Mathematics

LINEARITY OF n-ARY ASSOCIATIVE ALGEBRAS
D. N. HARUTYUNYAN *

Chair of Algebra and Geometry, YSU, Armenia

In this paper n-ary regular division associative algebras are discussed. It is shown that every operation in n-ary regular division associative algebra will be endo-linearly represented over the same binary group. Schauffler like theorem will be proved for those algebras.

https://doi.org/10.46991/PYSU:A/2023.57.1.009

MSC2010: Primary: 03C05; Secondary: 03C85, 20 N05.
Keywords: $\forall \exists(\forall)$-identities, regular division groupoids, n-ary groupoids, quasiendomorphisms, Schauffler theorem.

Introduction and Preliminary Notions. A non-empty set Q with n-ary operation A is called n-groupoid.

The sequence $x_{n}, x_{n+1}, \ldots, x_{m}$ is denoted by x_{n}^{m}, where n, m are natural numbers, $n \leq m$. If $n=m$, then x_{n}^{m} is the element x_{n}. The sequence $x_{m}, x_{m-1}, \ldots, x_{n}$ is denoted by ${ }_{n}^{m} x$, where n, m are natural numbers, $n \leq m$. If $n=m$, then ${ }_{n}^{m} x$ is the element x_{n}.

Definition 1. Let $(Q ; A)$ be an n-groupoid and $(Q ; B)$ be m-groupoid. We will say that $(Q ; B)$ is a retract of $(Q ; A)$, if $m \leq n$ and there are $a_{1}, \ldots, a_{n-m} \in Q$ and $k_{1}, \ldots, k_{n-m} \in\{1, \ldots, n\}$, such that

$$
B\left(x_{1}^{m}\right)=A\left(x_{1}^{k_{1}-1}, a_{1}, x_{k_{1}+1}^{k_{2}-1}, \ldots, x_{k_{n-m-1}+1}^{k_{n-m}-1}, a_{n-m}, x_{k_{n-m}+1}^{n}\right) .
$$

Let $(Q ; A)$ be an n-groupoid. Denote by $L_{i}\left(a_{1}^{n}\right)$ a mapping from Q to Q such that

$$
L_{i}\left(a_{1}^{n}\right) x=A\left(a_{1}^{i-1} x a_{i+1}^{n}\right)
$$

for all $x \in Q$. The mapping $L_{i}\left(a_{1}^{n}\right)$ is called the i-translation with respect to a_{1}^{n}.
Definition 2. Let $(Q ; A)$ be an n-groupoid. We will say that $(Q ; A)$ is a division n-groupoid, if $L_{i}\left(a_{1}^{n}\right)$ is a surjection for all $a_{1}^{n} \in Q$ and $i=1, \ldots, n$.

Let's denote by $L_{i}^{A}\left(a_{1}^{|A|}\right)$ the i-translation of the algebra $(Q ; \Sigma)$ with respect to element $a_{1}^{|A|} \in Q^{|A|}$, where $|A|$ is the arity of the operation A.

[^0]Definition 3. The algebra $(Q ; \Sigma)$ is called division algebra, if every $L_{i}^{A}\left(a_{1}^{|A|}\right)$ is a surjection for all $a_{1}^{|A|} \in Q^{|A|}, A \in \Sigma$ and $i=1, \ldots, n$.

An n-groupoid is called i-regular, if

$$
L_{i}\left(a_{1}^{n}\right) c=L_{i}\left(b_{1}^{n}\right) c \Longrightarrow L_{i}\left(a_{1}^{n}\right)=L_{i}\left(b_{1}^{n}\right)
$$

for all $a_{1}^{n}, b_{1}^{n} \in Q^{n}, c \in Q$. An n-groupoid is called regular, if it's regular for all $i=1, \ldots, n$. It's easy to see that every retract of regular n-groupoid is also regular.

The algebra $(Q ; \Sigma)$ is called i-regular, if $L_{i}^{A}\left(a_{1}^{|A|}\right) c=L_{i}^{A}\left(b_{1}^{|A|}\right) c$ implies that $L_{i}^{A}\left(a_{1}^{|A|}\right)=L_{i}^{A}\left(b_{1}^{|A|}\right)$. If $(Q ; \Sigma)$ is i-regular for all $i=1, \ldots,|A|$, then it's called regular.

Definition 4. A groupoid $(Q ; A)$ is homotopic to a groupoid $(Q ; B)$, if there exist such mappings α, β, γ from Q to Q that the equality $\gamma A(x, y)=B(\alpha x, \beta y)$ is valid for any $x, y \in Q$. Then the triad (α, β, γ) is a homotopy from $(Q ; A)$ to (Q, B). If $\gamma=i d_{Q}$, then we say that these groupoids are principally homotopic.

Definition 5. A n-ary groupoid $(Q ; A)$ is homotopic to a n-ary groupoid $(Q ; B)$, if there exist such mappings $\alpha_{i}, i=1, \ldots, n$, and γ from Q to Q that the equality $\gamma A\left(x_{1}^{n}\right)=B\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)$ is valid for any $x_{1}, \ldots, x_{n} \in Q$. If $\gamma=i d_{Q}$, then we say that these n-ary groupoids are principally homotopic.

Definition 6. A mapping γ from Q to Q is called a homotopy of a groupoid $(Q ; A)$, if there exist such mappings α, β from Q to Q that the triad (α, β, γ) is a homotopy from $(Q ; A)$ to $(Q ; A)$.

Definition 7. A mapping ϕ from Q to Q is a quasiendomorphism of a group $(Q ; \cdot)$, if $\phi(x \cdot y)=\phi x \cdot(\phi 1)^{-1} \cdot \phi y$ for all $x, y \in Q$, where 1 is the identity of the group $(Q ; \cdot)$.

Definition 8. Let $(Q ; \Sigma)$ be regular division n-ary algebra, and $(Q ; \Omega)$ be the algebra of all regular division n-ary operations. We will call operations $A, B \in \Sigma$ i weak associative, if there exists operations $A_{2 j}, A_{2 j-1} \in \Omega, j \in\{1, \ldots, n\} \backslash\{i\}$, such that following identities hold:

$$
A\left(x_{1}^{i-1}, B\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right)=A_{2 j-1}\left(x_{1}^{j-1}, A_{2 j}\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-1}\right)
$$

for every $j \in\{1, \ldots, n\} \backslash\{i\}$.
Definition 9. Let $(Q ; \Sigma)$ be n-ary algebra. We will say $(Q ; \Sigma)$ is $(\overline{i A})$-algebra, if every operations $A, B \in \Sigma$ are i weak associative.

Definition 10. Let $(Q ; \Sigma)$ be regular division n-ary algebra. We will call operations $A, B \in \Sigma i$ associative, if there exists operations $A_{2 j}, A_{2 j-1} \in \Sigma$, $j \in\{1, \ldots, n\} \backslash\{i\}$, such that following identities hold:

$$
A\left(x_{1}^{i-1}, B\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right)=A_{2 j-1}\left(x_{1}^{j-1}, A_{2 j}\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-1}\right)
$$

for every $j \in\{1, \ldots, n\} \backslash\{i\}$.

Definition 11. Let $(Q ; \Sigma)$ be n-ary algebra. We will say $(Q ; \Sigma)$ is iA-algebra, if every operations $A, B \in \Sigma$ are i associative.

Lemma 1. If the group $(Q ; \cdot)$ is principally homotopic to the group $(Q ;+)$, then they are isomorphic and $x \cdot y=x+y+l$ for all $x, y \in Q$, where $l \in Q$.

Lemma 2. Any quasiendomorphism ϕ of a group ($Q ; \cdot$) has the form $\phi=L_{a} \phi^{\prime}$, where $L_{a} x=a \cdot x, a \in Q$, and ϕ^{\prime} is an endomorphism of the group $(Q ; \cdot)$.

Lemma 3. Any homotopy α of a group ($Q ; \cdot$) is a quasiendomorphism of $(Q ; \cdot)$.

Lemma 4. Let ϕ be a quasiendomoprhism of the binary group $(Q ; \cdot)$, then for every $a \in Q, \phi_{1} x=\phi x \cdot a$ and $\phi_{2} x=a \cdot \phi x$ will also be quasiendomorphisms of the binary group $(Q ; \cdot)$.

It was proved in [1], that if the binary loop is principally homotopic to the group, then they are isomorphic. Similarly, we can prove following lemma.

Lemma 5. If n-ary loop is principally homotopic to the n-ary group with identity element, then they are isomorphic.

Working at the German Cryptographic Center during World War II, R. Schauffler obtained applications of invertible algebras satisfying second-order associativity identity in cryptography [2-4], by proving the following theorem:

Theorem 1. (Schauffler) Let Q be not empty set. The following statements are equivalent:

- for every $(Q ; X),(Q ; Y)$ quasigroups, there exist $\left(Q ; X^{\prime}\right),\left(Q ; Y^{\prime}\right)$ quasigroups, such that the following $\forall \exists(\forall)$-identity holds:

$$
\begin{equation*}
\forall X, Y \exists X^{\prime}, Y^{\prime} \forall x, y, z X(Y(x, y), z)=X^{\prime}\left(x, Y^{\prime}(y, z)\right) \tag{1}
\end{equation*}
$$

- for every $(Q ; X),(Q ; Y)$ quasigroups, there exist $\left(Q ; X^{\prime}\right),\left(Q ; Y^{\prime}\right)$ quasigroups, such that the following $\forall \exists(\forall)$-identity holds:

$$
\begin{equation*}
\forall X, Y \exists X^{\prime}, Y^{\prime} \forall x, y, z X(x, Y(y, z))=X^{\prime}\left(Y^{\prime}(x, y), z\right) \tag{2}
\end{equation*}
$$

- $|Q| \leq 3$.

Schaufler in [5] proved likewise theorems for binary algebras with quasigroup operations for other $\forall \exists(\forall)$-identities [6-9].

It was shown in [10] the linearity of n-ary algebras with quasigroup operations with $\forall \exists(\forall)$-identities, and by using those results Schaufler proved in [11] a similar theorem for n-ary invertible algebras.

Theorem 2. Let $(Q ; \Omega)$ be the n-ary algebra of all n-ary quasigroup operations. $(Q ; \Omega)$ will be $(i A)$-algebra if and only if $|Q| \leq 3$.

We will prove similar results for n-ary regular division algebras.

Main Results. In [1] the following theorem was proved for regular division binary groupoids.

Theorem 3. Let four operations A, B, C, D be division groupoids on Q and let either A or C be regular. If these operations satisfy the following associativity identity

$$
A(x, B(y, z))=C(D(x, y), z)
$$

for all $x, y, z \in Q$, then:

- there is a group ($Q ; \cdot)$ such that all these groupoids are epitopic to $(Q ; \cdot)$, and
\bullet there are surjections $\alpha, \beta, \gamma, \delta, \lambda, \theta, v, \mu: Q \hookrightarrow Q$ such that:

$$
\left\{\begin{array}{l}
A(x, y)=\alpha x \cdot \beta x, \\
\beta B(x, y)=\beta \gamma x \cdot \beta \delta y, \\
C(x, y)=\lambda x \cdot \theta x, \\
\lambda D(x, y)=\lambda v x \cdot \lambda v y .
\end{array}\right.
$$

The group $(Q ; \cdot)$ is unique up to isomorphisms.
First of all, we need to prove a similar result for ternary regular division groupoids.

Theorem 4. Let $\left(Q ; A_{1}, \ldots, A_{6}\right)$ be division regular ternary algebra that satisfies the following identity of associativity:

$$
\begin{equation*}
A_{1}\left(A_{2}(x, y, z), u, v\right)=A_{3}\left(x, A_{4}(y, z, u), v\right)=A_{5}\left(x, y, A_{6}(z, u, v)\right) . \tag{3}
\end{equation*}
$$

Then there exists binary group $(Q ; \cdot)$ such that every A_{i} is epitopic to that group, moreover:

$$
\begin{aligned}
A_{1}(x, y, z) & =R_{1} x \cdot S_{3} L_{4} y \cdot L_{5} L_{6} z, & S_{3} A_{4}(x, y, z) & =R_{1} S_{2} x \cdot L_{5} R_{6} y \cdot L_{5} S_{6} z, \\
R_{1} A_{2}(x, y, z) & =R_{1} R_{2} x \cdot S_{3} R_{4} y \cdot L_{5} R_{6} z, & A_{5}(x, y, z) & =R_{1} R_{2} x \cdot S_{3} R_{4} y \cdot L_{5} z, \\
A_{3}(x, y, z) & =R_{1} R_{2} x \cdot S_{3} y \cdot L_{5} L_{6} z, & L_{5} A_{6}(x, y, z) & =R_{1} L_{2} x \cdot S_{3} L_{4} y \cdot L_{5} L_{6} z,
\end{aligned}
$$

where L_{i}, S_{i}, R_{i} are left, central and right translations of operation A_{i}.
Proof. We can write (3) identity in three separate identities in following way:

$$
\begin{align*}
& A_{1}\left(A_{2}(x, y, z), u, v\right)=A_{3}\left(x, A_{4}(y, z, u), v\right), \tag{4}\\
& A_{1}\left(A_{2}(x, y, z), u, v\right)=A_{5}\left(x, y, A_{6}(z, u, v)\right), \tag{5}\\
& A_{3}\left(x, A_{4}(y, z, u), v\right)=A_{5}\left(x, y, A_{6}(z, u, v)\right) . \tag{6}
\end{align*}
$$

Let's fix $k \in Q$ and do the following replacements, $y=z=k x=y=k$ in identity (4), $u=v=k$ in identity (5) and $z=u=k$ in (6). After the replacements we will have

$$
\begin{align*}
& A_{1}\left(R_{2} x, y, z\right)=A_{3}\left(x, L_{4} y, z\right), \\
& A_{1}\left(L_{2} x, y, z\right)=L_{5} A_{6}(x, y, z), \tag{7}\\
& R_{1} A_{2}(x, y, z)=A_{5}\left(x, y, R_{6} z\right), \\
& A_{3}\left(x, R_{4} y, z\right)=A_{5}\left(x, y, L_{6} z\right),
\end{align*}
$$

where $L_{i} x=A_{i}(k, k, x), \quad S_{i} x=A_{i}(k, x, k) \quad$ and $\quad R_{i} x=A_{i}(x, k, k)$ for every $i=2,4,6, L_{1} x=A_{1}\left(A_{2}(k, k, k), k, x\right), S_{1} x=A_{1}\left(A_{2}(k, k, k), x, k\right), R_{1} x=A_{1}(x, k, k)$, $L_{3} x=A_{3}\left(k, A_{4}(k, k, k), x\right), \quad S_{3} x=A_{3}(k, x, k), \quad R_{3} x=A_{3}\left(x, A_{4}(k, k, k), k\right)$, $L_{5} x=A_{5}(k, k, x), S_{5} x=A_{5}\left(k, x, A_{6}(k, k, k)\right)$ and $R_{5} x=A_{5}\left(x, k, A_{6}(k, k, k)\right)$. From this, we will have that $A_{1}, A_{2}, A_{3}, A_{5}, A_{6}$ operations are epitopic to each other.

From (7) we can obtain the following identities:

$$
\begin{aligned}
L_{1}=L_{3}= & L_{5} L_{6} ; S_{1}=S_{3} L_{4}=L_{5} S_{6} ; R_{1} L_{2}=S_{3} S_{4}=L_{5} R_{6} \\
& R_{1} S_{2}=S_{3} R_{4}=S_{5} ; R_{1} R_{2}=R_{3}=R_{5}
\end{aligned}
$$

Let's fix $k \in Q$ and denote

$$
\begin{array}{ll}
B_{1}(x, y)=A_{1}(x, y, k), & C_{4}(x, y)=A_{4}(x, K, y), \\
B_{2}(x, y)=A_{2}(k, x, y), & C_{3}(x, y)=A_{3}(x, y, k), \\
B_{3}(x, y)=A_{5}(k, x, y), & \bar{B}_{3}(x, y)=A_{2}(x, k, y), \\
B_{4}(x, y)=A_{6}(x, y, k), & \bar{B}_{2}(x, y)=A_{2}(x, y, k), \\
\bar{B}_{1}(x, y)=A_{1}(x, k, y), &
\end{array}
$$

for every $x, y \in Q$.
Replacing $x=u=k$ in (4), $x=u=k$ in (5), $z=v=k$ in (6), $x=v=k$ in (4) and $x=v=k$ in (5), we will have:

$$
\begin{align*}
A_{3}\left(x, R_{4} y, z\right) & =\bar{B}_{1}\left(\bar{B}_{2}(x, y), z\right), \tag{8}\\
\bar{B}_{1}\left(B_{2}(x, y), z\right) & =B_{3}\left(\bar{B}_{4}(x, y), z\right), \tag{9}\\
B_{1}\left(\bar{B}_{2}(x, y), z\right) & =C_{3}\left(C_{4}(x, y), z\right), \tag{10}\\
S_{3} A_{4}(x, y, z) & =B_{1}\left(B_{2}(x, y), z\right), \tag{11}\\
B_{1}\left(B_{2}(x, y), z\right) & =B_{3}\left(B_{4}(x, y), z\right), \tag{12}
\end{align*}
$$

where R_{4} is the right translation of the operation A_{4}.
From identity (12) and Theorem 3 we will have that there exists binary group $(Q ; \cdot)$ such that:

$$
\begin{array}{r}
B_{3}(x, y)=R_{B_{3}} x \cdot L_{B_{3}} y, \\
B_{1}(x, y)=R_{B_{1}} x \cdot L_{B_{1}} y, \\
R_{B_{1}} B_{2}(x, y)=R_{B_{1}} R_{B_{2}} x \cdot R_{B_{1}} L_{B_{2}} y,
\end{array}
$$

where $R_{B_{3}}(x)=B_{3}(x, k), R_{B_{2}}(x)=B_{2}(x, k), R_{B_{1}}(x)=B_{1}(x, k), L_{B_{3}}(x)=B_{3}(k, x)$, $L_{B_{2}}(x)=B_{2}(k, x), L_{B_{1}}(x)=B_{1}(k, x)$ for all $x \in Q$.

From (11) we will have:

$$
S_{3} A_{4}(x, y, z)=R_{B_{1}} R_{B_{2}} x \cdot R_{B_{1}} L_{B_{2}} y \cdot L_{B_{1}} z
$$

which is the same as

$$
S_{3} A_{4}(x, y, z)=R_{1} S_{2} x \cdot L_{5} R_{6} y \cdot L_{5} S_{6} z
$$

From the proof of Theorem 3 and (9), (10) it is easy to notice that $B_{1}, \bar{B}_{2}, C_{3}$, $C_{4}, \bar{B}_{1}, B_{2}, B_{3}, \bar{B}_{4}$ operations will be epitopic to the same group $(Q ; \cdot)$, moreover, the following identities will hold:

$$
R_{B_{1}} \bar{B}_{2}(x, y)=R_{B_{1}} R_{\bar{B}_{2}} x \cdot R_{B_{1}} L_{\bar{B}_{2}} y, \bar{B}_{1}(x, y)=R_{\bar{B}_{1}} x \cdot L_{\bar{B}_{1}} y,
$$

where $R_{B_{1}}=B_{1}(x, k), R_{\bar{B}_{2}}=\bar{B}_{2}(x, k), L_{\bar{B}_{2}}=\bar{B}_{2}(k, x), R_{\bar{B}_{1}}=\bar{B}_{1}(x, k), L_{\bar{B}_{1}}=\bar{B}_{1}(k, x)$
for all $x \in Q$.
Observe that $R_{B_{1}}=R_{\bar{B}_{1}}$:

$$
R_{B_{1}}(x)=B_{1}(x, k)=A_{1}(x, k, k)=R_{1}(x), R_{\bar{B}_{1}}(x)=\bar{B}_{1}(x, k)=A_{1}(x, k, k)=R_{1}(x)
$$

for all $x \in Q$.
From identity (8) we obtain

$$
A_{3}\left(x, R_{4} y, z\right)=R_{\bar{B}_{1}} R_{\bar{B}_{2}} x \cdot R_{\bar{B}_{1}} L_{\bar{B}_{2}} y \cdot L_{\bar{B}_{1}} z
$$

from where we will get

$$
A_{3}\left(x, R_{4} y, z\right)=R_{1} R_{2} x \cdot S_{3} y \cdot L_{5} L_{6} z
$$

We know that $A_{1}, A_{2}, A_{5}, A_{6}$ operations are epitopic to the operation A_{3}, so they also will be epitopic to the group $(Q ; \cdot)$, and from (7) we will have for the operations A_{1}, A_{5} the following representations:

$$
\begin{aligned}
& A_{1}(x, y, z)=A_{3}\left(h_{R_{2}} x, L_{4} y, z\right)=R_{1} x \cdot S_{3} L_{4} y \cdot L_{5} L_{6} z \\
& A_{5}(x, y, z)=A_{3}\left(x, R_{4} y, h_{L_{6}} z\right)=R_{1} R_{2} x \cdot S_{3} R_{4} y \cdot L_{5} z
\end{aligned}
$$

From the representations of A_{1} and A_{5}, we can easily obtain the following representations for the operations A_{2} and A_{6} :

$$
\begin{array}{r}
R_{1} A_{2}(x, y, z)=A_{5}\left(x, y, R_{6} z\right)=R_{1} R_{2} x \cdot S_{3} R_{4} z \cdot L_{5} R_{6} z \\
L_{5} A_{6}(x, y, z)=A_{1}\left(L_{2} x, y, z\right)=R_{1} L_{2} x \cdot S_{3} L_{4} y \cdot L_{5} L_{6} z .
\end{array}
$$

Using Theorem 3 and Theorem 4, we can prove the identical result for n-ary regular division groupoids.

Theorem 5. Let $\left(Q ; A_{i}\right), i=1, \ldots, 2 n$, be regular division n-ary groupoids satisfying the following identities:

$$
\begin{gather*}
A_{1}\left(A_{2}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)= \\
A_{2 j-1}\left(x_{1}, \ldots, x_{j-1}, A_{2 j}\left(x_{j}, \ldots, x_{j+n-1}\right), x_{j+n}, \ldots, x_{2 n-1}\right) \tag{13}
\end{gather*}
$$

for all $j=2, \ldots, n$. Then there exists a $(Q ; A) n$-ary group with identity element such that every A_{i} is epitopic to that group, moreover

$$
\begin{aligned}
A_{2 j-1} & =A\left(\left\{\alpha_{i}^{j} x_{i}\right\}_{i=1}^{n}\right), \\
\alpha_{i}^{j} A_{2 j} & =A\left(\left\{\beta_{i}^{j} x_{i}\right\}_{i=1}^{n}\right)
\end{aligned}
$$

for all $j=1, \ldots, n$.
Proof. Let's fix any $j=2, \ldots, n$. By fixing j we will also fix one identity from (13), and we will call that identity $(1, j)$ associativity identity.

For the proof of the theorem we will need $(1, n),(1,2),(1, n-1)$ and $(1,3)$ associativity identities:

$$
\begin{array}{r}
A_{1}\left(A_{2}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A_{2 n-1}\left(x_{1}^{n-1}, A_{2 n}\left(x_{n}^{2 n-1}\right)\right), \\
A_{1}\left(A_{2}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A_{3}\left(x_{1}, A_{4}\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right), \\
A_{1}\left(A_{2}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A_{2 n-3}\left(x_{1}^{n-2}, A_{2 n-2}\left(x_{n-1}^{2 n-2}\right), x_{2 n-1}\right), \\
A_{1}\left(A_{2}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A_{5}\left(x_{1}, x_{2}, A_{6}\left(x_{3}^{n+2}\right), x_{n+3}^{2 n-1}\right) . \tag{17}
\end{array}
$$

Set:

$$
\begin{array}{r}
A_{2}^{(L, d)}\left(x_{1}^{d}\right)=A_{2}\left(k, k, \ldots, k, x_{1}, . ., x_{d}\right), \\
A_{2}^{(R, d)}\left(x_{1}^{d}\right)=A_{2}\left(x_{1}, . ., x_{d}, k, \ldots, k\right), \\
A_{1}^{(L, d)}\left(x_{1}^{d}\right)=A_{1}\left(x_{1}, k, . ., k, x_{2}, \ldots, x_{d}\right), \\
A_{2}^{(R, d)}\left(x_{1}^{d}\right)=A_{1}\left(x_{1}, . ., x_{d}, k, \ldots, k\right),
\end{array}
$$

where $d=2, \ldots, n-1$ and $k \in Q$. If $d=n$, then we will have:

$$
A_{2}^{(L, n)}=A_{2}^{(R, n)}=A_{2}, A_{1}^{(L, n)}=A_{1}^{(R, n)}=A_{1}
$$

Substituting $x_{1}=\ldots=x_{n-2}=x_{n+1}=\ldots=x_{2 n-2}=k$ in (14), $x_{3}=\ldots=x_{n}=$ $x_{n+2}=\ldots=x_{2 n-1}=k$, in (15), $x_{1}=\ldots=x_{n-2}=x_{n+2}=\ldots=x_{2 n-1}=k$, in (14) we will obtain:

$$
\begin{gather*}
A_{1}^{(L, 2)}\left(A_{2}^{(L, 2)}\left(x_{n-1}, x_{n}\right), x_{2 n-1}\right)=C_{3}\left(x_{n-1}, C_{4}\left(x_{n}, x_{2 n-1}\right)\right), \tag{18}\\
A_{1}^{(R, 2)}\left(A_{2}^{(R, 2)}\left(x_{1}, x_{B} i g\right), x_{n+1}\right)=C_{3}^{\prime}\left(x_{1}, C_{4}^{\prime}\left(x_{2}, x_{n+1}\right)\right), \tag{19}\\
A_{1}^{(R, 2)}\left(A_{2}^{(L, 2)}\left(x_{n-1}, x_{n}\right), x_{n+1}\right)=C_{3}^{\prime \prime}\left(x_{n-1}, C_{4}^{\prime \prime}\left(x_{n}, x_{n+1}\right)\right), \tag{20}
\end{gather*}
$$

where $C_{3}, C_{4}, C_{3}^{\prime}, C_{4}^{\prime}, C_{3}^{\prime \prime}$ and $C_{4}^{\prime \prime}$ are respectively retracts of $A_{2 n-1}, A_{2 n}, A_{3}, A_{4}, A_{2 n-1}$ and $A_{2 n}$.

It's easy to notice that $R_{1}^{(L, i)}=R_{1}^{(R, i)}=R_{1}$ for all $i=2, \ldots, n-1$, where $R_{1} x=A_{1}(x, k, \ldots, k), R_{1}^{(L, i)} x=A_{1}^{(L, i)}(x, k, \ldots, k)$ and $R_{1}^{(R, i)} x=A_{1}^{(R, i)}(x, k, \ldots, k)$. From the Theorem 3 and (17), (18), (9) identities we will have that there exists a group $(Q ; G)$ such that $A_{1}^{(L, 2)}, A_{1}^{(R, 2)}, A_{2}^{(L, 2)}, A_{2}^{(R, 2)}$ will be epitopic to that group, moreover:

$$
\begin{gather*}
A_{1}^{(L, 2)}(x, y)=G\left(R_{1} x, \ldots\right), \\
R_{1} A_{2}^{(L, 2)}(x, y)=G(\ldots), \\
A_{1}^{(R, 2)}(x, y)=G\left(R_{1} x, \ldots\right), \tag{21}\\
R_{1} A_{2}^{(R, 2)}(x, y)=G(\ldots),
\end{gather*}
$$

where $R_{1} x=A_{1}(x, k, \ldots, k)$. By doing the following replacements $x_{4}=\ldots=x_{n}=$ $x_{n+3}=\ldots=x_{2 n-1}=k$ and $x_{1}=\ldots=x_{n-3}=x_{n+1}=\ldots=x_{2 n-3}=k$, respectively in (15), (17) and (14), (16), we will obtain

$$
\begin{align*}
& A_{1}^{(L, 3)}\left(A_{2}^{(L, 3)}(x, y, z), u, v\right)=A_{3}^{\prime}\left(x, A_{4}^{\prime}(y, z, u), v\right), \tag{22}\\
& A_{1}^{(L, 3)}\left(A_{2}^{(L, 3)}(x, y, z), u, v\right)=A_{5}^{\prime}\left(x, y, A_{6}^{\prime}(z, u, v)\right), \tag{23}\\
& A_{1}^{(R, 3)}\left(A_{2}^{(R, 3)}(x, y, z), u, v\right)=\overline{A_{3}}\left(x, \overline{A_{4}}(y, z, u), v\right), \tag{24}\\
& A_{1}^{(R, 3)}\left(A_{2}^{(R, 3)}(x, y, z), u, v\right)=\overline{A_{5}}\left(x, y, \overline{A_{6}}(z, u, v)\right) . \tag{25}
\end{align*}
$$

By putting $x=u=k$ and $z=u=k$, respectively in (22) and (24), we obtain

$$
\begin{aligned}
& \alpha A_{4}^{\prime}(x, y, z)=A_{1}^{(L, 3)}\left(A_{2}^{(L, 2)}(x, y), z, k\right), \\
& \overline{A_{3}}(x, \phi y, z)=A_{1}^{(R, 3)}\left(A_{2}^{(R, 2)}(x, y), k, z\right)
\end{aligned}
$$

where ϕ and α are surjections. From the proof of Theorem 3, second and fourth identities of (21) we will have that A_{4}^{\prime} and $\overline{A_{3}}$ are epitopic to the same ternary group with identity element $(Q ; A)$, where $A(x, y, z)=G(G(x, y), z)$ and $(Q ; G)$ is a binary group epitopic to operations $A_{1}^{(L, 2)}, A_{2}^{(L, 2)}, A_{1}^{(R, 2)}$ and $A_{2}^{(R, 2)}$. From the Theorem 4 we will have that $A_{1}^{(L, 3)}, A_{2}^{(L, 3)}, A_{1}^{(R, 3)}$ and $A_{2}^{(R, 3)}$ are epitopic to the ternary group $(Q ; A)$, moreover:

$$
\begin{gathered}
A_{1}^{(L, 3)}(x, y)=A\left(R_{1} x, \ldots\right) ; A_{1}^{(R, 3)}(x, y)=A\left(R_{1} x, \ldots\right) \\
R_{1} A_{2}^{(L, 3)}(x, y)=A(\ldots) ; R_{1} A_{2}^{(R, 3)}(x, y)=A(\ldots)
\end{gathered}
$$

where $R_{1} x=A_{1}(x, k, \ldots, k)$.
Let's do an induction proposition. Suppose $A_{1}^{(L, i)}, A_{2}^{(L, i)}, A_{1}^{(R, i)}$ and $A_{2}^{(R, i)}$ $(i=3, \ldots, n-1) i$-ary operations are epitopic to the same i-ary group with identity element $\left(Q ; G_{i}\right)$, where $G_{i}\left(x_{1}, \ldots, x_{i}\right)=G\left(G_{i-1}\left(x_{1}, \ldots, x_{i-1}\right), x_{i}\right)$ and $(Q ; G)$ is a binary group epitopic to the operations $A_{1}^{(L, 2)}, A_{2}^{(L, 2)}, A_{1}^{(R, 2)}$ and $A_{2}^{(R, 2)}$, moreover:

$$
\begin{gathered}
A_{1}^{(L, i)}(x, y)=G_{j}\left(R_{1} x, \ldots\right) ; A_{1}^{(R, i)}(x, y)=G_{j}\left(R_{1} x, \ldots\right), \\
\quad R_{1} A_{2}^{(L, i)}(x, y)=G_{j}(\ldots) ; R_{1} A_{2}^{(R, i)}(x, y)=G_{j}(\ldots),
\end{gathered}
$$

where $R_{1} x=A_{1}(x, k, \ldots, k)$.
First of all, let's show that $A_{2 j}, j=2, \ldots, n-1$, are regular division n-ary operations that are epitopic to the same $(Q ; A) n$-ary group with identity element, where $A\left(x_{1}^{n}\right)=G\left(G_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right)$.

Let's do the following replacements, $x_{1}=\ldots=x_{j-1}=x_{n+j}=\ldots=x_{2 n-1}=k$ in the $(1, j)$ associativity identity. We obtain

$$
L_{2 j-1} A_{2} j\left(x_{1}^{n}\right)=A_{1}^{(R, j)}\left(A_{2}^{(L, n-j+1)}\left(x_{1}^{n-j+1}\right), x_{n-j+2}^{n}\right)
$$

for every $j=2, \ldots, n-1$, where $L_{2 j-1}$ is $(2 j-1)$-th translation of the operation $A_{2 j-1}$.
It's easy to notice that when $j=2, \ldots, n-1$, then $n-j+1 \in\{2, \ldots, n-1\}$, and from induction proposition we will have that operations $A_{2 j}, j=2, \ldots, n-1$, will be epitopic to the same n-ary group with identity element $(Q ; A)$, moreover:

$$
A\left(x_{1}^{n}\right)=G_{j}\left(G_{n-j+1}\left(x_{1}^{n-j+1}\right), x_{n-j+2}^{n}\right)
$$

From the induction assumption we have

$$
\left.\left.\left.G_{i}\left(x_{1}^{i}\right)=G\left(G\left(\ldots\left(G\left(x_{1}, x_{2}\right) x_{3}\right)\right)\right) \ldots\right), x_{n-1}\right), x_{n}\right)
$$

for every $i=3, \ldots, n-1$.
Let's show that operation $A_{2 n-3}$ also will be epitopic to the same n-ary group with identity element $(Q ; A)$.

By doing the following replacements $x_{n}=\ldots=x_{2 n-1}=k$, in the $(1, n-1)$ associativity identity, we obtain:

$$
\begin{equation*}
A_{2 n-3}\left(x_{1}, \ldots, R_{2 n-2} x_{n-1}, x_{n}\right)=A_{1}^{(R, 2)}\left(A_{2}^{(L, n-1)}\left(x_{1}^{n-1}\right), x_{n}\right) \tag{26}
\end{equation*}
$$

where $R_{2 n-2}$ is the right translation of the operation $A_{2 n-2}$.

From the induction assumption we will have that the operation $A_{2 n-3}$ is epitopic to the n-ary group with an identity element $(Q ; A)$.

Observe that operation $A_{1}, A_{2}, A_{2 n}, A_{2 j-1}, j=2, \ldots, n$, are epitopic to each other. Since $A_{2 n-3}$ is one of these operations, all these operations also will be epitopic to the n-ary group with an identity element $(Q ; A)$. We proved the first part of the Theorem and for the second part it's enough to show the following identities:

$$
A_{1}\left(x_{1}^{n}\right)=A\left(R_{1} x_{1}, \ldots\right) ; R_{1} A_{2}\left(x_{1}^{n}\right)=A(\ldots)
$$

Set $x_{n+1}=\ldots=x_{2 n-1}=k$ in the $(1, n)$ associativity identity and $x_{n}=\ldots=x_{2 n-2}$ in the $(n-1, n)$ associativity identity. We obtain

$$
\begin{array}{r}
R_{1} A_{2}\left(x_{1}^{n}\right)=A_{2 n-1}\left(x_{1}^{n-1}, L_{2 n}^{1} x_{n}\right), \\
A_{2 n-1}\left(x_{1}^{n-1}, L_{2 n}^{n} x_{n}\right)=A_{2 n-x}\left(x_{1}, \ldots, L_{2 n-2}^{1} x_{n_{1}}, x_{n}\right), \tag{28}
\end{array}
$$

where $L_{2 n}^{1}, L_{2 n}^{n}, L_{2 n-2}^{1}$ are respectively the first, n-th and first translations of the operations $A_{2 n}, A_{2 n-2}$.

From the induction assumption and identities (26), (27) and (28) it follows that

$$
R_{1} A_{2}\left(x_{1}^{n}\right)=A(\ldots)
$$

Let's do the following replacements $x_{1}=\ldots=x_{n-1}=k$ in the $(1, n)$ associativity identity, $x_{1}=\ldots=x_{n-1}=x_{2 n-1}=k$ in the $(1, n-1)$ associativity identity, $x_{1}=\ldots=x_{n-2}=x_{n}=x_{2 n-2}=k$ in the $(1, n-1)$ associativity identity and $x_{1}=\ldots=x_{n-1}=k$ in the $(n-1, n)$ associativity identity. We obtain

$$
\begin{array}{r}
A_{1}\left(x_{1}^{n}\right)=L_{2 n-1}^{n} A_{2 n}\left(L_{2}^{n-1} x_{1}, x_{2}^{n}\right), \\
L_{2 n-3}^{n-1} A_{2 n-2}\left(k, x_{1}^{n-1}\right)=A_{1}^{(R, n-1)}\left(L_{2}^{n} x_{1}, x_{2}^{n}\right), \\
A_{2 n-3}\left(k, \ldots, k, L_{2 n-1}^{1} x_{1}, x_{2}\right)=A_{1}^{(L, 2)}\left(L_{2}^{n-1} x_{1}, x_{2}\right), \\
L_{2 n-1}^{n} A_{2 n-1}\left(x_{1}^{n}\right)=A_{2 n-3}\left(k, \ldots, k, A_{2 n-2}\left(k, x_{1}^{n-1}\right), x_{n}\right), \tag{32}
\end{array}
$$

where $L_{2 n-1}^{n}, L_{2 n-3}^{n-1}, L_{2}^{n}, L_{2 n-1}^{1}, L_{2}^{n-1}, L_{2 n-1}^{n}$ are respectively the n-th, $n-1$-th, second, third, first, second and n-th translations of the operations $A_{2 n-1}, A_{2 n-3}, A_{2}$.

From the induction proposition and (29), (30), (31) and (32) identities we have:

$$
A_{1}\left(x_{1}^{n}\right)=A\left(R_{1} x_{1}, \ldots\right)
$$

Theorem 6. Let $(Q ; \Sigma)$ be a regular division n-ary $(\overline{i A})$-algebra with n-ary quasigroup operation, then there exists $(Q ; \cdot)$ binary group such that every $A \in \Sigma$ will be epitopic to that group, moreover:

$$
A\left(x_{1}^{n}\right)=\alpha_{1} x_{1} \cdot \ldots \cdot \alpha_{i-1} x_{i-1} \cdot \phi_{i} x_{i} \cdot \alpha_{i+1} x_{i+1} \cdot \ldots \cdot \alpha_{n} x_{n}
$$

where ϕ_{i} is surjective endomorphism of the group $(Q ; \cdot)$ and $\alpha_{j}, j=\{1, \ldots, n\} /\{i\}$, are surjections from Q to itselft.

Proof. Let's prove for the $(\overline{1 A})$-algebra. Let's fix $A_{2}=A_{1} n$-ary quasigroup operation, then there exists n-ary operations $A_{2 j-1}, A_{2 j} \in \Omega, j=2, \ldots, n$, such that (13) identity holds.

From the Theorem 5 we have that there exists a binary group $(Q ; \cdot)$ such that:

$$
\begin{gathered}
A_{1}\left(x_{1}^{n}\right)=\alpha_{1} x_{1} \cdot \ldots \cdot \alpha_{n} x_{n} \\
\alpha_{1} A_{1}\left(x_{1}^{n}\right)=\beta_{1} x_{1} \cdot \ldots \cdot \beta_{n} x_{n}
\end{gathered}
$$

for every $x_{1}, \ldots, x_{n} \in Q$. From this we obtain $\alpha_{1}\left(\alpha_{1} x_{1} \cdot \ldots \cdot \alpha_{n} x_{n}\right)=\beta_{1} x_{1} \cdot \ldots \cdot \beta_{n} x_{n}$.
This means α_{1} is quasiendomorphism of the binary group $(Q ; \cdot)$.
Let's fix operation A_{1} and for every operation $A_{2} \in \Sigma$ there exist operations $A_{2 j-1}^{\prime}, A_{2 j}^{\prime} \in \Omega, j=2, \ldots, n$, such that (13) identity holds. From the Theorem 5 we know that there exists a binary group $\left(Q ;{ }_{A_{1}}\right)$, such that:

$$
\begin{array}{r}
A_{1}\left(x_{1}^{n}\right)=\alpha_{1} x_{1} \cdot A_{1} \alpha_{2}^{(2)} \cdots \cdot A_{1} \alpha_{n}^{(2)} x_{n}, \\
\alpha_{1} A_{2}\left(x_{1}^{n}\right)=\beta_{1}^{(2)} x_{1} \cdot A_{1} \cdots \cdot A_{1} \beta_{n}^{(2)} x_{n}
\end{array}
$$

for every $x_{1}, \ldots, x_{n} \in Q$. Which is the same as

$$
\alpha_{1} x_{1} \cdot A_{1} \alpha_{2}^{(2)} \cdot{ }_{A_{1}} \cdots \cdot{ }_{A_{1}} \alpha_{n}^{(2)} x_{n}=\alpha_{1} x_{1} \cdot \ldots \cdot \alpha_{n} x_{n}
$$

This means that the binary groups $(Q ; \cdot)$ and $\left(Q ;{ }_{A_{1}}\right)$ are epitopic and based on Lemma 1 they will be isomorphic, moreover, $x \cdot{ }_{A_{1}} y=x \cdot y \cdot t$.

So we will have

$$
\begin{gathered}
A_{2}\left(x_{1}^{n}\right)=\alpha_{1}^{-1}\left(\beta_{1}^{(2)} x_{1} \cdot A_{1} \cdots \cdot A_{1} \beta_{n}^{(2)} x_{n}\right)= \\
\alpha_{1}^{-1}\left(R_{t} \beta_{1}^{(2)} x_{1} \cdot \ldots \cdot R_{t} \beta_{n-1}^{(2)} x_{n-1} \cdot \beta_{n}^{(2)} x_{n}\right)=\gamma_{1} x_{1} \cdot \ldots \cdot \gamma_{n} x_{n},
\end{gathered}
$$

where $\gamma_{i}=R_{\left(\alpha_{1}^{-1} e\right)^{-1}} \alpha_{1}^{-1} R_{t} \beta_{i}^{(2)}, i=1, \ldots, n-1$, and $\gamma_{n}=\alpha_{1}^{-1} \beta_{n}^{(2)}$, where $R_{\left(\alpha_{1}^{-1} e\right)^{-1}}$ and R_{t} are right translations of the binary group $(Q ; \cdot)$.

We obtained that for the $(\overline{1 A})$-algebra there exists a binary group $(Q ; \cdot)$ such that every operation $A \in \Sigma$ can be reperesented in the following way:

$$
A\left(x_{1}^{n}\right)=\gamma_{1}^{A} x_{1} \cdot \ldots \cdot \gamma_{n}^{A} x_{n}
$$

where $\gamma_{i}^{A}, i=1, \ldots, n$, are surjections.
By doing replacements for each operation with its representation in identity (13), we will get

$$
\begin{gathered}
\gamma_{1}^{A_{1}}\left(\gamma_{1}^{A_{2}} x_{1} \cdot \ldots \cdot \gamma_{n}^{A_{2}} x_{n}\right) \cdot \gamma_{2}^{A_{1}} x_{n+1} \cdot \ldots \cdot \gamma_{n}^{A_{1}} x_{2 n-1}= \\
\gamma_{1}^{A_{2 j-1}} x_{1} \cdot \ldots \cdot \gamma_{j-1}^{A_{2 j-1}} x_{j-1} \cdot \gamma_{j}^{A_{2 j-1}}\left(\gamma_{1}^{A_{2 j}} x_{j} \cdot \ldots \cdot \gamma_{n}^{A_{2 j}} x_{j+n-1}\right) \cdot \gamma_{j+n}^{A_{2 j-1}} x_{j+n} \cdot \ldots \cdot \gamma_{2 n-1}^{A_{2 j-1}} x_{2 n-1} .
\end{gathered}
$$

Let's do the following replacements:

$$
\begin{gathered}
x_{1}=h_{\gamma_{1}^{A_{2}}} x_{1}, x_{j}=h_{\gamma_{j}^{A_{2}}} x_{j}, \\
\gamma_{1}^{A_{2}} x_{2}=\ldots=\gamma_{j-1}^{A_{2}} x_{j-1}=\gamma_{j+1}^{A_{2}} x_{j+1}=\ldots=\gamma_{n}^{A_{2}} x_{n}=\gamma_{2}^{A_{1}} x_{n+1}=\ldots=\gamma_{n}^{A_{1}} x_{2 n-1}=e
\end{gathered}
$$

where e is the identity of the binary group $(Q ; \cdot)$. We obtain

$$
\gamma_{1}^{A_{1}}\left(x_{1} \cdot x_{j}\right)=\mu x_{1} \cdot v x_{j}
$$

where v and μ are surjections.

From the Lemma 3 we have that $\gamma_{1}^{A_{1}}$ is the quasiendomorphism of the binary group $(Q ; \cdot)$, and from Lemma 2 we have that there exists $\phi_{1}^{A_{1}}$ endomorphism of the binary group $(Q ; \cdot)$ and element $a \in Q$ such that $\gamma_{1}^{A_{1}} x=\phi_{1}^{A_{1}} x \cdot a$. From which we obtain for every operation $A_{1} \in \Sigma$ the representation

$$
A_{1}\left(x_{1}^{n}\right)=\gamma_{1}^{A_{1}} x_{1} \cdot \ldots \cdot \gamma_{n}^{A_{1}} x_{n}=\phi_{1}^{A_{1}} \cdot \beta_{2}^{A_{1}} x_{2} \cdot \ldots \cdot \beta_{n}^{A_{1}} x_{n}
$$

where $\beta_{2}^{A_{1}}=L_{a} \gamma_{2}^{A_{2}}, \beta_{i}^{A_{1}}=\gamma_{i}^{A_{1}}, i=3, \ldots, n$, are surjections, and $\gamma_{1}^{A_{1}}$ is a surjective endomorphism of the binary group $(Q ; \cdot)$.

Theorem 7. Let $(Q ; \Sigma)$ be a regular division n-ary (iA)-algebra with n-ary quasigroup operation, then there exists a binary group $(Q ; \cdot)$ such that every $A \in \Sigma$ will be endo-linear over that group.

Proof. Let's prove for the $(1 a)$-algebra. Since $(Q ; \Sigma)$ is also $(\overline{1 a})$-algebra, then from the Theorem 6 we know that there exists binary group $(Q ; \cdot)$ such that every operation $A \in \Sigma$ can be represented in the following way:

$$
A\left(x_{1}^{n}\right)=\phi_{1}^{A} x_{1} \cdot \beta_{2}^{A} x_{2} \cdot \ldots \cdot \beta_{n}^{A} x_{n}
$$

where $\beta_{i}^{A}, i=2, \ldots, n$, are surjections, and ϕ_{1}^{A} is a surjective endomorphism of the group $(Q ; \cdot)$.

Let's fix operation A_{1} as an n-ary quasigroup operation and for every operation $A_{2} \in \Sigma$ there exist operations $A_{2 j-1}, A_{2 j} \in \Sigma, j=2, \ldots, n$, such that (13) holds.

By doing replacements for each operation by its representation in identity (13), we will get

$$
\begin{aligned}
& \phi_{1}^{A_{1}}\left(\phi_{1}^{A_{2}} x_{1} \cdot \beta_{2}^{A_{2}} x_{2} \cdot \ldots \cdot \beta_{n}^{A_{2}} x_{n}\right) \cdot \beta_{2}^{A_{1}} x_{n+1} \cdot \ldots \cdot \beta_{n}^{A_{1}} x_{2 n-1}=\phi_{1}^{A_{2 j-1}} x_{1} \cdot \beta_{2}^{A_{2 j-1}} x_{2} \ldots \\
& \quad \cdot \beta_{j-1}^{A_{2 j-1}} x_{j-1} \cdot \beta_{j}^{A_{2 j-1}}\left(\phi_{1}^{A_{2 j}} x_{j} \cdot \ldots \cdot \beta_{n}^{A_{2 j}} x_{j+n-1}\right) \cdot \beta_{j+n}^{A_{2 j-1}} x_{j+n} \cdot \ldots \cdot \beta_{2 n-1}^{A_{2 j-1}} x_{2 n-1}
\end{aligned}
$$

Substituting
$x_{1}=\beta_{2}^{A_{2}} x_{2}=\ldots=\beta_{j-1}^{A_{2}} x_{j-1}=\beta_{j+1}^{A_{2}} x_{j+1}=\ldots=\beta_{n}^{A_{2}} x_{n}=\beta_{3}^{A_{1}} x_{n+2}=\ldots=\beta_{n}^{A_{1}} x_{2 n-1}=e$,
where e is the identity of the binary group $(Q ; \cdot)$, we obtain

$$
\phi_{1}^{A_{1}} \beta_{j}^{A_{2}} x_{j} \cdot \beta_{2}^{A_{1}} x_{n+1}=\overline{L R} \beta_{j}^{A_{2 j-1}}\left(\phi_{1}^{A_{2 j}} x_{j} \cdot \widetilde{L} \widetilde{R} \beta_{n+2-j}^{A_{2 j}} x_{n+1}\right)
$$

where $\bar{L}, \bar{R}, \widetilde{L}, \widetilde{R}$ are right and left translations of the binary group $(Q ; \cdot)$.

From Lemma 3 we have that $\theta=\phi_{1}^{A_{1}} \beta_{j}^{A_{2}}$ is a quasiendomorphism of the binary group $(Q ; \cdot)$. Since A_{1} is an n-ary quasigroup operation, $\phi_{1}^{A_{1}}$ will be an automorphism of the binary group $(Q ; \cdot)$. This means that $\beta_{j}^{A_{2}}=\left(\phi_{1}^{A_{1}}\right)^{-1} \theta$ is a composition of two quasiendomorphisms, hence it will also be a quasiendomorphism. This means that for every operation $A_{2} \in \Sigma$ and for every $j=2, \ldots, n, \beta_{j}^{A_{2}}$ is a quasiendomorphism of the binary group $(Q ; \cdot)$.

From which we obtain that every operation $A \in \Sigma$ will have the following representation:

$$
A\left(x_{1}^{n}\right)=\phi_{1}^{A} x_{1} \cdot \beta_{2}^{A} x_{2} \cdot \ldots \cdot \beta_{n}^{A} x_{n}
$$

where ϕ_{1}^{A} is a surjective endomorphism of the binary group $(Q ; \cdot)$ and $\beta_{i}^{A}, i=2, \ldots, n$, are surjective quasiendomoprhisms of the binary group $(Q ; \cdot)$. From the Lemma 2 and Lemma 4 we will have $\psi_{i}^{A}, i=2, \ldots, n$, endomorphisms of the binary group $(Q ; \cdot)$ and element $t_{A} \in Q$ such that

$$
A\left(x_{1}^{n}\right)=\phi_{1}^{A} x_{1} \cdot \psi_{2}^{A} x_{2} \cdot \ldots \cdot \psi_{n}^{A} x_{n} \cdot t
$$

Theorem 8. Let $(Q ; \Omega)$ be (iA)-algebra of all regular division n-ary groupoids, then $|Q| \leq 3$.

Proof. First of all, let's prove that if $|Q|>4$, then $(Q ; \Omega)$ can't be $(i A)$-algebra. If $|Q|>4$, then there exists a B nonassociative binary loop, which is not isomorphic to a binary group. Let's define operation $A \in \Omega$ in the following way:

$$
A\left(x_{1}^{n}\right)=B\left(B\left(\ldots\left(B\left(x_{1}, x_{2}\right), x_{3}\right), \ldots\right), x_{n}\right)
$$

It's obvious that $(Q ; A)$ will be an n-ary loop.
Suppose $(Q ; \Omega)$ is $(i A)$-algebra, then from the Theorem 7 we have that there exists an n-ary group with identity element $(Q ; G)$ such that every operation $C \in \Omega$ will be endo-linear over that group. This means that n-ary loop A will also be endo-linear over that group, and from Lemma 5 we know, they will be isomoprhic, which contradicts the definition of the operation A.

We have that $|Q| \leq 4$. We also know that on a finite set every surjection will also be bijection, so every regular division n-ary operation will be n-ary quasigroup operation, so every n-ary operation in Ω will be a quasigroup, and from Theorem 2 we obtain $|Q| \leq 3$.

REFERENCES

1. Davidov S., Krapež A., Movsisyan Yu. Functional Equations with Division and Regular Operations. Asian-Eur. J. Math. 11 (2018), 1850033.
https://doi.org/10.1142/S179355711850033X
2. Schauffler R. Eine Anwendung Zyklischer Permutationen and Ihretheorie. Ph.D. Thesis. Marburg University (1948).
https://doi.org/10.1142/12796
3. Schauffler R. Über die Bildung von Codewörtern. Arch. Elekt. Übertragung 10 (1956), 303-314.
4. Schauffler R. Die Associativität im Ganzen. Besonders bei Quasigruppen 67 (1957), 428-435.
5. Movsisyan Yu. Hyperidentities: Boolean and De Morgan Structures. World Scientific (2022), 560.
https://doi.org/10.1142/12796
6. Movsisyan Yu. Introduction to the Theory of Algebras with Hyperidentities. Yerevan, YSU Press (1986) (in Russian).
7. Movsisyan Yu. Hyperidentities and Hypervarieties in Algebras. Yerevan, YSU Press (1990) (in Russian).
8. Movsisyan Yu. On a Theorem of Schauffler. Math. Notes 53 (1993), 172-179. https://doi.org/10.1007/BF01208322
9. Movsisyan Yu. Hyperidentities in Algebras and Varieties. Russ. Math. Surv. 53 (1998), 57-108.
https://doi.org/10.1070/RM1998v053n01ABEH000009
10. Ushan Ya. Globally Associative Systems of n-ary Quasigroups (Constructions of $i A$-systems. A generalization of the Hossu-Gluskin Theorem). Publ. Inst. Math. 19 (1975), 155-165 (in Russian).
11. Ushan Ya., Zhizhovich M. n-Ary Analog of Schauffler's Theorem. Publ. Inst. Math. 19 (1975), 167-172 (in Russian).

 ૬ Cunı\$ı

ЛИНЕЙНОСТЬ n-АРНЫХ АССОЦИАТИВНЫХ АЛГЕБР

В этой статье изучаются n-арные регулярные ассоциативные алгебры с делением. Показано, что каждая операция в n-арной регулярной ассоциативной алгебре с делением имеет эндолинейное представление над одной и той же бинарной группой. Доказывается теорема типа Шауфлера для таких алгебр.

[^0]: * E-mail: david.harutyunyan96@gmail.com

