 coincided with the upper bound from Proposition 3. O

Finally, we consider the palette index of threshold graphs. Recall that a thresh-
old graph is a graph that can be constructed from a one-vertex graph by repeated
applications of the following two operations:

e addition of a single isolated vertex to the graph;

e addition of a single dominating vertex to the graph.

Below, we study connected threshold graphs.

Let G be a threshold graph without isolated vertices. For every threshold graph
G, there are [,my,ny,...,my,n;,mg positive integers such that G can be constructed in
the following way:

First, we add mp — 1 dominating vertices. Then we iteratively, for each

i=1,...,l, add n; independent (non-adjacent) vertices and then m; dominating
vertices.

Let [,my,ny,....m;,n;,my be positive integers. Let U = {u?,...,ugqo},
VO=0,U ={u,....u,}, Vi={¥,...,vi } be non-intersecting sets of vertices,
wherei=1,...,1L.

We denote by G = G(mg,my,...,m,ny,...,n;) the following threshold graph:
1
v(G) =Ju'Yv,
i=0

! i
E(G) = U{Wlwz ’ wi € Ui,Wz IS U UjUVj,wl #WZ}.
i=0 j=0

! !
We denote by D and I, correspondingly, the set of vertices D = U U'and I = U Vi

i=0 i=1

l i
Note, that there are m; vertices in D with degree Zm it Z nj—1, mgy
j=0 j=1
! !

vertices with degree Z m;— 1, as well as, there are n; vertices in  with degree Z mj,

j=0 j=i

wherei=1,...,L

i
We denote by G' the subgraph G' = G[U'( JJ V/] — E(G[U"]), where
j=1
i=1,...,1
Note that the set of edges of G can be divided into the sets of the edges of
subgraphs G[D] = Kyt and G'= Kmi-,Zj-zlnj’ wherei=1,...,L.
So, taking into account the above-mentioned observations, we can state the
following:
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Proposition 4. Let [,my,ny,...,m,n,my be positive integers and

G =G(mg,my,...,my,ny,...,n;). The following inequality is true:
§(G) > 21 —1+sgn(mo—1).
!
Proof. The minimum of the degrees of the vertices D is Z m;— 1, and the
j=0
!
maximum of the degrees of the vertices / is Z m;. Note that
j=1

Zm]—l ij—m0—1>0

Jj=
If we count one palette for Vertlces of the same degree, then we will get the

above-mentioned lower bound. L]
Proposition 5. Let [,my,ny,...,my;,n;,mg be positive integers and
G = G(mg,my,...,my,ny,...,n;). The following inequality is true:

i( (Kt ,ny) +1-sen <‘mi_]§i:nj‘>> +5(Kg om,)

1

Proof. We first enumerate the vertices of / and D. Then we color each
subgraph G' using a proper edge coloring f; with the minimum number of palettes and
ordered by the ascending order of I and D, so that the color sets for different values of
i do not intersect each other (1 <i <1).

J
In this case, if m; = Z{ n;, then g(Kmi,Zj-zl n,-) = 1. Therefore, for the vertices of
1=
i—1

U’ and V', we will have one palette p, and each palette p of the vertices U v/ will be
j=1
replaced by the palette p U p’. But in that case, if we color the edges of the subgraph
G[D], then the palette of the vertices U " will be replaced, and thus; we need to count
one more palette.
Since all colorings f; are ordered by the ascending order of I and D, then we

need at most
! i
b (e - Eo)
J:

i=1
palettes to color the subgraph G — E(GID]).
We use new colors to color G[D] with a proper edge coloring fy with the
minimum number of palettes and ordered by the ascending order of D. This may add
5 (Kg om
new palettes. Thus,

g?(( /ln>+1—sgn<\mi—j_zi:1nj\>>+sv< Com)
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Finally, let us show that these upper and lower bounds are sharp.
] !

l
Let In; > 1,m; = Z nj,my = Z m; be integers, where i = 1,...,L
j=1 j=1
Let G = G(MQ,ml,. Lo,mpng, ... ,n,).
Note that each subgraph G' is also regular, therefore, we can color it with one
palette. As well, G[D] is the complete graph Ko, .
For this graph, we obtain the following:

204+1<5(G) <20+1.

In the previous two propositions, we used the palette index of K, ,, graphs.
We have already mentioned that §(K, ) < r(n,m). In [12], Walters claims that
Laczkovich suggests the following problem:

Let n,m be positive integers and R be an n x m rectangle. What is the minimum
number of squares with disjoint interiors to cover R? There are some results related to
this problem, but the problem is still open [12—-14].

The solution to this problem for the n x m rectangle R gives an upper bound of
the palette index of the graph K, ,,. Indeed, let U = {u;,...,u,} and V = {vy,..., v}
be the parts of the vertices of K, ,,. We construct a matrix M, where each element
m; ; is the color of the edge u;v;, 1 <i<n,1 < j<m. We correspond an n X m
rectangle R to the matrix M. We cover R by the minimum number of squares and
denote them by S(d)),...,S(dx), where d; is the size of square, i = 1,...,k. We
color the part of the matrix M corresponding to each square S(d;) by the colors

i—1 i
{ Z dj,..., Z dj_ }, wherei=1,... k. As aresult, we get a proper edge coloring of
j=1 j=1

Ky . For K, 1, let us denote the minimum number of such palettes by #(n,m). This up-
per bound can be better than r(n,m). For example, if n =11 m =13, thenr(11,13) =9
and 7(11,13) <7 (see Fig. 3).

Fig. 3. Six squares with disjoint interiors covering
an 11 x 13 rectangle.
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O TAJITUTPOBOM MHIEKCE 'PA®OB C OCTOBHOI 3BE3/1I011

[IpaBusibHOlt pebepHoii  packpackoit rpacda G Ha3bIBaeTCd TaKoe
orobpazxkenue o : E(G) — N, npu koropom o(e) # a(e’) anst moboit mapbt
cMexKHBIX pebep e u € rpada G. g npasBuiibHO pebepHoit pacKkpacku Ipada
G omupesesuMm naaurpy BepimHbl v € V(G) Kak MHOMKECTBO BCEX I[BETOB,
MIPUCBOEHHBIX pedpaM, WHINJACHTHBIM BepinuHe V. [laauTpoBbIM WHIEKCOM
rpada G Ha3BIBAETCSI MEHUMAJIbHOE KOJIMIECTBO PA3INIHBIX AT, BCTPEIaio-
MUXCsT B IPaBUIBHBIX pebepHBIX packpackax rpada G. Iosopsit, uTto rpad
G uMeeT OCTOBHYIO 3Be3Jy, €CJIM y HEro eCTb OCTOBHBIA moarpad, KOTOPBIi
SIBJISIETCsI 3BE3/101. B HacTosIIell craThe HAMU PACCMOTPEH HAJIUTPOBbBIN NHIEKC
rpacoB, MMeIONMX OCTOBHYIO 3Be3Jy. B dacTHOCTHM B 3TOil paboTe IaHbI
JOCTUXKUMbBIC BEPXHUE U HUYKHIE OIEHKU IMaJIUTPOBOTO nnaekca rpadon. Hamu
TaK>Ke TOJIYIeHbl HEKOTOPbBIE BEPXHIE U HIKHIE TPAHUIILI TAIUTPOBOIO WHIEKCA,
IIOJIHBIX PACHIEILIIEMBIX IpadOB U ITOPOTOBBIX IrpadoB.



