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The present work is devoted to deriving closed form expressions for the
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Introduction. A real matrix A is called skew-symmetric if AT = −A.
Obviously such matrices have zero diagonal elements.

Interest in the study of skew-symmetric matrices arose in the first half of
the 20th century, in the works of the German mathematician Ernst Jacobsthal [1].
Now skew-symmetric matrices find applications in various fields, including statistical
analysis, signal processng, matrix games and machine learning. Special methods
and algorithms for solving linear systems with skew-symmetric matrices have been
developed (see [2–5], for instance).

The Moore–Penrose inverse of skew-symmetric matrices is of certain interest.
We are talking about generalized inversion, since skew-symmetric matrices of odd
order are singular, and they may be singular also when their order is even (see [6, 7],
for instance). Recall that for a real m×n matrix A the Moore–Penrose inverse A+ is
the unique n×m matrix that satisfies the following four conditions [8]:

AA+A = A, A+AA+ = A+, (A+A)T = A+A, (AA+)T = AA+. (1)
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If A is a square nonsingular matrix, then A+ = A−1. In this sense the Moore–
Penrose inverse generalizes the ordinary matrix inversion. Note that the Moore–
Penrose inverse of a skew-symmetric matrix is also skew-symmetric. Indeed, using
the well-known properties of the Moore–Penrose inverse [6, 8], we have

(A+)T = (AT )+ = (−A)+ =−A+.

Let us consider a tridiagonal matrix

A =


0 a1
−a1 0 a2 0

. . . . . . . . .
0 −an−2 0 an−1

−an−1 0

 , (2)

where n≥ 3. We assume that ai 6= 0 for all i = 1,2, . . . ,n−1. This requirement is not
restrictive, since if some of the overdiagonal elements of A are equal to zero, then we
can represent this matrix in a block-diagonal form

A = diag(A1,A2, . . . ,Al),

where the diagonal blocks Ai, 1 ≤ i ≤ l, are either skew-symmetric matrices with
nonzero overdiagonal elements or zero blocks. In this case

A+ = diag(A+
1 ,A

+
2 , . . . ,A

+
l ).

We will consider separately the matrices of even and odd orders.
The Matrix of Even Order. Let n = 2m. Then from (2) we have

A =


0 a1
−a1 0 a2 0

. . . . . . . . .
0 −a2m−2 0 a2m−1

−a2m−1 0

 . (3)

According to the above assumption about the overdiagonal elements, this matrix
is nonsingular. This statement we conclude from the easily proven equality

detA = (a1a3 · · ·a2m−1)
2. (4)

R e m a r k 1. The requirement for the overdiagonal elements of this matrix can
be somewhat relaxed. It suffices that only the overdiagonal elements in the odd rows of
the matrix (3) be nonzero. This obviously follows from formula (4). However, for the
sake of clarity of presentation, in the future we will adhere to the above requirement.

Thus, in our case A+ = A−1. Let A−1 = [zi j]2m×2m. To find the jth column
z( j) ≡ [z1 jz2 j . . .z2m j]

T of the matrix A−1, we solve the system

Az( j) = δ
( j), (5)
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where δ ( j) ≡ [0 . . .010 . . .0]T (the unit is located on the jth place). Let us write the
system (5) in expanded form:

a1z2 j = 0,
−a1z1 j +a2z3 j = 0,

...
...

...
−a j−2z j−2 j +a j−1z j j = 0,
−a j−1z j−1 j +a jz j+1 j = 1,
−a jz j j +a j+1z j+2 j = 0,

...
...

...
−a2m−2z2m−2 j +a2m−1z2m j = 0,

−a2m−1z2m−1 j = 0.

(6)

Consider separately even and odd columns of the matrix A−1.
Case j = 2k−1, 1≤ k ≤ m.
System (6) is written as follows:

a1z22k−1 = 0,
−a1z12k−1 +a2z32k−1 = 0,

...
...

...
−a2k−3z2k−32k−1 +a2k−2z2k−12k−1 = 0,
−a2k−2z2k−22k−1 +a2k−1z2k 2k−1 = 1,
−a2k−1z2k−12k−1 +a2kz2k+12k−1 = 0,

...
...

...
−a2m−2z2m−22k−1 +a2m−1z2m2k−1 = 0,

−a2m−1z2m−12k−1 = 0.

(7)

It is easy to see that system (7) splits into two independent subsystems:
−a2i−1z2i−12k−1 +a2iz2i+12k−1 = 0, i = 1,2, . . . ,m−1,

−a2m−1z2m−12k−1 = 0
with obvious solution z2i−12k−1 = 0, i = 1,2, . . . ,m and

a1z22k−1 = 0,
−a2iz2i2k−1 +a2i+1z2i+22k−1 = 0, i = 1,2, . . . ,k−2,

−a2k−2z2k−22k−1 +a2k−1z2k 2k−1 = 1,
−a2iz2i2k−1 +a2i+1z2i+22k−1 = 0, i = k,k+1, . . . ,m−1,

whose solution is

z2i2k−1 =


0, i = 1,2, . . . ,k−1,

1
a2k−1

i−1

∏
s=k

ρs, i = k,k+1, . . . ,m,
(8)

where
ρs ≡

a2s

a2s+1
, s = 1,2, . . . ,m−1. (9)
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Case j = 2k, 1≤ k ≤ m.
System (6) takes the following form:

a1z22k = 0,
−a1z12k +a2z32k = 0,

...
...

...
−a2k−2z2k−22k +a2k−1z2k 2k = 0,
−a2k−1z2k−12k +a2kz2k+12k = 1,
−a2kz2k 2k +a2k+1z2k+22k = 0,

...
...

...
−a2m−2z2m−22k +a2m−1z2m2k = 0,

−a2m−1z2m−12k = 0.

(10)

As in the previous case, system (10) is divided into two independent subsystems:

a1z22k = 0,
−a2iz2i2k +a2i+1z2i+22k = 0, i = 1,2, . . . ,m−1

with zero solution z2i2k = 0, i = 1,2, . . . ,m, and

−a2i−1z2i−12k +a2iz2i+12k = 0, i = 1,2, . . . ,k−1,
−a2k−1z2k−12k +a2kz2k+12k = 1,
−a2i−1z2i−12k +a2iz2i+12k = 0, i = k+1,k+2, . . . ,m−1,

−a2m−1z2m−12k = 0,

the solution of which is

z2i−12k =

 −
1

a2k−1

k−1

∏
s=i

rs, i = 1,2, . . . ,k,

0, i = k+1,k+2, . . . ,m,

(11)

where
rs ≡

a2s

a2s−1
, s = 1,2, . . . ,m−1. (12)

Summarizing the above considerations, i.e. having formulas (8) and (11),
we arrive at the statement below.

T h e o r e m. Nonzero elements of the matrix A−1 = [zi j]2m×2m are as follows:

z2i2k−1 =
1

a2k−1

i−1

∏
s=k

ρs, i = k,k+1, . . . ,m,

z2i−12k =−
1

a2k−1

k−1

∏
s=i

rs, i = 1,2, . . . ,k,

 , k = 1,2, . . . ,m, (13)

where the quantities ρs and rs are defined in (9) and (12), respectively.



HAKOPIAN Yu.R., MANUKYAN A.H., MIKAELYAN H.V. 5

E x a m p l e. Below we give a skew-symmetric matrix A and the inverse
matrix A−1, computed by formulas (13):

A =



0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 0

 , A−1 =



0 −1 0 −1 0 −1
1 0 0 0 0 0
0 0 0 −1 0 −1
1 0 1 0 0 0
0 0 0 0 0 −1
1 0 1 0 1 0

 .

R e m a r k 2. Taking into account the fact that the matrix A−1 is also
skew-symmetric, we can halve the amount of calculations in formulas (13) by setting

z2i−12k =−z2k 2i−1, i = 1,2, . . . ,k, k = 1,2, . . . ,m. (14)

Based on the above closed form expressions (13), let us write a computa-
tional procedure to calculate the elements of the inverse matrix A−1 = [zi j]2m×2m

for skew-symmetric matrix A given in (3).
Procedure MPInverse/even order.
1. Input elements a1,a2, . . . ,a2m−1 of the matrix A (see (3)).
2. Calculate the quantities ρs (see (9)):

ρs = a2s/a2s+1, s = 1,2, . . . ,m−1.

3. Set zi j = 0 for i, j = 1,2, . . . ,2m.
4. Calculate nonzero elements from the lower triangular part of A−1 (see (13)):

z2k 2k−1 = 1/a2k−1

z2i+22k−1 = z2i2k−1 ρi, i = k,k+1, . . . ,m−1

}
, k = 1,2, . . . ,m.

5. Set nonzero elements from the upper triangular part of A−1 (see (14)):

z2i−12k =−z2k 2i−1, i = 1,2, . . . ,k, k = 1,2, . . . ,m.

6. Output the matrix A−1 = [zi j]2m×2m.
End Procedure.
In conclusion, a few words about the computational complexity of the proce-

dure MPInverse/even order. A simple calculations show that computing all nonzero
elements of the lower triangular part of the matrix A−1 requires 0.5m2 +O(m) multi-
plications. Note that the number of mentioned nonzero elements is m(m+1)/2.

The Matrix of Odd Order. Let n = 2m+1. From (2) we have

A =


0 a1
−a1 0 a2 0

. . . . . . . . .
0 −a2m−1 0 a2m

−a2m 0

 . (15)

Regardless of the values of the overdiagonal elements, this matrix is singular.
In the present work, the computation of the Moore–Penrose inverse A+ is based on a
special notation of the matrix A.
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Let us introduce bidiagonal matrix

B =


a1 −a2

a3 −a4 0

0
. . . . . .

a2m−1 −a2m

 (16)

of the size m×m+1. Next, we define the following matrices:

P = [pi j]2m+1×m , pi j =

{
1, if i = 2 j,
0, if i 6= 2 j, j = 1,2, . . . ,m,

(17)

and

Q = [qi j]m+1×2m+1 , qi j =

{
1, if j = 2i−1,
0, if j 6= 2i−1, i = 1,2, . . . ,m+1.

(18)

Then the matrix A can be written as follows:
A = (PBQ)T −PBQ. (19)

The following easily verified properties of the matrices P and Q hold:
PT P = Im, QQT = Im+1, QP = 0, PPT +QT Q = I2m+1 (20)

(the subscript of the identity matrix indicates its order).

L e m m a. Let the matrix A, defined in (15), be written in the form (19).
Then

A+ = (QT B+PT )T −QT B+PT . (21)

P ro o f. It suffices to show that matrix (21) satisfies all four conditions (1).
We will use properties (20) of the matrices P and Q. Let us first establish third and
fourth of conditions (1). We have

A+A = [(QT B+PT )T −QT B+PT ][(PBQ)T −PBQ]

= P(B+)T (QQT )BT PT −P(B+)T (QP)BQ
−QT B+(QP)T BT PT +QT B+(PT P)BQ

= P(BB+)T PT +QT (B+B)Q.

(22)

From this it obviously follows that (A+A)T = A+A. Similarly,
AA+ = [(PBQ)T −PBQ][(QT B+PT )T −QT B+PT ]

= QT BT (PT P)(B+)T Q−QT BT (QP)T B+PT

−PB(QP)(B+)T Q+PB(QQT )B+PT

= QT (B+B)T Q+P(BB+)PT ,

which implies that (AA+)T = AA+.
Let us now turn to the first two conditions from (1). Taking into account equality

(22), we obtain:
AA+A = [(PBQ)T −PBQ][P(BB+)T PT +QT (B+B)Q]

= QT BT (PT P)(BB+)T PT +QT BT (QP)T (B+B)Q
−PB(QP)(BB+)T PT −PB(QQT )(B+B)Q

= QT (BB+B)T PT −P(BB+B)Q = QT BT PT −PBQ = A.
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Further,
A+AA+ = [P(BB+)T PT +QT (B+B)Q][(QT B+PT )T −QT B+PT ]

= P(BB+)T (PT P)(B+)T Q−P(BB+)T (QP)T B+PT

+QT (B+B)(QP)(B+)T Q−QT (B+B)(QQT )B+PT

= P(B+BB+)T Q−QT (B+BB+)PT = P(B+)T Q−QT B+PT = A+.

The validity of representation (21) for A+ has been proved.
So, the problem of finding the Moore–Penrose inverse for the matrix A given in

(15) is reduced to a similar problem for the matrix B defined in (16).
A Way of Computing the Matrix B+. An approach to derive the Moore–

Penrose inverse of the matrix B is based upon the well-known formula
B+ = lim

ε→+0
(BT B+ εIm+1)

−1BT (23)

(see [8], for instance). Our plan is as follows. First we find the inverse matrix
(BT B + εIm+1)

−1. Further, the elements of the matrix (BT B + εIm+1)
−1BT are

calculated and a character of their dependence on the parameter ε is revealed.
Thereafter, according to equality (23), passing to the limit as ε →+0, we will arrive
at closed form expressions for the elements of the matrix B+.

This study will be carried out in the subsequent, second part of this work.
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EREQANKYOWNAGAYIN 
E�ASIMETRIK MATRICNERI

MOWR-PENROOWZI HAKADAR�OWM�. I

Sowyn a�xatanq� nvirva� � Mowr{Penroowzi hakadar� matrici

tarreri bacahayt artahaytow�yownneri arta�man�` ereqankyowna-

g�ayin irakan �e�asimetrik matricneri hamar: A�xatanqi a�ajin

masowm stacva� en ardyownqner zowyg kargi matricneri hamar: Baci

ayd, kent kargi matricneri hamar n�va� � �ndhanracva� hakadar�i

ha�vman �anaparh�:

Ю. Р. АКОПЯН, А. А. МАНУКЯН, Г. В. МИКАЕЛЯН

ОБРАЩЕНИЕ МУРА–ПЕНРОУЗА ТРЕХДИАГОНАЛЬНЫХ
КОСОСИММЕТРИЧНЫХ МАТРИЦ. I

Настоящая работа посвящена выводу явных выражений для
элементов обратной матрицы Мура–Пенроуза в случае трехдиагональных
вещественных кососимметричных матриц. В первой части работы полу-
чены результаты для матриц четного порядка. Кроме того, намечен путь
вычисления обобщенного обращения для матриц нечетного порядка.


