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In this paper n-ary regular division associative algebras are discussed.
It is shown that every operation in n-ary regular division associative algebra
will be endo-linearly represented over the same binary group. Schauffler like
theorem will be proved for those algebras.
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Introduction and Preliminary Notions. A non-empty set Q with n-ary
operation A is called n-groupoid.

The sequence xn,xn+1, ...,xm is denoted by xm
n , where n, m are natural numbers,

n≤ m. If n = m, then xm
n is the element xn. The sequence xm,xm−1, ...,xn is denoted

by m
n x, where n, m are natural numbers, n≤ m. If n = m, then m

n x is the element xn.

D e f i n i t i o n 1. Let (Q;A) be an n-groupoid and (Q;B) be m-groupoid.
We will say that (Q;B) is a retract of (Q;A), if m≤ n and there are a1, ...,an−m ∈ Q
and k1, ...,kn−m ∈ {1, ...,n}, such that

B(xm
1 ) = A

(
xk1−1

1 ,a1,x
k2−1
k1+1, ...,x

kn−m−1
kn−m−1+1,an−m,xn

kn−m+1

)
.

Let (Q;A) be an n-groupoid. Denote by Li (an
1) a mapping from Q to Q

such that
Li (an

1)x = A
(
ai−1

1 xan
i+1
)

for all x ∈ Q. The mapping Li(an
1) is called the i-translation with respect to an

1.

D e f i n i t i o n 2. Let (Q;A) be an n-groupoid. We will say that (Q;A) is a
division n-groupoid, if Li(an

1) is a surjection for all an
1 ∈ Q and i = 1, ...,n.

Let’s denote by LA
i

(
a|A|1

)
the i-translation of the algebra (Q;Σ) with respect to

element a|A|1 ∈ Q|A|, where |A| is the arity of the operation A.

∗ E-mail: david.harutyunyan96@gmail.com

https://doi.org/10.46991/PYSU:A/2023.57.1.009
david.harutyunyan96@gmail.com


10 HARUTYUNYAN D. N.

D e f i n i t i o n 3. The algebra (Q;Σ) is called division algebra, if every LA
i

(
a|A|1

)
is a surjection for all a|A|1 ∈ Q|A|, A ∈ Σ and i = 1, ...,n.

An n-groupoid is called i-regular, if

Li(an
1)c = Li(bn

1)c =⇒ Li(an
1) = Li(bn

1)

for all an
1,b

n
1 ∈ Qn,c ∈ Q. An n-groupoid is called regular, if it’s regular for all

i = 1, ...,n. It’s easy to see that every retract of regular n-groupoid is also regular.
The algebra (Q;Σ) is called i-regular, if LA

i

(
a|A|1

)
c = LA

i

(
b|A|1

)
c implies that

LA
i

(
a|A|1

)
= LA

i

(
b|A|1

)
. If (Q;Σ) is i-regular for all i = 1, ..., |A|, then it’s called regular.

D e f i n i t i o n 4. A groupoid (Q;A) is homotopic to a groupoid (Q;B), if
there exist such mappings α,β ,γ from Q to Q that the equality γA(x,y) = B(αx,βy)
is valid for any x,y ∈ Q. Then the triad (α,β ,γ) is a homotopy from (Q;A) to (Q,B).
If γ = idQ, then we say that these groupoids are principally homotopic.

D e f i n i t i o n 5. A n-ary groupoid (Q;A) is homotopic to a n-ary groupoid
(Q;B), if there exist such mappings αi, i = 1, ...,n, and γ from Q to Q that the equality
γA(xn

1) = B(α1x1, ...,αnxn) is valid for any x1, ...,xn ∈ Q. If γ = idQ, then we say that
these n-ary groupoids are principally homotopic.

D e f i n i t i o n 6. A mapping γ from Q to Q is called a homotopy of a groupoid
(Q;A), if there exist such mappings α,β from Q to Q that the triad (α,β ,γ)
is a homotopy from (Q;A) to (Q;A).

D e f i n i t i o n 7. A mapping φ from Q to Q is a quasiendomorphism
of a group (Q; ·), if φ(x · y) = φx · (φ1)−1 ·φy for all x,y ∈ Q, where 1 is the identity
of the group (Q; ·).

D e f i n i t i o n 8. Let (Q;Σ) be regular division n-ary algebra, and (Q;Ω)
be the algebra of all regular division n-ary operations. We will call operations
A,B∈Σ i weak associative, if there exists operations A2 j,A2 j−1 ∈Ω, j∈{1, ...,n}\{i},
such that following identities hold:

A
(
xi−1

1 ,B
(
xi+n−1

i

)
,x2n−1

i+n

)
= A2 j−1

(
x j−1

1 ,A2 j

(
x j+n−1

j

)
,x2n−1

j+n

)
for every j ∈ {1, ...,n}\{i}.

D e f i n i t i o n 9. Let (Q;Σ) be n-ary algebra. We will say (Q;Σ) is
(iA)-algebra, if every operations A,B ∈ Σ are i weak associative.

D e f i n i t i o n 10. Let (Q;Σ) be regular division n-ary algebra. We will call
operations A,B ∈ Σ i associative, if there exists operations A2 j,A2 j−1 ∈ Σ,
j ∈ {1, ...,n}\{i}, such that following identities hold:

A
(
xi−1

1 ,B
(
xi+n−1

i

)
,x2n−1

i+n

)
= A2 j−1

(
x j−1

1 ,A2 j

(
x j+n−1

j

)
,x2n−1

j+n

)
for every j ∈ {1, ...,n}\{i}.
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D e f i n i t i o n 11. Let (Q;Σ) be n-ary algebra. We will say (Q;Σ) is iA-algebra,
if every operations A,B ∈ Σ are i associative.

L e m m a 1. If the group (Q; ·) is principally homotopic to the group (Q;+),
then they are isomorphic and x · y = x+ y+ l for all x,y ∈ Q, where l ∈ Q.

L e m m a 2. Any quasiendomorphism φ of a group (Q; ·) has the form
φ = Laφ ′, where Lax = a · x, a ∈ Q, and φ ′ is an endomorphism of the group (Q; ·).

L e m m a 3. Any homotopy α of a group (Q; ·) is a quasiendomorphism
of (Q; ·).

L e m m a 4. Let φ be a quasiendomoprhism of the binary group (Q; ·), then
for every a ∈ Q, φ1x = φx ·a and φ2x = a ·φx will also be quasiendomorphisms of the
binary group (Q; ·).

It was proved in [1], that if the binary loop is principally homotopic to the
group, then they are isomorphic. Similarly, we can prove following lemma.

L e m m a 5. If n-ary loop is principally homotopic to the n-ary group with
identity element, then they are isomorphic.

Working at the German Cryptographic Center during World War II,
R. Schauffler obtained applications of invertible algebras satisfying second-order
associativity identity in cryptography [2–4], by proving the following theorem:

T h e o r e m 1. (Schauffler) Let Q be not empty set. The following statements
are equivalent:

• for every (Q;X), (Q;Y ) quasigroups, there exist (Q;X ′), (Q;Y ′) quasigroups,
such that the following ∀∃(∀)-identity holds:

∀X ,Y∃X ′,Y ′∀x,y,zX(Y (x,y),z) = X ′(x,Y ′(y,z)); (1)

• for every (Q;X), (Q;Y ) quasigroups, there exist (Q;X ′), (Q;Y ′) quasigroups,
such that the following ∀∃(∀)-identity holds:

∀X ,Y∃X ′,Y ′∀x,y,zX(x,Y (y,z)) = X ′(Y ′(x,y),z); (2)

• |Q| ≤ 3.

Schaufler in [5] proved likewise theorems for binary algebras with quasigroup
operations for other ∀∃(∀)-identities [6–9].

It was shown in [10] the linearity of n-ary algebras with quasigroup operations
with ∀∃(∀)-identities, and by using those results Schaufler proved in [11] a similar
theorem for n-ary invertible algebras.

T h e o r e m 2. Let (Q;Ω) be the n-ary algebra of all n-ary quasigroup
operations. (Q;Ω) will be (iA)-algebra if and only if |Q| ≤ 3.

We will prove similar results for n-ary regular division algebras.
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Main Results. In [1] the following theorem was proved for regular division
binary groupoids.

T h e o r e m 3. Let four operations A,B,C,D be division groupoids on Q and
let either A or C be regular. If these operations satisfy the following associativity
identity

A(x,B(y,z)) =C(D(x,y),z)

for all x,y,z ∈ Q, then:
• there is a group (Q; ·) such that all these groupoids are epitopic to (Q; ·), and
• there are surjections α,β ,γ,δ ,λ ,θ ,ν ,µ : Q ↪→ Q such that:

A(x,y) = αx ·βx,
βB(x,y) = βγx ·βδy,
C(x,y) = λx ·θx,
λD(x,y) = λνx ·λνy.

The group (Q; ·) is unique up to isomorphisms.

First of all, we need to prove a similar result for ternary regular division
groupoids.

T h e o r e m 4. Let (Q;A1, ...,A6) be division regular ternary algebra that
satisfies the following identity of associativity:

A1(A2(x,y,z),u,v) = A3(x,A4(y,z,u),v) = A5(x,y,A6(z,u,v)). (3)

Then there exists binary group (Q; ·) such that every Ai is epitopic to that group,
moreover:

A1(x,y,z) = R1x ·S3L4y ·L5L6z,

R1A2(x,y,z) = R1R2x ·S3R4y ·L5R6z,

A3(x,y,z) = R1R2x ·S3y ·L5L6z,

S3A4(x,y,z) = R1S2x ·L5R6y ·L5S6z,

A5(x,y,z) = R1R2x ·S3R4y ·L5z,

L5A6(x,y,z) = R1L2x ·S3L4y ·L5L6z,

where Li,Si,Ri are left, central and right translations of operation Ai.

P ro o f. We can write (3) identity in three separate identities in following way:

A1(A2(x,y,z),u,v) = A3(x,A4(y,z,u),v), (4)

A1(A2(x,y,z),u,v) = A5(x,y,A6(z,u,v)), (5)

A3(x,A4(y,z,u),v) = A5(x,y,A6(z,u,v)). (6)

Let’s fix k ∈ Q and do the following replacements, y = z = k x = y = k
in identity (4), u = v = k in identity (5) and z = u = k in (6). After the replacements
we will have

A1(R2x,y,z) = A3(x,L4y,z),

A1(L2x,y,z) = L5A6(x,y,z),

R1A2(x,y,z) = A5(x,y,R6z),

A3(x,R4y,z) = A5(x,y,L6z),

(7)
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where Lix = Ai(k,k,x), Six = Ai(k,x,k) and Rix = Ai(x,k,k) for every
i = 2,4,6, L1x = A1(A2(k,k,k),k,x), S1x = A1(A2(k,k,k),x,k), R1x = A1(x,k,k),
L3x = A3(k,A4(k,k,k),x), S3x = A3(k,x,k), R3x = A3(x,A4(k,k,k),k),
L5x = A5(k,k,x), S5x = A5(k,x,A6(k,k,k)) and R5x = A5(x,k,A6(k,k,k)). From this,
we will have that A1,A2,A3,A5,A6 operations are epitopic to each other.

From (7) we can obtain the following identities:
L1 = L3 = L5L6; S1 = S3L4 = L5S6; R1L2 = S3S4 = L5R6;

R1S2 = S3R4 = S5; R1R2 = R3 = R5.

Let’s fix k ∈ Q and denote

B1(x,y) = A1(x,y,k),

B2(x,y) = A2(k,x,y),

B3(x,y) = A5(k,x,y),

B4(x,y) = A6(x,y,k),

B1(x,y) = A1(x,k,y),

C4(x,y) = A4(x,K,y),

C3(x,y) = A3(x,y,k),

B3(x,y) = A2(x,k,y),

B2(x,y) = A2(x,y,k),

for every x,y ∈ Q.
Replacing x = u = k in (4), x = u = k in (5), z = v = k in (6), x = v = k in (4)

and x = v = k in (5), we will have:
A3(x,R4y,z) = B1(B2(x,y),z), (8)

B1(B2(x,y),z) = B3(B4(x,y),z), (9)

B1(B2(x,y),z) =C3(C4(x,y),z), (10)

S3A4(x,y,z) = B1(B2(x,y),z), (11)

B1(B2(x,y),z) = B3(B4(x,y),z), (12)
where R4 is the right translation of the operation A4.

From identity (12) and Theorem 3 we will have that there exists binary group
(Q; ·) such that:

B3(x,y) = RB3x ·LB3y,

B1(x,y) = RB1x ·LB1y,

RB1B2(x,y) = RB1RB2x ·RB1LB2y,
where RB3(x) = B3(x,k), RB2(x) = B2(x,k), RB1(x) = B1(x,k), LB3(x) = B3(k,x),
LB2(x) = B2(k,x), LB1(x) = B1(k,x) for all x ∈ Q.

From (11) we will have:
S3A4(x,y,z) = RB1RB2x ·RB1LB2y ·LB1z,

which is the same as
S3A4(x,y,z) = R1S2x ·L5R6y ·L5S6z.

From the proof of Theorem 3 and (9), (10) it is easy to notice that B1, B2, C3,
C4, B1, B2, B3, B4 operations will be epitopic to the same group (Q; ·), moreover, the
following identities will hold:

RB1B2(x,y) = RB1RB2
x ·RB1LB2

y, B1(x,y) = RB1
x ·LB1

y,
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where RB1 = B1(x,k), RB2
= B2(x,k), LB2

= B2(k,x), RB1
= B1(x,k), LB1

= B1(k,x)
for all x ∈ Q.

Observe that RB1 = RB1
:

RB1(x) = B1(x,k) = A1(x,k,k) = R1(x),RB1
(x) = B1(x,k) = A1(x,k,k) = R1(x)

for all x ∈ Q.
From identity (8) we obtain

A3(x,R4y,z) = RB1
RB2

x ·RB1
LB2

y ·LB1
z,

from where we will get
A3(x,R4y,z) = R1R2x ·S3y ·L5L6z.

We know that A1, A2, A5, A6 operations are epitopic to the operation A3, so they
also will be epitopic to the group (Q; ·), and from (7) we will have for the operations
A1, A5 the following representations:

A1(x,y,z) = A3(hR2x,L4y,z) = R1x ·S3L4y ·L5L6z,

A5(x,y,z) = A3(x,R4y,hL6z) = R1R2x ·S3R4y ·L5z.
From the representations of A1 and A5, we can easily obtain the following

representations for the operations A2 and A6:
R1A2(x,y,z) = A5(x,y,R6z) = R1R2x ·S3R4z ·L5R6z,

L5A6(x,y,z) = A1(L2x,y,z) = R1L2x ·S3L4y ·L5L6z.

Using Theorem 3 and Theorem 4, we can prove the identical result for n-ary
regular division groupoids.

T h e o r e m 5. Let (Q;Ai), i = 1, ...,2n, be regular division n-ary groupoids
satisfying the following identities:

A1(A2(x1, ...,xn),xn+1, ...,x2n−1) =
A2 j−1(x1, ...,x j−1,A2 j(x j, ...,x j+n−1),x j+n, ...,x2n−1)

(13)

for all j = 2, ...,n. Then there exists a (Q;A) n-ary group with identity element such
that every Ai is epitopic to that group, moreover

A2 j−1 = A
({

α
j

i xi

}n

i=1

)
,

α
j

i A2 j = A
({

β
j

i xi

}n

i=1

)
for all j = 1, ...,n.

P ro o f. Let’s fix any j = 2, ...,n. By fixing j we will also fix one identity from
(13), and we will call that identity (1, j) associativity identity.

For the proof of the theorem we will need (1,n), (1,2), (1,n− 1) and (1,3)
associativity identities:

A1

(
A2

(
xn

1

)
,x2n−1

n+1

)
= A2n−1

(
xn−1

1 ,A2n

(
x2n−1

n

))
, (14)

A1

(
A2

(
xn

1

)
,x2n−1

n+1

)
= A3

(
x1,A4

(
xn+1

2

)
,x2n−1

n+2

)
, (15)

A1

(
A2

(
xn

1

)
,x2n−1

n+1

)
= A2n−3

(
xn−2

1 ,A2n−2

(
x2n−2

n−1

)
,x2n−1

)
, (16)

A1

(
A2

(
xn

1

)
,x2n−1

n+1

)
= A5

(
x1,x2,A6

(
xn+2

3

)
,x2n−1

n+3

)
. (17)
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Set:

A(L,d)
2 (xd

1) = A2(k,k, ...,k,x1, ..,xd),

A(R,d)
2 (xd

1) = A2(x1, ..,xd ,k, ...,k),

A(L,d)
1 (xd

1) = A1(x1,k, ..,k,x2, ...,xd),

A(R,d)
2 (xd

1) = A1(x1, ..,xd ,k, ...,k),

where d = 2, ...,n−1 and k ∈ Q. If d = n, then we will have:

A(L,n)
2 = A(R,n)

2 = A2, A(L,n)
1 = A(R,n)

1 = A1.

Substituting x1 = ... = xn−2 = xn+1 = ... = x2n−2 = k in (14), x3 = ... = xn =
xn+2 = ... = x2n−1 = k, in (15), x1 = ... = xn−2 = xn+2 = ... = x2n−1 = k,
in (14) we will obtain:

A(L,2)
1

(
A(L,2)

2

(
xn−1,xn

)
,x2n−1

)
=C3

(
xn−1,C4

(
xn,x2n−1

))
, (18)

A(R,2)
1

(
A(R,2)

2

(
x1,xBig),xn+1

)
=C′3

(
x1,C′4

(
x2,xn+1

))
, (19)

A(R,2)
1

(
A(L,2)

2

(
xn−1,xn

)
,xn+1

)
=C′′3

(
xn−1,C′′4

(
xn,xn+1

))
, (20)

where C3, C4, C′3, C′4, C′′3 and C′′4 are respectively retracts of A2n−1, A2n, A3, A4, A2n−1
and A2n.

It’s easy to notice that R(L,i)
1 = R(R,i)

1 = R1 for all i = 2, ...,n − 1,
where R1x = A1(x,k, ...,k), R(L,i)

1 x = A(L,i)
1 (x,k, ...,k) and R(R,i)

1 x = A(R,i)
1 (x,k, ...,k).

From the Theorem 3 and (17), (18), (9) identities we will have that there exists a group
(Q;G) such that A(L,2)

1 ,A(R,2)
1 ,A(L,2)

2 ,A(R,2)
2 will be epitopic to that group, moreover:

A(L,2)
1 (x,y) = G(R1x, ...),

R1A(L,2)
2 (x,y) = G(...),

A(R,2)
1 (x,y) = G(R1x, ...),

R1A(R,2)
2 (x,y) = G(...),

(21)

where R1x = A1(x,k, ...,k). By doing the following replacements x4 = ... = xn =
xn+3 = ... = x2n−1 = k and x1 = ... = xn−3 = xn+1 = ... = x2n−3 = k, respectively in
(15), (17) and (14), (16), we will obtain

A(L,3)
1 (A(L,3)

2 (x,y,z),u,v) = A′3(x,A
′
4(y,z,u),v), (22)

A(L,3)
1 (A(L,3)

2 (x,y,z),u,v) = A′5(x,y,A
′
6(z,u,v)), (23)

A(R,3)
1 (A(R,3)

2 (x,y,z),u,v) = A3(x,A4(y,z,u),v), (24)

A(R,3)
1 (A(R,3)

2 (x,y,z),u,v) = A5(x,y,A6(z,u,v)). (25)

By putting x = u = k and z = u = k, respectively in (22) and (24), we obtain

αA′4(x,y,z) = A(L,3)
1 (A(L,2)

2 (x,y),z,k),

A3(x,φy,z) = A(R,3)
1 (A(R,2)

2 (x,y),k,z),
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where φ and α are surjections. From the proof of Theorem 3, second and fourth
identities of (21) we will have that A′4 and A3 are epitopic to the same ternary group
with identity element (Q;A), where A(x,y,z) = G(G(x,y),z) and (Q;G) is a binary
group epitopic to operations A(L,2)

1 ,A(L,2)
2 ,A(R,2)

1 and A(R,2)
2 . From the Theorem 4 we

will have that A(L,3)
1 ,A(L,3)

2 ,A(R,3)
1 and A(R,3)

2 are epitopic to the ternary group (Q;A),
moreover:

A(L,3)
1 (x,y) = A(R1x, ...); A(R,3)

1 (x,y) = A(R1x, ...),

R1A(L,3)
2 (x,y) = A(...); R1A(R,3)

2 (x,y) = A(...),

where R1x = A1(x,k, ...,k).
Let’s do an induction proposition. Suppose A(L,i)

1 ,A(L,i)
2 ,A(R,i)

1 and A(R,i)
2

(i = 3, ...,n− 1) i-ary operations are epitopic to the same i-ary group with identity
element (Q;Gi), where Gi(x1, ...,xi) = G(Gi−1(x1, ...,xi−1),xi) and (Q;G) is a binary
group epitopic to the operations A(L,2)

1 ,A(L,2)
2 ,A(R,2)

1 and A(R,2)
2 , moreover:

A(L,i)
1 (x,y) = G j(R1x, ...); A(R,i)

1 (x,y) = G j(R1x, ...),

R1A(L,i)
2 (x,y) = G j(...); R1A(R,i)

2 (x,y) = G j(...),

where R1x = A1(x,k, ...,k).
First of all, let’s show that A2 j, j = 2, ...,n− 1, are regular division n-ary

operations that are epitopic to the same (Q;A) n-ary group with identity element,
where A(xn

1) = G(Gn−1(x1, ...,xn−1),xn).
Let’s do the following replacements, x1 = ...= x j−1 = xn+ j = ...= x2n−1 = k

in the (1, j) associativity identity. We obtain

L2 j−1A2 j(xn
1) = A(R, j)

1

(
A(L,n− j+1)

2

(
xn− j+1

1

)
,xn

n− j+2

)
for every j = 2, ...,n−1, where L2 j−1 is (2 j−1)-th translation of the operation A2 j−1.

It’s easy to notice that when j = 2, ...,n− 1, then n− j + 1 ∈ {2, ...,n− 1},
and from induction proposition we will have that operations A2 j, j = 2, ...,n− 1,
will be epitopic to the same n-ary group with identity element (Q;A), moreover:

A(xn
1) = G j

(
Gn− j+1

(
xn− j+1

1

)
,xn

n− j+2

)
.

From the induction assumption we have

Gi(xi
1) = G(G(...(G(x1,x2)x3)))...),xn−1),xn)

for every i = 3, ...,n−1.
Let’s show that operation A2n−3 also will be epitopic to the same n-ary group

with identity element (Q;A).
By doing the following replacements xn = ... = x2n−1 = k, in the (1,n− 1)

associativity identity, we obtain:

A2n−3(x1, ...,R2n−2xn−1,xn) = A(R,2)
1

(
A(L,n−1)

2

(
xn−1

1

)
,xn

)
, (26)

where R2n−2 is the right translation of the operation A2n−2.
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From the induction assumption we will have that the operation A2n−3 is epitopic
to the n-ary group with an identity element (Q;A).

Observe that operation A1,A2,A2n,A2 j−1, j = 2, ...,n, are epitopic to each other.
Since A2n−3 is one of these operations, all these operations also will be epitopic to the
n-ary group with an identity element (Q;A). We proved the first part of the Theorem
and for the second part it’s enough to show the following identities:

A1(xn
1) = A(R1x1, ...); R1A2(xn

1) = A(...).

Set xn+1 = ...= x2n−1 = k in the (1,n) associativity identity and xn = ...= x2n−2
in the (n−1,n) associativity identity. We obtain

R1A2(xn
1) = A2n−1

(
xn−1

1 ,L1
2nxn

)
, (27)

A2n−1
(
xn−1

1 ,Ln
2nxn

)
= A2n−x

(
x1, ...,L1

2n−2xn1 ,xn
)
, (28)

where L1
2n, Ln

2n, L1
2n−2 are respectively the first, n-th and first translations of the

operations A2n,A2n−2.
From the induction assumption and identities (26), (27) and (28) it follows that

R1A2(xn
1) = A(...).

Let’s do the following replacements x1 = ... = xn−1 = k in the (1,n)
associativity identity, x1 = ... = xn−1 = x2n−1 = k in the (1,n− 1) associativity
identity, x1 = ...= xn−2 = xn = x2n−2 = k in the (1,n−1) associativity identity and
x1 = ...= xn−1 = k in the (n−1,n) associativity identity. We obtain

A1 (xn
1) = Ln

2n−1A2n
(
Ln−1

2 x1,xn
2
)
, (29)

Ln−1
2n−3A2n−2

(
k,xn−1

1

)
= A(R,n−1)

1 (Ln
2x1,xn

2) , (30)

A2n−3
(
k, ...,k,L1

2n−1x1,x2
)
= A(L,2)

1

(
Ln−1

2 x1,x2
)
, (31)

Ln
2n−1A2n−1 (xn

1) = A2n−3
(
k, ...,k,A2n−2

(
k,xn−1

1

)
,xn
)
, (32)

where Ln
2n−1,L

n−1
2n−3,L

n
2,L

1
2n−1,L

n−1
2 ,Ln

2n−1 are respectively the n-th, n−1-th, second,
third, first, second and n-th translations of the operations A2n−1,A2n−3,A2.

From the induction proposition and (29), (30), (31) and (32) identities we have:

A1(xn
1) = A(R1x1, ...).

T h e o r e m 6. Let (Q;Σ) be a regular division n-ary (iA)-algebra with
n-ary quasigroup operation, then there exists (Q; ·) binary group such that every
A ∈ Σ will be epitopic to that group, moreover:

A(xn
1) = α1x1 · ... ·αi−1xi−1 ·φixi ·αi+1xi+1 · ... ·αnxn·,

where φi is surjective endomorphism of the group (Q; ·) and α j, j = {1, ...,n}/{i},
are surjections from Q to itselft.

P ro o f. Let’s prove for the (1A)-algebra. Let’s fix A2 = A1 n-ary quasigroup
operation, then there exists n-ary operations A2 j−1,A2 j ∈Ω, j = 2, ...,n, such that (13)
identity holds.
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From the Theorem 5 we have that there exists a binary group (Q; ·) such that:

A1(xn
1) = α1x1 · ... ·αnxn,

α1A1(xn
1) = β1x1 · ... ·βnxn

for every x1, ...,xn ∈ Q. From this we obtain α1(α1x1 · ... ·αnxn) = β1x1 · ... ·βnxn.

This means α1 is quasiendomorphism of the binary group (Q; ·).
Let’s fix operation A1 and for every operation A2 ∈ Σ there exist operations

A′2 j−1,A
′
2 j ∈ Ω, j = 2, ...,n, such that (13) identity holds. From the Theorem 5 we

know that there exists a binary group (Q; ·A1), such that:

A1(xn
1) = α1x1 ·A1 α

(2)
2 ... ·A1 α

(2)
n xn,

α1A2(xn
1) = β

(2)
1 x1 ·A1 ... ·A1 β

(2)
n xn

for every x1, ...,xn ∈ Q. Which is the same as

α1x1 ·A1 α
(2)
2 ·A1 ... ·A1 α

(2)
n xn = α1x1 · ... ·αnxn.

This means that the binary groups (Q; ·) and (Q; ·A1) are epitopic and based on
Lemma 1 they will be isomorphic, moreover, x ·A1 y = x · y · t.

So we will have

A2(xn
1) = α

−1
1

(
β
(2)
1 x1 ·A1 ... ·A1 β

(2)
n xn

)
=

α
−1
1 (Rtβ

(2)
1 x1 · ... ·Rtβ

(2)
n−1xn−1 ·β (2)

n xn) = γ1x1 · ... · γnxn,

where γi = R(α−1
1 e)−1α

−1
1 Rtβ

(2)
i , i = 1, ...,n− 1, and γn = α

−1
1 β

(2)
n , where R(α−1

1 e)−1

and Rt are right translations of the binary group (Q; ·).
We obtained that for the (1A)-algebra there exists a binary group (Q; ·)

such that every operation A ∈ Σ can be reperesented in the following way:

A(xn
1) = γ

A
1 x1 · ... · γA

n xn,

where γA
i , i = 1, ...,n, are surjections.

By doing replacements for each operation with its representation in identity
(13), we will get

γ
A1
1

(
γ

A2
1 x1 · ... · γA2

n xn

)
· γA1

2 xn+1 · ... · γA1
n x2n−1 =

γ
A2 j−1
1 x1 · ... · γ

A2 j−1
j−1 x j−1 · γ

A2 j−1
j

(
γ

A2 j
1 x j · ... · γ

A2 j
n x j+n−1

)
· γA2 j−1

j+n x j+n · ... · γ
A2 j−1
2n−1 x2n−1.

Let’s do the following replacements:

x1 = h
γ

A2
1

x1,x j = h
γ

A2
j

x j,

γ
A2
1 x2 = ...= γ

A2
j−1x j−1 = γ

A2
j+1x j+1 = ...= γ

A2
n xn = γ

A1
2 xn+1 = ...= γ

A1
n x2n−1 = e,

where e is the identity of the binary group (Q; ·). We obtain

γ
A1
1 (x1 · x j) = µx1 ·νx j,

where ν and µ are surjections.
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From the Lemma 3 we have that γ
A1
1 is the quasiendomorphism of the binary

group (Q; ·), and from Lemma 2 we have that there exists φ
A1
1 endomorphism of the

binary group (Q; ·) and element a ∈ Q such that γ
A1
1 x = φ

A1
1 x · a. From which we

obtain for every operation A1 ∈ Σ the representation

A1(xn
1) = γ

A1
1 x1 · ... · γA1

n xn = φ
A1
1 ·β

A1
2 x2 · ... ·β A1

n xn,

where β
A1
2 = Laγ

A2
2 ,β A1

i = γ
A1
i , i = 3, ...,n, are surjections, and γ

A1
1 is a surjective

endomorphism of the binary group (Q; ·).

T h e o r e m 7. Let (Q;Σ) be a regular division n-ary (iA)-algebra with
n-ary quasigroup operation, then there exists a binary group (Q; ·) such that every
A ∈ Σ will be endo-linear over that group.

P ro o f. Let’s prove for the (1a)-algebra. Since (Q;Σ) is also (1a)-algebra,
then from the Theorem 6 we know that there exists binary group (Q; ·) such that every
operation A ∈ Σ can be represented in the following way:

A(xn
1) = φ

A
1 x1 ·β A

2 x2 · ... ·β A
n xn,

where β A
i , i = 2, ...,n, are surjections, and φ A

1 is a surjective endomorphism of the
group (Q; ·).

Let’s fix operation A1 as an n-ary quasigroup operation and for every operation
A2 ∈ Σ there exist operations A2 j−1,A2 j ∈ Σ, j = 2, ...,n, such that (13) holds.

By doing replacements for each operation by its representation in identity (13),
we will get

φ
A1
1

(
φ

A2
1 x1 ·β A2

2 x2 · ... ·β A2
n xn

)
·β A1

2 xn+1 · ... ·β A1
n x2n−1 = φ

A2 j−1
1 x1 ·β

A2 j−1
2 x2...·

·β A2 j−1
j−1 x j−1 ·β

A2 j−1
j

(
φ

A2 j
1 x j · ... ·β

A2 j
n x j+n−1

)
·β A2 j−1

j+n x j+n · ... ·β
A2 j−1
2n−1 x2n−1.

Substituting

x1 = β
A2
2 x2 = ...= β

A2
j−1x j−1 = β

A2
j+1x j+1 = ...= β

A2
n xn = β

A1
3 xn+2 = ...= β

A1
n x2n−1 = e,

where e is the identity of the binary group (Q; ·), we obtain

φ
A1
1 β

A2
j x j ·β A1

2 xn+1 = LRβ
A2 j−1
j

(
φ

A2 j
1 x j · L̃R̃β

A2 j
n+2− jxn+1

)
,

where L,R, L̃, R̃ are right and left translations of the binary group (Q; ·).
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From Lemma 3 we have that θ = φ
A1
1 β

A2
j is a quasiendomorphism of the binary

group (Q; ·). Since A1 is an n-ary quasigroup operation, φ
A1
1 will be an automorphism

of the binary group (Q; ·). This means that β
A2
j = (φ A1

1 )−1θ is a composition of two
quasiendomorphisms, hence it will also be a quasiendomorphism. This means that
for every operation A2 ∈ Σ and for every j = 2, ...,n, β

A2
j is a quasiendomorphism of

the binary group (Q; ·).
From which we obtain that every operation A ∈ Σ will have the following

representation:

A(xn
1) = φ

A
1 x1 ·β A

2 x2 · ... ·β A
n xn,

where φ A
1 is a surjective endomorphism of the binary group (Q; ·) and β A

i , i = 2, ...,n,
are surjective quasiendomoprhisms of the binary group (Q; ·). From the Lemma 2 and
Lemma 4 we will have ψA

i , i = 2, ...,n, endomorphisms of the binary group (Q; ·) and
element tA ∈ Q such that

A(xn
1) = φ

A
1 x1 ·ψA

2 x2 · ... ·ψA
n xn · t.

T h e o r e m 8. Let (Q;Ω) be (iA)-algebra of all regular division n-ary groupoids,
then |Q| ≤ 3.

P ro o f. First of all, let’s prove that if |Q|> 4, then (Q;Ω) can’t be (iA)-algebra.
If |Q|> 4, then there exists a B nonassociative binary loop, which is not isomorphic
to a binary group. Let’s define operation A ∈Ω in the following way:

A(xn
1) = B(B(...(B(x1,x2),x3), ...),xn).

It’s obvious that (Q;A) will be an n-ary loop.
Suppose (Q;Ω) is (iA)-algebra, then from the Theorem 7 we have that

there exists an n-ary group with identity element (Q;G) such that every operation
C ∈ Ω will be endo-linear over that group. This means that n-ary loop A will
also be endo-linear over that group, and from Lemma 5 we know, they will be
isomoprhic, which contradicts the definition of the operation A.

We have that |Q| ≤ 4. We also know that on a finite set every surjection will
also be bijection, so every regular division n-ary operation will be n-ary quasigroup
operation, so every n-ary operation in Ω will be a quasigroup, and from Theorem 2
we obtain |Q| ≤ 3.
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zowgordakan hanraha�vi yowraqan�yowr gor�o�ow�yown kareli � �ndo-

g�aynoren nerkayacnel mi nowyn erkte�ani xmbi mijocov: Apacowcvowm

� 
aowfleryan tipi �eorem aydpisi hanraha�ivneri hamar:
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Д. Н. АРУТЮНЯН

ЛИНЕЙНОСТЬ n-АРНЫХ АССОЦИАТИВНЫХ АЛГЕБР

В этой статье изучаются n-арные регулярные ассоциативные алгебры
с делением. Показано, что каждая операция в n-арной регулярной ассоциа-
тивной алгебре с делением имеет эндолинейное представление над одной
и той же бинарной группой. Доказывается теорема типа Шауфлера для
таких алгебр.


