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ON A RESULT CONCERNING ALGEBRAIC CURVES
PASSING THROUGH n-INDEPENDENT NODES
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Let a set of nodes X in the plane be n-independent, i.e. each
node has a fundamental polynomial of degree n. Assume that
#X =dmn,n—-3)+3=(n+1)+n+---+5+3. In this paper we prove
that there are at most three linearly independent curves of degree less
than or equal to n — 1 that pass through all the nodes of X. We provide a
characterization of the case when there are exactly three such curves. Namely,
we prove that then the set X has a very special construction: either all its nodes
belong to a curve of degree n — 2, or all its nodes but three belong to a (maximal)
curve of degree n — 3.

This result complements a result established recently by H. Kloyan,
D. Voskanyan, and H. Hakopian. Note that the proofs of the two results are
completely different.
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Introduction. Denote the space of all bivariate polynomials of total degree
<nby

II, = { Z aijxiyj}.
i+j<n
We have that N := N,, :=dimIT, = (1/2)(n+1)(n+2).

Denote by II the space of all bivariate polynomials.

A plane algebraic curve is the zero set of some bivariate polynomial of degree
> 1. To simplify notation, we shall use the same letter, say p, to denote the polynomial
p € IT and the curve given by the equation p(x,y) = 0. In particular, by ¢ we denote a
linear polynomial from IT; and the line defined by the equation ¢(x,y) = 0.
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Consider a set of s distinct nodes X = Xy = {(x1,y1), (x2,2), ..., (x5,¥5) }.
The problem of finding a polynomial p € IT,, which satisfies the conditions

p(xi,yi)=ci, i=1,...,s, (1)
is called interpolation problem.
Denote by p}x the restriction of p € ITon X.
A polynomial p € II, is called a fundamental polynomial for a node
A€Xif p(A) =1 and ply,,, =0.
We denote this n-fundamental polynomial by p} := p} o

Definition 1. The interpolation problem with a set of nodes X is called
n-poised, if for any data (ci,...,cs) there is a unique polynomial p € 11, satisfying
the interpolation Conditions (1).

A necessary condition of poisedness is #X; = s = N.
Now, let us consider the concept of n-independence (see [1,2]).

Definition 2. A set of nodes X is called n-independent, if all its nodes
have n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary
condition of n-independence for X is s < N.

In this paper we consider n-independence more generally. Namely, we admit
possibility to include in the n-independent set X a directional derivative node, denoted
by A). We have that p(AK)) := DEp(A), where p € 1, a is a direction, and k € N.
For a node A®) we assume in addition that

pell, plx=0 = Dip(A)=0,i=0,....k—1.

The set XU {A®)} is n-independent means that X is n-independent and the node
A® has an n-fundamental polynomial p = PZ(k) :

p eIl,, plx =0, D];p(A) =1.

We say that a node A®) belongs to a curve ¢ if Dip(A) =0, i =0,...,k.
In particular A%®) belongs to a line /, if A € £ and a is the direction vector of /.

Let us mention, as it can be readily verified, that all the results we present below
concerning n-independent sets hold true for the above mentioned generalization.

Some Properties of n-Independent Nodes. Let us start with the following

Lemma 1. (Lemma 2.2, [3]). Suppose that a set of nodes X is n-independent
and a node A ¢ X has an n-fundamental polynomial with respect to the set X U{A}.
Then the latter set is n-independent too.

Denote the distance between the points A and B by p(A, B). Let us recall the
following (see Rem. 1.14, [4]).

Lemma 2. Suppose that Xy = {A;}!_, is an n-independent set. Then there is
a number € > 0 such that any set Xj = {A}}}_,, with the property that
p(Ai,Al) <€, i=1,...,s, is n-independent too.
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Next result concerns the extensions of n-independent sets.

Lemma 3. (Lemma 2.1, [2]). Any n-independent set X with #X < N can
be enlarged to an n-poised set.

Denote the linear space of polynomials of total degree at most n vanishing
on X by

Pox = {pEHn:p‘xzo}.
The following two propositions are well-known (see, e.g., [2]).
Proposition 1. For any node set X we have that
dim®P, x =N —#Y,
where Y is a maximal n-independent subset of X.

Proposition 2. Ifa polynomial p € I1,, vanishes at n+ 1 points of a line ¢,
then we have that p = Lr, where r € I1,,_1.

In the sequel we will need the following

Proposition 3. (Prop. 1.10, [3]). Let X be a set of nodes. Then the
following two conditions are equivalent:

i) iPn,f)C = {O};

ii) the node set X has an n-poised subset.

Setd(n,k) := N, —N,_x = (1/2)k(2n+3 —k). The following is a generalization
of Proposition 2.

Proposition 4. (Prop. 3.1, [5]). Let q be an algebraic curve of degree k < n
without multiple components. Then the following hold:

i) any subset of q containing more than d(n,k) nodes is n-dependent;

ii) any subset X of q containing exactly d = d(n,k) nodes is n-independent if
and only if the following condition holds:

pell, and p|lx=0= p=gqr, wherer €Il, ;. )

Thus, according to Proposition 4, i), at most d(n,k) nodes of X can lie
in a curve g of degree k < n. This motivates the following

Definition 3. (Def. 3.1, [5]). Given an n-independent set of nodes X
with s > d(n,k). A curve of degree k < n passing through d(n,k) points of X is called
maximal.

We say that a node A of an n-poised set X uses a curve g € I, if the latter
divides the n-fundamental polynomial of A, i.e. p} = gqr, r € I, .
Let us bring a characterization of maximal curves:

Proposition 5. (Prop. 3.3, [5]). Let a node set X be n-independent.
Then a curve W of degree k, k < n, is a maximal curve if and only if

p e, plxru=0 = p=uq, g, ;.
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Next result concerns maximal independent sets in curves.

Proposition 6. (Prop. 3.5, [6]). Assume that © is an algebraic curve of
degree k without multiple components and Xy C © is any n-independent node set of
cardinality s, s < d(n,k). Then the set X can be extended to a maximal n-independent

set X4 C o of cardinality d = d(n,k).
Next result from Algebraic Geometry will be used in the sequel:

Theorem 1. (Th. 2.2, [7]). If C is a curve of degree n with no multiple
components, then through any point O not in C there pass lines which intersect C in
n distinct points.

Let us mention that, as it follows from the proof;, if a line ¢ through the point O
intersects € in n distinct points then any line through O, sufficiently close to £, has the
same property.

Finally, let us present a well-known

Lemma 4. Given m linearly independent polynomials, m > 2. Then for
any point A there are m — 1 linearly independent polynomials, in their linear span,
vanishing at A.

A Result and Its Complement. In this paper we complement the following

Theorem 2. (Theorem 2.5, [8]). Assume that X is an n-independent set of
d(n,k —2) + 3 nodes with 3 < k < n—2. Then at most three linearly independent
curves of degree < k may pass through all the nodes of X. Moreover, there are such
three curves for the set X if and only if all the nodes of X lie in a curve of degree k— 1,
or all the nodes of X but three lie in a (maximal) curve of degree k — 2.

Namely, we prove that the above result is true also in the case k =n—1:

Proposition 7. Assume that X is an n-independent set of d(n,n —3) +3
nodes, n > 4. Then at most three linearly independent curves of degree < n—1
may pass through all the nodes of X. Moreover, there are such three curves for the
set X if and only if all the nodes of X lie in a curve of degree n— 2, or all the nodes
of X but three lie in a (maximal) curve of degree n — 3.

In the sequel we will use the following

Theorem 3. (Theorem 3, [9]). Assume that X is an n-independent set of
d(n,k —2) 42 nodes with 3 < k < n— 1. Then at most four linearly independent
curves of degree < k may pass through all the nodes of X. Moreover, there are such
four curves for the set X if and only if all the nodes of X but two lie in a maximal
curve of degree k — 2.

Proof of Proposition 7. Assume to the contrary that there are four linearly
independent curves of degree < n— 1 passing through all the nodes of the n-independent
set X with #X = d(n,n — 3) + 3. Then, according to Theorem 3, all the nodes of X
but three belong to a maximal curve u of degree n — 3. The curve u is maximal and
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the remaining three nodes of X, denoted by A, B and C, are outside of it: A,B,C ¢ u.
Hence we have that

Prax={pell,1:px=0}={qu:q €l q(A) =q(B) =q(C) =0}.

Thus, we readily get that dimP,_; x =dim{g € I, : ¢(A) = ¢(B) = ¢(C) = 0}
= dimP; (4 gy = 6 — 3 = 3, which contradicts our assumption. Note that in the last
equality we use Proposition 1 and the fact that any three nodes are 2-independent.

Now, let us verify the part “if””. By assuming that there is a curve ¢ of degree
n — 3 passing through the nodes of X, we readily find three linearly independent curves
of degree <n—1: 0,x0,yo, passing through X. While if we assume that all the
nodes of X but three lie in a curve u of degree n — 3, then above evaluation shows that
dim®,_; x = 3. Note that till here the proof was similar to the proof of Theorem 2
in [8].

Finally, let us verify the part “only if”. Denote the three curves passing through
all the nodes of the set X by oy, 05, 03. If one of them is of degree n — 2, then the
conclusion of Theorem is satisfied and we are done. Thus, we may assume that each
curve is of exact degree n — 1 and has no multiple components.

We start with two nodes By, B, ¢ X, for which the following conditions are
satisfied, where the line between B; and B, is denoted by ¢, :

i) the nodes Bj,B; do not belong to the curves oy, 02, 03;

ii) the set XU{B;,B,} is n-independent;

iii) the line ¢, does not pass through any node from X;

iv) the line ¢}, intersects each of the curves o1, 0,, 03 at n — 1 different points.
Moreover, it intersects any two different components of these curves at different
points.

Let us verify that one can find such two nodes. Indeed, in view of Lemma 3,
we can start by choosing some nodes B}, i = 1,2, satisfying the conditions /) and if).
Then, according to Lemma 2, for some positive € any two nodes in the € neighborhoods
of B}, i = 1,2, respectively, satisfy the first two conditions.

Next, from these neighborhoods, in view of Theorem 1, we can choose the
nodes B;, i = 1,2, satisfying the condition ii) and iv) too. Let us mention that to get
the part “Moreover” of iv) we apply Theorem 1 for the curve consisting of all different
components of the curves 01, 0;, 03.

In the proof of Proposition we will later need the following

Lemma 5. Assume that the hypotheses of Proposition 7 hold and assume
additionally that at least one of the following conditions hold:

(a) a nontrivial linear combination of two polynomials from {Gy,0,,03},
denoted by s,, vanishes at By and By : s3(B1) = s2(B2) = 0;

(b) a nontrivial linear combination of the polynomials {01,02,03}, denoted
by s3, vanishes at B1,B,, and B3 € {13 : s3(B1) = s3(B2) = s3(B3) = 0, and the set
X" :=XU{B1,Ba,B3} is n-independent.

Then we have that the statement of Proposition 7 holds.
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Proof. Letus start with (b). In view of Proposition 6, we can extend the set
X" till a maximal n-independent set Y C s3 by adding d(n,n— 1) — (d(n,n —3) +
3) —3 =1 node, denoted by B, i.e. Y = X" U{B}.

Thus, s3 is a maximal curve of degree n — 1 for the node set Y.

Then, in view of Lemma 4, we can find a nontrivial linear combination s of
01,02, 03 such that s differs from s3 and vanishes on X U {B}.

Now consider the polynomial s¢;, € IT,, which vanishes on the node set Y.
By Proposition 5, we conclude that

sl1o = s3f, where £ € I1;.
The line ¢}, differs from ¢, since s differs from s3. Therefore, we get that
s3 = {12q, where g € I1,,_». 3)

Now, by using iii), we obtain that g|y = 0. Hence the statement of
Proposition 7 holds.

(a) Assume, without loss of generality, that s, := ¢;01 + 202, 52 # 0,
and Sz(B]) = Sz(Bz) =0.

Let us show that there is a node B3 € /1, such that s(B3) # 0. Indeed, assume
conversely that s5|s,, = 0. Then, by Proposition 2, we obtain that

52 =V12q, g € 11,2,

which finishes the proof in the same way as the relation (3).

Now, note that s; is a fundamental polynomial for B3 € X" := XU{By,B,B3}.
By Lemma 1, the set X' is n-independent.

Then assume, in view of Lemma 4, that s is a nontrivial linear combination
of s, and o3 such that s(B3) = 0, implying that s|x» = 0. Thus the hypothesis of (b)
is satisfied. O]

Next, let us continue the proof of Proposition 7.

By using Lemma 4, consider a nontrivial linear combination of o7, 03, 03,
denoted by s, that vanishes at By and B;. Set X" := X U{B;,B»}.

Denote the set of intersection points of the line /1, and the curve s,degs =n—1,
by J:= {15 Ns. We have that #J = n — 1, counting also the multiplicities. Of course
Bi,B, € J.

Case 1. First consider the case when one of By, By, say By, is a multiple point
of intersection, i.e. Das(B1) = 0, where a is the direction vector of the line ;5.

Let us prove that the set Y := X" U {Bgl)} =XU{By, Bz,Bgl)} is n-independent,
where Bgl) means the directional derivative node with the direction a at Bj.
According to Lemma 1 we need to point out a fundamental polynomial ¢ € I1,,,
for B{" €Y, i.e. glv =0 and Daq(By) # 0.

For this end consider a nontrivial polynomial sy := ¢; 07 + ¢203, sg # 0,
which vanishes at B; : so(By) = 0.

In view of Lemma 5 we may assume that so(B;) # 0.
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Then consider a line ¢ passing through B; with a direction vector different
from a. One can verify readily that the polynomial g := #s is a desired polynomial.
Indeed, we have that g|x» = 0. Then we have that

Daq(B1) = Dallso](B1)
= (Dal)(B1)so(B1) +£(B1)Daso(B1) = (Dal)(B1)so(B1) # 0.

Thus the set Y is n-independent and hence this case can be proved in the same
way as Lemma 5 (D).

Case 2. It remains to consider the case when both B and B; are simple points
of intersection. We have that #J =n — 1 > 3. Consider another point of intersection of
fipands: BeJ, B#Bl,Bz.

In view of Lemma 5, (b), we may assume the following

Assumption 1. The set X" U{B} = XU{By, By, B} is n-dependent.

This here means that p € IT,, p|x» =0 = p(B) =0.

Now consider two nontrivial linear combinations s;,s, of ©7,0, such that
51(By) = s2(B1) =0.

By Lemma 5, (a), we get that s;(B;) # 0, i = 1,2. Assume, without loss of
generality, that s;(B;) =1, i = 1,2.

Next let us show that s;(B) =0, i = 1,2. Let say i = 1. Consider the polynomial
q := {s) € I1,, where the line ¢ passes through B; and does not pass through B.
We have that ¢(B;) = g(B,) = 0. By using Assumption 1 and Lemma 1, we get
q(B) =0, hence s;(B) = 0.

Now we are in a position to show that (B) = 02(B) = 03(B) = 0.

Let us show for example that o1 (B) = 0.

Consider the polynomial p = 6] — ¢1s1 — 252, where ¢; = 07(B;). We readily
get that p(B;) = p(B,) = 0. Hence, in view of Assumption 1, as above, we get that
p(B) = 0. It remains to note that 6y (B) = p(B) =0.

Next suppose that the point B is multiple:

s(B) = Das(B) = ...,DVs(B) =0, k e N.

In view of Lemma 5, (b), we may assume the following
Assumption 2. The set X" U{B®}, i=0,... k, is n-dependent.
This here means that

p e, pl =0 = p(B)=Dap(B) = ... = Dy p(B) = 0. (4)
Now consider the above defined polynomials s and s, with
s1(B1) =1, s1(B2) =s51(B) =0, s52(B2) =1, 52(B1) =51(B) =0.
By using induction on £, let us show that
DYs;j(B)=0,i=0,1,....k j=1,2. (5)

Let say j = 1. The first step of induction is the above considered case k = 0.
Assume that the case of k — 1 is true, i.e. the first k equalities in (5) hold. Let us prove

the last one, i.e. D,E,k) (B)=0.
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Consider the polynomial g := s,¢ € I1,, where the line ¢ passes through B and
does not pass through B. We have that ¢g(B;) = g(B,) = 0. In view of Assumption 2,
we get that
0= DY [s10)(B) = DY) 51 (B)£(B) + kDY V51 (B)Dot(B) = DY 51 (B)((B).
Since ¢(B) # 0 we conclude that D;k)sl (B)=0.
Now we are in a position to show that
D 61(B) =D 06,(B) =D 63(B) =0, i=0,1,... k. (6)

Let us prove say equalities with o;. Consider the polynomial

p =01 —C151 —C282, where c; = 0] (B,'). (7)

We readily get that p(B;) = p(B,) = 0. Hence, in view of Assumption 2,

as above, we get p(B) = Dap(B) = ... = D§k> p(B) = 0. It remains to use the relations
(5) and (7).

Hence except the two intersection points Bi,B, € J := {15N,s all other
n — 3 points, counting also the multiplicities, are common for the three curves
01,02, and o3.

From this, in view of the Condition (iv), we conclude that the above three
polynomials &7, 6>, and 03 have a common divisor g € IT,,_3 :

o1=Pi1q, ©2=Prgq, 03=Psq, where f; €I,
Therefore, we have
DCCGlﬂGzﬂ(BCqU[ﬁlﬂﬁzﬂﬁﬂ. (8)

Now consider two cases for B := ; N, N B.

Case (a), #B > 4. According to Proposition 1 any subset A C B with
#A = 4 is 2-dependent. From here we readily obtain that the points of A are collinear.
Hence all the points of B are collinear: B C ¢ € IT;.

Now we readily get that ¢ is a common divisor of 1, 8, and 33, i.e.

Bi=0t, Br=10t, B3=130,
where ¢; € I1;. Thus, as above, we get
BCEU[flﬂfzﬂfg]Cf. 9)
The last relation here we get from the fact that the polynomials o7, 07, 03, and

hence the polynomials £;, ¢, /3 are linearly independent and hence £; N ¢y N3 = 0.

Finally, we get from Egs. (8) and (9) that

X Cqu[,

or, in other words, all the nodes of X lie in a curve of degree n — 2, namely in the
curve gf € I,,_5.

Case (b), #B < 3. In this case we obtain from Eq. (8) that all the nodes of X
but < 3 lie in a curve ¢ of degree n — 3. From here we readily conclude that ¢ is a
maximal curve and exactly 3 nodes of X are outside of it.

Thus Proposition 7 is proved. U

Finally note that in view of Theorem 2 and Proposition 7 one can formulate the
following
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Theorem 4. Assume that X is an n-independent set of d(n,k —2) + 3 nodes
with 3 < k <n— 1. Then at most three linearly independent curves of degree < k may
pass through all the nodes of X. Moreover, there are such three curves for the set X
if and only if all the nodes of X lie in a curve of degree k — 1, or all the nodes of X but
three lie in a (maximal) curve of degree k — 2.
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N W N@uUNp3uL

n-ULUllu SULANF33LENNY, WLSLNN STLAUTNUCUUUUL UNeErk UUWUDL
Ub UM3BNFLLHh JENrURGNM3UL

Nhgnip hwignyghtiph X puqimpinip hwppnpud Jpu z-wiuhu
wyuhbph yjmpupbsnip hwtignyg nith 7 wuyphdwih pnbnuibnpu puqiwbnuid:
Glpunptitp #X =d(n,n—3)+3=(n+1)+n+---+5+3: Wu hnpjuwdnui
wyugngymu t, np jub wdtibwounpp tptip gdnptit mbjuwpu < 7 — 3 wupphdwbh
Unptip, npnip wigmd th X puquimpjub pnnp Yapbpny: Ukbp phnipugpmd
tlp wyl ntiwpp tpp wynwhuh Ynptipp 6hoyp Liptipt G Wo E wwugngynud
L, np wyn nhypnd X puqunipynibp nibh jmpuwhwgpmy juenigwdp. Jud hp
pninp hwbgnygbtipp qupiymd G 7 — 2 wuphdwbh Ynph ypw, Jud hp poinp
hwbgnyglbtpp, pwgh bpbphg, qpiymd Gb 7 — 3 wuphbwih (Jwpuhdwy)
Unph Ypu:

Wu wprynibpp (pugbnid £ No Nwynpjwbh, N Linjubth b % AQujubywubh
Uynnihg Ytipotipu wuyyugniggwd vh wipynibip: Lokilp, np wyu tpynt wpnynipbtiph
wywgnygutipp wdpnnonyhbl qpuppbip Lo:

A. A. AKOITAH

OB OJHOM PE3VYJIBTATE OTHOCHUTEJ/IbHO AJI'TEBPANYECKUX
KPUBBIX, ITPOXOIAAIINX YEPE3 n-HE3ABUCHUMBIE Y3JIBI

[Tycts MHOXKECTBO y3710B X HA TIOCKOCTH N-HE3ABUCUMO, TO €CTh KAXKTHIi
y3eJ uMeeT (pyHJaMEHTAIbHBI MHOIOYJEH CTENeHW A. [IpejmosiokuM, 9To
#X =dn,n—3)+3=(n+1)+n+---+5+3. B crarbe MbI JJOKa3bIBAEM, YTO
CYIIECTBYIOT He 6ojiee Tpex JUHEHHO He3aBUCHUMBIX KPUBBIX cTemeHn < n— 1,
KOTOPBIE€ TPOXOIAT uepe3 Bce Toukn X. Mbl xapakTtepudyeM ciydaii, KOTIa
TaKWX KPUBBIX POBHO TPU. A MMEHHO, JIOKa3bIBaE€M, 9TO TOTJA MHOYKECTBO X
UMeeT 0COOYI0 KOHCTPYKITHIO: JTHOO BCE €ro TOYKH JIeyKAT HA KPUBOU CTEIICHN
n—2, mubo BCe €ro TOYKH, KPOME TpeX, JieXKaT Ha (MaKCHMAJIbHOIT) KpUBOi
crerenu n — 3.

Pesynbrar macTosimeit cTaThbu JOMONHIET PE3yIbTaT, HEJABHO TIOJIYI€H-
woiit A. AxkonsaoMm, A. Kiostnom u /1. Bockarstnom. OTMmeTnM, 9TO 10KA3aTE b
CTBa 9TUX NIBYX PE3YIHTATOB COBEPITECHHO PA3IUIHBI.



