ON REGULAR PARAMEDIAL DIVISION ALGEBRAS

D. N. HARUTYUNYAN *
Chair of Algebra and Geometry, YSU, Armenia

In this paper n-ary regular division algebras are discussed, which are satisfying the hyperidentity of paramediality. It is shown that every operation in n-ary regular paramedial division algebra will be linearly represented over the same Abelian group. Similar results already obtained for regular medial division algebras in [1].
https://doi.org/10.46991/PYSU:A/2022.56.3.107
MSC2010: Primary: 03C05; Secondary: 03C85, 20 N05.
Keywords: hyperidentities, regular division groupoids, paramedial groupoids, n-ary groupoids, quasiendomorphisms.

Introduction and Preliminary Notions. A $(Q, f) n$-ary groupoid is called medial, if it satisfies the mediality identity:

$$
f\left(f\left(x_{11}, \ldots, x_{1 n}\right), \ldots, f\left(x_{n 1}, \ldots, x_{n n}\right)\right)=f\left(f\left(x_{11}, \ldots, x_{n 1}\right), \ldots, f\left(x_{1 n}, \ldots, x_{n n}\right)\right)
$$

Algebra (Q, Σ) is called medial, if it satisifies the mediality hyperidentity [2-4]:

$$
X\left(Y\left(x_{11}, \ldots, x_{1 n}\right), \ldots, Y\left(x_{m 1}, \ldots, x_{m n}\right)\right)=Y\left(X\left(x_{11}, \ldots, x_{m 1}\right), \ldots, g\left(x_{1 n}, \ldots, x_{m n}\right)\right)
$$

The $(Q, f) n$-ary groupoid is called paramedial, if it satisfies the paramediality identity:

$$
f\left(f\left(x_{11}, \ldots, x_{n 1}\right), \ldots, f\left(x_{1 n}, \ldots, x_{n n}\right)\right)=f\left(f\left(x_{n n}, \ldots, x_{n 1}\right), \ldots, f\left(x_{1 n}, \ldots, x_{11}\right)\right)
$$

Algebra (Q, Σ) is called paramedial, if it satisifies the paramediality hyperidentity:
$X\left(Y\left(x_{11}, \ldots, x_{n 1}\right), \ldots, Y\left(x_{1 m}, \ldots, x_{n m}\right)\right)=Y\left(X\left(x_{n m}, \ldots, x_{n 1}\right), \ldots, g\left(x_{1 m}, \ldots, x_{11}\right)\right)$.
Some types for paramedial n-ary groupoids are described in [5], and some types for binary paramedial algebras are described in [6].

A non empty set Q with n-ary operation A is called n-groupoid.
The sequence $x_{n}, x_{n+1}, \ldots, x_{m}$ is denoted by x_{n}^{m}, where n, m are natural numbers, $n \leq m$. If $n=m$, then x_{n}^{m} is the element x_{n}. The sequence $x_{m}, x_{m-1}, \ldots, x_{n}$ is denoted by ${ }_{n}^{m} x$, where n, m are natural numbers, $n \leq m$. If $n=m$, then ${ }_{n}^{m} x$ is the element x_{n}. The sequence a, a, \ldots, a (m times) is denoted by a_{m}.

[^0]Definition 1. Let (Q, A) be n-groupoid and (Q, B) be m-groupoid. We will say that (Q, B) is retract of (Q, A), if $m \leq n$ and there are $a_{1}, \ldots, a_{n-m} \in Q$ and $k_{1}, \ldots, k_{n-m} \in 1, \ldots, n$, such that $B\left(x_{1}^{m}\right)=A\left(x_{1}^{k_{1}-1}, a_{1}, x_{k_{1}+1}^{k_{2}-1}, \ldots, x_{k_{n-m-1}+1}^{k_{n-m}, 1}, a_{n-m}, x_{k_{n-m}^{n}+1}^{n}\right)$.

Let (Q, A) be an n-groupoid. Denote by $L_{i}\left(a_{1}^{n}\right)$ a mapping from Q to Q such that

$$
L_{i}\left(a_{1}^{n}\right) x=A\left(a_{1}^{i-1} x a_{i+1}^{n}\right),
$$

for all $x \in Q$. The mapping $L_{i}\left(a_{1}^{n}\right)$ is called the i-translation with respect to a_{1}^{n}.
Definition 2. Let (Q, A) be an n-groupoid. We will say (Q, A) is division n-groupoid if $L_{i}\left(a_{1}^{n}\right)$ is a surjection for all $a_{1}^{n} \in Q$ and $i=1, \ldots, n$.

It's easy to see that every retract of paramedial division n-groupoid is also paramedial.

Let denote by $L_{i}^{A}\left(a_{1}^{|A|}\right)$ the i-translation of the algebra (Q, Σ) with respect to element $a_{1}^{|A|} \in Q^{|A|}$, where $|A|$ is the arity of the operation A.

Definition 3. The algebra (Q, Σ) is called division algebra, if every $L_{i}^{A}\left(a_{1}^{|A|}\right)$ is a surjection for all $a_{1}^{|A|} \in Q^{|A|}, A \in \Sigma$ and $i=1, \ldots, n$.

An n-groupoid is called i-regular if

$$
L_{i}\left(a_{1}^{n}\right) c=L_{i}\left(b_{1}^{n}\right) c \Longrightarrow L_{i}\left(a_{1}^{n}\right)=L_{i}\left(b_{1}^{n}\right)
$$

for all $a_{1}^{n}, b_{1}^{n}, c \in Q$. An n-groupoid is called regular if it's regular for all $i=1, \ldots, n$. It's easy to see that every retract of regular n-groupoid is also regular.

The algebra (Q, Σ) is called i-regular, if $L_{i}^{A}\left(a_{1}^{|A|}\right) c=L_{i}^{A}\left(b_{1}^{|A|}\right) c$ implies that $L_{i}^{A}\left(a_{1}^{|A|}\right)=L_{i}^{A}\left(b_{1}^{|A|}\right)$. If (Q, Σ) is i-regular for all $i=1, \ldots,|A|$, then it's called regular.

Definition 4. A groupoid (Q, A) is homotopic to a groupoid (Q, B), if there exist such mappings α, β, γ from Q to Q that the equality $\gamma A(x, y)=B(\alpha x, \beta y)$ is valid for any $x, y \in Q$. Then the triad (α, β, γ) is a homotopy from (Q, A) to $Q, B)$. If $\gamma=i d_{Q}$, then we say that these groupoids are principally homotopic.

Definition 5. A mapping γ from Q to Q is called a homotopy of a groupoid (Q, A), if there exist such mappings α, β from Q to Q that the triad (α, β, γ) is a homotopy from (Q, A) to (Q, A).

Definition 6. A mapping ϕ from Q to Q is a quasiendomorphism of a group (Q, \cdot), if

$$
\phi(x \cdot y)=\phi x \cdot(\phi 1)^{-1} \cdot \phi y
$$

or all $x, y \in Q$, where 1 is the identity of the group (Q, \cdot).
Lemma 1. If the group (Q, \cdot) is principally homotopic to the group $(Q,+)$, then they are isomorphic and $x \cdot y=x+y+l$ for all $x, y \in Q$, where $l \in Q$.

Lemma 2. Let ϕ be a quasiendomorphism of the group (Q, \cdot), then ϕ is endomorphism of the group (Q, \cdot) if and only if $\phi e=e$, where $e \in Q$ is the identity of the group (Q, \cdot).

Lemma 3. Any quasiendomorphism ϕ of a group (Q, \cdot) has the form $\phi=L_{a} \phi^{\prime}$, where $L_{a} x=a \cdot x, a \in Q$, and ϕ^{\prime} is an endomorphism of the group (Q, \cdot).

Lemma 4. Any homotopy α of a group ($Q, \cdot)$ is a quasiendomorphism of (Q, \cdot).

The following results for regular paramedial division binary groupoids and regular paramedial division algebras were proved in [6].

Theorem 1. A groupoid (G, \cdot) is a regular paramedial division binary groupoid if and only if there exists an abelian group $(G,+)$, two surjective endomorphisms f, g of $(G,+)$ and an element $c \in G$ such that $f^{2}=g^{2}$ and $x \cdot y=f(x)+g(y)+c$ for all $x, y \in G$.

Theorem 2. Let $(Q ; \Sigma)$ be a regular paramedial division binary algebra. Then there exists an abelian group $(Q,+)$ such that every operation $A \in \Sigma$ has the following representation:

$$
A(x, y)=\phi_{A} x+\psi_{A} y+t_{A},
$$

where ϕ_{A}, ψ_{A} are surjective endomorphisms of the group $(Q,+)$ such that $\phi_{A} \phi_{B}=\psi_{B} \psi_{A}, \phi_{A} \psi_{B}=\phi_{B} \psi_{A}$ and $\psi_{A} \phi_{B}=\psi_{B} \phi_{A}$ for all $A, B \in \Sigma$ and $t_{A} \in Q$.

In this paper we generalized those results for n-ary regular paramedial division groupoids and regular paramedial devision algebras.

Main Results.

Theorem 3. Let (Q, A) be a regular paramedial division n-groupoid. Then there exists an Abelian group $Q(+)$ and surjective endomorphisms $\alpha_{1}, \ldots, \alpha_{n}$, and a fixed element $b \in Q$ such that

$$
A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+b
$$

for all $x_{i} \in Q, i=1, \ldots, n$, and where $\alpha_{i} \alpha_{j}=\alpha_{n+1-j} \alpha_{n+1-i}$ for all $i, j=1, \ldots, n$.
Proof. The proof is by induction on n.
For $n=2$ the assumption follows from Theorem 1. Suppose the assumption satisfied for natural numbers less than n.

Let us consider the following matrix:

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{n 1} & x_{n 2} & \ldots & x_{n n}
\end{array}\right)
$$

and define:

$$
A\left(\left\{x_{n+1-i n+1-j}\right\}_{j=1}^{n}\right)=y_{i}, A\left(\left\{x_{i j}\right\}_{i=1}^{n}\right)=z_{j}
$$

Then we can write paramdeial identity as

$$
\begin{equation*}
A\left(y_{1}^{n}\right)=A\left(z_{1}^{n}\right) . \tag{1}
\end{equation*}
$$

Now let us consider the following matrix:

$$
\left(\begin{array}{ccccc}
a & a & a & \ldots & a \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a & a & a & \ldots & a \\
a & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1} & a & a & \ldots & a \\
a & a & a & \ldots & a
\end{array}\right),
$$

and suppose z_{i} and y_{j} from Eq. (1) have the forms

$$
\left\{\begin{array} { l }
{ z _ { 1 } = (a ^ { n - 2 } x _ { 1 } a) = \beta x _ { 1 } , } \\
{ z _ { i } = (a ^ { n - 3 } x _ { i } a ^ { 2 }) = \mu x _ { i } , i \neq 1 , }
\end{array} \quad \left\{\begin{array}{l}
y_{i}=\left(a^{n}\right)=b, i \neq 2,3, \\
y_{2}=\left(a^{n-1} x_{1}\right)=\alpha x_{1}, \\
y_{3}=\left({ }_{2}^{n} x a\right),
\end{array}\right.\right.
$$

where α, β, μ are surjections. Thus, from Eq. (1) we get

$$
\left.A\left(b, \alpha x_{1},{ }_{2}^{n} x a\right), b^{n-3}\right)=A\left(\beta x_{1},\left\{\mu x_{i}\right\}_{i=2}^{n}\right) .
$$

Define a binar groupoid $B(u, v)=A\left(b, u, v, b^{n-3}\right)$, and so (Q, B) will be regular paramedial division groupoid, because it's a retract of (Q, A).

Define $(n-1)$-ary groupoid $C\left({ }_{2}^{n} u\right)=A\left({ }_{2}^{n} u, a\right)$, thus (Q, C) will be regular paramedial division $(n-1)$-ary groupoid, because it's a retract of (Q, A).

From the assumption it follows that there exists $(Q, *)$ and (Q, \oplus) an Abelian groups such that:

$$
B(u, v)=\gamma u \oplus \delta v \oplus d, C\left({ }_{2}^{n} u\right)=\lambda_{n} u_{n} * \lambda_{n-1} u_{n-1} * \cdots * \lambda_{2} u_{2} * c,
$$

where γ, δ are surjective endpmorphisms of the group (Q, \oplus) such that $\gamma^{2}=\delta^{2}$ and $\lambda_{i}, i=2, \ldots, n$ are surjective endomorphisms of the group $(Q, *)$ such that $\lambda_{i} \lambda_{j}=\lambda_{n+2-j} \lambda_{n+2-i}$.

Making replacements in Eq. (1), we get

$$
B\left(\alpha x_{1}, C\left({ }_{2}^{n} x\right)\right)=A\left(\beta x_{1},\left\{\mu x_{i}\right\}_{i=2}^{n}\right)
$$

or

$$
\gamma \alpha x_{1} \oplus \delta\left(\lambda_{n} x_{n} * \lambda_{n-1} x_{n-1} * \cdots * \lambda_{2} x_{2} * c\right) \oplus d=A\left(\beta x_{1},\left\{\mu x_{i}\right\}_{i=2}^{n}\right) .
$$

Let h_{μ} be the right inverse of μ, by replacements we obtain

$$
\begin{equation*}
\gamma \alpha x_{1} \oplus \delta\left(\lambda_{n} h_{\mu} x_{n} * \lambda_{n-1} h_{\mu} x_{n-1} * \cdots * \lambda_{2} h_{\mu} x_{2} * c\right) \oplus d=A\left(\beta x_{1}, x_{2}^{n}\right) . \tag{2}
\end{equation*}
$$

There exists an element $a_{1} \in Q$ such that $\gamma \alpha a_{1} \oplus d=0_{\oplus}$, where 0_{\oplus} is the identity element of the group (Q, \oplus). By taking $x_{1}=a_{1}$, we get

$$
\begin{equation*}
\delta\left(\lambda_{n} h_{\mu} x_{n} * \lambda_{n-1} h_{\mu} x_{n-1} * \cdots * \lambda_{2} h_{\mu} x_{2} * c\right)=A\left(\beta a_{1}, x_{2}^{n}\right) . \tag{3}
\end{equation*}
$$

The retract of (Q, A) groupoid $D\left(x_{2}^{n}\right)=A\left(\beta a_{1}, x_{2}^{n}\right)$ is also a regular paramedial division of the $(n-1)$-ary groupoid, so from the assumption we get that there exists an Abelian group $(Q,+)$ and surjective endomorphisms $\phi_{i}, i=2, \ldots, n$, $\phi_{i} \phi_{j}=\phi_{n+2-j} \phi_{n+2-i}$ such that $D\left(x_{2}^{n}\right)=\phi_{2} x_{2}+\phi_{3} x_{3}+\cdots+\phi_{n} x_{n}+t$. So Eq. (3) will look like

$$
\begin{equation*}
\delta\left(\lambda_{n} h_{\mu} x_{n} * \cdots * \lambda_{2} h_{\mu} x_{2} * c\right)=\phi_{2} x_{2}+\cdots+\phi_{n} x_{n}+t=\phi_{2} x_{2}+\cdots+\phi_{n}^{\prime} x_{n} \tag{4}
\end{equation*}
$$

where $\phi_{n}^{\prime} x_{n}=\phi x_{n}+t$.
Now let put $x_{1}=h_{\beta} x_{1}$ in Eq. (2), where h_{β} is the right inverse of β :

$$
\begin{equation*}
\gamma \alpha h_{\beta} x_{1} \oplus \delta\left(\lambda_{n} h_{\mu} x_{n} * \lambda_{n-1} h_{\mu} x_{n-1} * \cdots * \lambda_{2} h_{\mu} x_{2} * c\right) \oplus d=A\left(x_{1}^{n}\right) \tag{5}
\end{equation*}
$$

and by using Eq. (4) we can rewrite Eq. (5) in the following way:

$$
\begin{equation*}
A\left(x_{1}^{n}\right)=v x_{1} \oplus\left(\phi_{2} x_{2}+\cdots+\phi_{n} x_{n}+t\right)=v x_{1} \oplus\left(\phi_{2} x_{2}+\cdots+\phi_{n}^{\prime} x_{n}\right), \tag{6}
\end{equation*}
$$

where $v x_{1}=\gamma \alpha h_{\beta} x_{1} \oplus d$.
Now consider the retract $E\left(x_{1}^{n-1}\right)=A\left(x_{1}^{n-1}, a\right)$, and from the assumption we have that there exists an Abeilan group (Q, \otimes) and $\mu_{i}, i=1, \ldots, n-1$, surjective endomorphisms such that $\mu_{i} \mu_{j}=\mu_{n-j} \mu_{n-i}$ and

$$
\begin{equation*}
E\left(x_{1}^{n-1}\right)=\mu_{1} x_{1} \otimes \cdots \otimes \mu_{n-1} x_{n-1} \otimes l \tag{7}
\end{equation*}
$$

where $l \in Q$.
Let us fix $x_{n}=a$ in Eq. (6) using Eq. (7), we get

$$
\begin{equation*}
v x_{1} \oplus\left(\phi_{2} x_{2}+\cdots+\phi_{n-1}^{\prime} x_{n-1}\right)=\mu_{1} x_{1} \otimes \cdots \otimes \mu_{n-1}^{\prime} x_{n-1}, \tag{8}
\end{equation*}
$$

where $\phi_{n-1}^{\prime} x_{n-1}=\phi_{n-1} x_{n-1}+\phi_{n}^{\prime} a$ and $\mu_{n-1}^{\prime} x_{n-1}=\mu n-1 x_{n-1} \otimes l$.
Put $x_{3}^{n-1}=a_{3}^{n-1}$. Such that $\phi_{3} a_{3}+\cdots+\phi_{n-1}^{\prime} a_{n-1}=0_{+}$, where 0_{+}is the identity element of the group $(Q,+)$, we obtain

$$
v x_{1} \oplus \phi_{2} x_{2}=\mu_{1} x_{1} \otimes \mu_{2}^{\prime} x_{2}
$$

or

$$
x_{1} \otimes x_{2}=v h_{\mu_{1}} x_{1} \oplus \phi_{2} h_{\mu_{2}^{\prime}} x_{2}
$$

where $\mu_{2}^{\prime} x_{2}=\mu_{2} x_{2} \otimes \mu_{3} a_{3} \otimes \cdots \otimes \mu_{n-1} a_{n-1}$ and $h_{\mu_{1}}, h_{\mu_{2}^{\prime}}$ are right inverses of $\mu_{1}, \mu_{2}^{\prime}$ respectively. Thus we have that the group (Q, \otimes) is pricnipally homotopic to the group (Q, \oplus), so from Lemma 1, we have

$$
\begin{equation*}
x \oplus y=x \otimes y \otimes f^{\prime} \tag{9}
\end{equation*}
$$

Now let replace $x_{1}=a_{1}$ and $x_{4}^{n-1}=a_{4}^{n-1}$ in Eq. (8) such that $v a_{1}=0_{\oplus}$ and $\phi_{4} a_{4}+\cdots+\phi_{n-1}^{\prime} a_{n-1}=0_{+}$, we get

$$
\phi_{2} x_{2}+\phi_{3} x_{3}=\mu_{2} x_{2} \otimes \mu_{3}^{\prime} x_{3} .
$$

Then again from Lemma 1 we obtain

$$
\begin{equation*}
x \otimes y=x+y+f^{\prime \prime} \tag{10}
\end{equation*}
$$

so from Eqs. (9) and (10) we obtain

$$
\begin{equation*}
x \oplus y=x+y+f \tag{11}
\end{equation*}
$$

Using Eq. (11) in Eq. (6), we obtain

$$
\begin{equation*}
A\left(x_{1}^{n}\right)=v x_{1}+\phi_{2} x_{2}+\cdots+\phi_{n}^{\prime} x_{n}+f=\psi_{1} x_{1}+\cdots+\psi_{n} x_{n}+h \tag{12}
\end{equation*}
$$

where $\psi_{1}, \ldots, \psi_{n}$ are surjections and $h \in Q$, and we can assume that $\psi_{i} 0=0, i=1, \ldots, n$.
Let us proof that $\psi_{i}, i=1, \ldots, n$, are surjective endomorphisms and $\psi_{i} \psi_{j}=\psi_{n+1-j} \psi_{n+1-i}$. Consider the following matrix:

$$
i\left(\begin{array}{cccc}
j & k & \\
& \cdot & & \cdot \\
& \cdot & & \\
& \cdot & & \\
\ldots & u & \ldots & v \\
& \cdot & & \\
& \cdot & & \\
& \cdot & & \\
& \cdot &
\end{array}\right)
$$

where $x_{i j}=u, y_{j k}=v$ and all other elements are equal to 0_{+}. Thus we have

$$
\left\{\begin{array} { l }
{ y _ { n + 1 - i } = \psi _ { n + 1 - j } u + \psi _ { n + 1 - k } v + h , } \\
{ y _ { s } = h , s \neq i , }
\end{array} \quad \left\{\begin{array}{l}
z_{j}=\psi_{i} u+h \\
z_{k}=\psi_{i} v+h \\
z_{s}=h, d \neq j, k
\end{array}\right.\right.
$$

hence

$$
\begin{aligned}
& A\left(y_{1}^{n}\right)=A\left(h^{n-i}, \psi_{n+1-j} u+\psi_{n+1-k} v+h, h^{i-1}\right) \\
& A\left(z_{1}^{n}\right)=A\left(h^{j-1}, \psi_{i} u+h, h^{k-j-1}, \psi_{i} v+h, h^{n-k}\right)
\end{aligned}
$$

and

$$
A\left(h^{n-i}, \psi_{n+1-j} u+\psi_{n+1-k} v+h, h^{i-1}\right)=A\left(h^{j-1}, \psi_{i} u+h, h^{k-j-1}, \psi_{i} v+h, h^{n-k}\right)
$$

Thus, using Eq. (12) we obtain

$$
\begin{aligned}
& \sum_{s=1}^{n-i} \psi_{s} h+\psi_{n+1-i}\left(\psi_{n+1-j} u+\psi_{n+1-k} v+h\right)+\sum_{s=n+2-i}^{n} \psi_{s} h+h= \\
& \sum_{s=1}^{j-1} \psi_{s} h+\psi_{j}\left(\psi_{i} u+h\right)+\sum_{s=j+1}^{k-1} \psi_{s} h+\psi_{k}\left(\psi_{i} v+h\right)+\sum_{s=k+1}^{n} \psi_{s} h+h
\end{aligned}
$$

From this identity we obtain

$$
\psi_{n+1-i}\left(\psi_{n+1-j} u+\psi_{n+1-k} v+h\right)=\psi_{j}\left(\psi_{i} u+h\right)+\psi_{k}\left(\psi_{i} v+h\right)+r
$$

where $r \in Q$. By making substitutions $u=h_{\psi_{n+1-j}} u$ and $v=h_{\psi_{n+1-k}} v-h$, where $h_{\psi_{n+1-j}}$ and $h_{\psi_{n+1-k}}$ are the right inverses of ψ_{n+1-j} and ψ_{n+1-k}, we get

$$
\psi_{n+1-i}(u+v)=\psi_{j}\left(\psi_{i} h_{\psi_{n+1-j}} u+h\right)+\psi_{k}\left(\psi_{i} h_{\psi_{n+1-k}} v+h\right)+r
$$

or

$$
\psi_{n+1-i}(u+v)=\theta u+\sigma v
$$

where θ and σ are surjections. Thus from Lemma 4 it follows that $\psi_{i}, i=1, \ldots, n$, are quasiendomorphisms. Since $\psi_{i} 0_{+}=0_{+}$, from Lemma 2 it follows that ψ_{i} is endomorphism of the group $(Q,+)$.

Fixing $v=0_{+}$, we obtain

$$
\begin{equation*}
\psi_{n+1-i} \psi_{n+1-j} u+\psi_{n+1-i} h=\psi_{j} \psi_{i} u+\psi_{j} h+\psi_{k} h+r, \tag{13}
\end{equation*}
$$

and if we fix $u=0_{+}$, we get

$$
\begin{equation*}
\psi_{n+1-i} h=\psi_{j} h+\psi_{k} h+r . \tag{14}
\end{equation*}
$$

Using Eq. (14) in Eq. (13), we get

$$
\psi_{n+1-i} \psi_{n+1-j} u=\psi_{j} \psi_{i} u
$$

for all $i, j=1, \ldots, n$.
Theorem 4. Let (Q, Σ) be a regular paramedial division algebra. Then there exists an Abelian group $(Q,+)$ such that every operation $A \in \Sigma$ has the representation

$$
A\left(x_{1}^{|A|}\right)=\phi_{1}^{A} x_{1}+\cdots+\phi_{|A|}^{A} x_{|A|}+b_{A}
$$

where ϕ_{i}^{A} are surjective endomorphisms of the group $(Q,+)$ such that $\phi_{i}^{A} \phi_{j}^{A}=\phi_{n+1-j}^{A} \phi_{n+1-i}^{A}$ for all $i, j=1, \ldots, n$ and $b_{A} \in Q$.

Proof. From Theorem 3 we know that for every $A \in \Sigma$ there exists group $\left(Q,+_{A}\right)$ and surjective endomorphisms such that

$$
A\left(x_{1}^{|A|}\right)=\phi_{1}^{A} x_{1}+{ }_{A} \ldots+{ }_{A} \phi_{|A|}^{A} \mid x_{|A|}+{ }_{A} b_{A} .
$$

Let $A, B \in \Sigma$. From the hyperidentity of paramediality we have

$$
\begin{gathered}
\phi_{1}^{A}\left(\phi_{1}^{B} x_{11}+{ }_{B} \ldots+_{B} \phi_{|B|}^{B} x_{|B| 1}+{ }_{B} b_{B}\right)+{ }_{A} \ldots{ }_{A} \phi_{|A|}^{A}\left(\phi_{1}^{B} x_{1|A|}+{ }_{B} \ldots+{ }_{B} \phi_{|B|}^{B} x_{|B||A|}+{ }_{B} b_{B}\right) \\
+{ }_{A} b_{A}=\phi_{1}^{B}\left(\phi_{1}^{A} x_{|B||A|}+{ }_{A} \ldots+{ }_{A} \phi_{|A|}^{A} x_{|B| 1}+{ }_{A} b_{A}\right)+{ }_{B} \ldots+{ }_{B} \phi_{|B|}^{B}\left(\phi_{1}^{A} x_{1|A|}+{ }_{A} \ldots\right. \\
\left.+{ }_{A} \phi_{|A|}^{A} x_{11}+{ }_{A} b_{A}\right)+{ }_{B} b_{B} .
\end{gathered}
$$

Fix $x_{i j}=0_{+_{B}}$, where $x_{i j} \neq x_{11}$ and $x_{i j} \neq x_{|B||A|}$, then we get

$$
\begin{gathered}
\phi_{1}^{A}\left(\phi_{1}^{B} x_{11}+{ }_{B} b_{B}\right)+{ }_{A} \phi_{|A|}^{A}\left(\phi_{|B|}^{B} x_{|B||A|}+{ }_{B} b_{B}\right)+{ }_{A} f_{A}= \\
\phi_{1}^{B}\left(\phi_{1}^{A} x_{|B||A|}+{ }_{A} c_{A}\right)+{ }_{B} \phi_{|B|}^{B}\left(\phi_{|A|}^{A} x_{11}+{ }_{A} d_{A}\right)+{ }_{B} f_{B}
\end{gathered}
$$

where $c_{A}, d_{a}, f_{A}, f_{B}$ are elements from Q. From which we obtain

$$
\alpha x_{11}+{ }_{A} \beta x_{|B||A|}=\gamma x_{|B||A|}+{ }_{B} \theta x_{11},
$$

where $\alpha=\phi_{1}^{A} R_{b_{B}}^{B} \phi_{1}^{B}, \beta=R_{f_{A}}^{A} \phi_{|A|}^{A} R_{b_{B}}^{B} \phi_{|B|}^{B}, \gamma=\phi_{1}^{B} R_{c_{A}}^{A} \phi_{1}^{A}$ and $\theta=R_{f_{B}}^{B} \phi_{|B|}^{B} R_{d_{A}}^{A} \phi_{|A|}^{A}$ are surjections, where $R_{b_{B}}^{B}, R_{f_{B}}^{B}$ are the right translations of the group $\left(Q,+_{B}\right)$ and $R_{f_{A}}^{A}, R_{c_{A}}^{A}, R_{d_{A}}^{A}$ are the right translations of the group $\left(Q,+_{A}\right)$. From this we obtain

$$
x_{11}+_{A} x_{|B||A|}=\theta h_{\alpha} x_{11}+_{B} \gamma h_{\beta} x_{|B||A|},
$$

where h_{α} and h_{β} are the right inverses of the α and β. This means that the group $\left(Q,+_{A}\right)$ and the group $\left(Q,+_{B}\right)$ are principally homotopic and from Lemma 1 we get

$$
\begin{aligned}
& x+_{A} y=x+{ }_{B} y+_{B} g_{A B}, \\
& x+_{B} y=x+_{A} y+{ }_{A} r_{A B},
\end{aligned}
$$

where $g_{A B}, r_{A B} \in Q$.
Let us fix an operation $B \in \Sigma$, by this we will fix the group $\left(Q,+_{B}\right)=(Q,+)$ and for every operation $A \in \Sigma$ we obtain

$$
\begin{equation*}
A\left(x_{1}^{|A|}\right)=\phi_{1}^{A} x_{1}+{ }_{A} \cdots+{ }_{A} \phi_{|A|}^{A} x_{|A|}+{ }_{A} b_{A}=\phi_{1}^{A} x_{1}+\cdots+\phi_{|A|}^{A} x_{|A|}+u_{A}, \tag{15}
\end{equation*}
$$

where $u_{A} \in Q$, and for every $\phi_{i}^{A}, i=1, \ldots,|A|$, we get

$$
\begin{gathered}
\phi_{i}^{A}(x+y)=\phi_{i}^{A}\left(x+_{A} y+_{A} r_{A B}\right)=\phi_{i}^{A} x+{ }_{A} \phi_{i}^{A} y+_{A} \phi_{i}^{A} r_{A B}= \\
\phi_{i}^{A} x+\phi_{i}^{A} y+v=\phi_{i}^{A} x+\psi_{i}^{A} y
\end{gathered}
$$

where ψ_{i}^{A} is a surjection from Q to Q. It follows from Lemma 4 that $\phi_{i}^{A}, i=1, \ldots|A|$, are quasiendomorphisms of the group $(Q,+)$, and from Lemma 3 we have that $\phi_{i}^{A}=R_{a} \mu_{i}^{A}$, where μ_{i}^{A} is an endomorphism of the group $(Q,+)$ and R_{a} is the right translation of the group $(Q,+)$ by the element $a \in Q$. Hence we obtain

$$
A\left(x_{1}^{|A|}\right)=\phi_{1}^{A} x_{1}+\cdots+\phi_{|A|}^{A} x_{|A|}+u_{A}=\mu_{1}^{A} x_{1}+\cdots+\mu_{|A|}^{A} x_{|A|}+v_{A}
$$

where $\mu_{i}^{A}, i=1, \ldots,|A|$, are sujective endomorphisms of the group $(Q,+)$ and $v_{A} \in Q$. Similar to the proof of the Theorem 3 we can show that $\mu_{i}^{A} \mu_{j}^{A}=\mu_{n+1-j}^{A} \mu_{n+1-i}^{A}$.

Received 29.07.2022
Reviewed 05.09.2022
Accepted 26.09.2022

REFERENCES

1. Davidov S.S. On Regular Medial Division Algebras. Quasigr. Relat. Syst. 21 (2013), 155-164.
2. Movsisyan Yu. Hyperidentities: Boolean and De Morgan Structures. World Scientific (2022), 560 p .
https://doi.org/10.1142/12796
3. Movsisyan Yu. Introduction to the Theory of Algebras with Hyperidentities. Yerevan, YSU Press (1986) (in Russian).
4. Movsisyan Yu. Hyperidentities and Hypervarieties in Algebras. Yerevan, YSU Press (1990) (in Russian).
5. Ehsani A., Movsisyan Yu. A Representation of Paramedial n-ary Groupoids. Asian-Eur. J. Math. 7 (2014), 1450020.
https://doi.org/10.1142/S179355711450020X
6. Davidov S. On Paramedial Division Groupoids. Asian-Eur. J. Math. 9 (2016), 1650008. https://doi.org/10.1142/S179355711650008X

Д. Н. АРУТЮНЯН

ОБ АЛГЕБРАХ С РЕГУЛЯРНЫМИ ПАРАМЕДИАЛЬНЫМИ ДЕЛЕНИЯМИ

Abstract

В этой статье изучаются n-арные регулярные алгебры с делением, удовлетворяющие гипертождеству парамедиальности. Показано, что каждая операция в n-арной регулярной парамедиальной алгебре с делением имеет линейное представление над одной и той же абелевой группой. Аналогичные результаты для регулярных медиальных алгебр с делением уже получены в [1].

[^0]: * E-mail: david.harutyunyan96@gmail.com

