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In this paper n-ary regular division associative algebras are discussed.
It is shown that every operation in n-ary regular division associative algebra
will be endo-linearly represented over the same binary group. Schauffler like
theorem will be proved for those algebras.
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Introduction and Preliminary Notions. A non-empty set Q with n-ary
operation A is called n-groupoid.

The sequence x;,,X,+1, ..., X, is denoted by xJ', where n, m are natural numbers,
n < m. If n = m, then x is the element x,,. The sequence x,,,X;,—1, ..., X, is denoted
by "'x, where n, m are natural numbers, n < m. If n = m, then }'x is the element x,,.

Definition 1. Let (Q;A) be an n-groupoid and (Q;B) be m-groupoid.
We will say that (Q;B) is a retract of (Q;A), if m < n and there are ay,...,ayn—m € Q
and ky,...,kn—m € {1,...,n}, such that

_ k[*l kz*l knfmfl
B(x’in) _A<x1 ’a]’xk1+1""7'x n—m—|+1’an_m7xzn—m+l :

Let (Q;A) be an n-groupoid. Denote by L;(a}) a mapping from Q to Q
such that '
Li(a)x=A (all_lxagﬁr])
for all x € Q. The mapping L;(a’f) is called the i-translation with respect to af.

Definition 2. Let (Q;A) be an n-groupoid. We will say that (Q;A) is a
division n-groupoid, if Li(a}) is a surjection for all a} € Q andi=1,...,n.

Let’s denote by L <a‘1A|) the i-translation of the algebra (Q;X) with respect to

element a‘lA‘ € ¥, where |A| is the arity of the operation A.

* E-mail: david.harutyunyan96@gmail .com


https://doi.org/10.46991/PYSU:A/2023.57.1.009
david.harutyunyan96@gmail.com

10 HARUTYUNYAN D. N.

Definition 3. The algebra (Q;X) is called division algebra, if every L (a‘{x')
is a surjection for all a‘]A‘ € Q‘A‘, AcXandi=1,...,n
An n-groupoid is called i-regular, if
Li(d})e = LiB)e = Li(a}) = L(b})
for all af,b| € Q",c € Q. An n-groupoid is called regular, if it’s regular for all

i=1,...,n. It’s easy to see that every retract of regular n-groupoid is also regular.
The algebra (Q;X) is called i-regular, if L (a‘lA‘) c=14 (b'lA‘) c implies that

b2 <a‘lA|> =1 (b‘f“) f (Q;X) is i-regular for all i = 1,..., |A[, then it’s called regular.

1

Definition 4. A groupoid (Q;A) is homotopic to a groupoid (Q;B), if
there exist such mappings ., B,y from Q to Q that the equality YA(x,y) = B(ax,By)
is valid for any x,y € Q. Then the triad (o, ,7) is a homotopy from (Q;A) to (Q,B).
If y =ido, then we say that these groupoids are principally homotopic.

Definition 5. A n-ary groupoid (Q;A) is homotopic to a n-ary groupoid
(Q;B), if there exist such mappings 0;,i = 1,...,n, and y from Q to Q that the equality
YA (x]) = B(otx1, ..., 00Xy is valid for any xi,...,x, € Q. If Y = idp, then we say that
these n-ary groupoids are principally homotopic.

Definition 6. A mapping y from Q to Q is called a homotopy of a groupoid
(Q;A), if there exist such mappings o, from Q to Q that the triad (a,f,7)
is a homotopy from (Q;A) to (Q;A).

Definition 7. A mapping ¢ from Q to Q is a quasiendomorphism
of a group (Q;-), if o(x-y) = ¢x-(¢p1)~1- @y for all x,y € Q, where 1 is the identity
of the group (Q;).

Definition 8. Ler (Q;X) be regular division n-ary algebra, and (Q;Q)
be the algebra of all regular division n-ary operations. We will call operations
A,B € X iweak associative, if there exists operations Az j,A2j—1 € Q,j€{1,....n}\{i},
such that following identities hold:

i—1 i+n—1 2n—1\ _ j—1 Jj+n—1 2n—1
A (Xl 7B(xi )?xi+n ) —A2j—1 ()C 7A2j ()CJ 7xj+n

forevery je{1,...n}\{i}.

Definition 9. Ler (Q;X) be n-ary algebra. We will say (Q;X) is
(iA)-algebra, if every operations A,B € ¥. are i weak associative.

Definition 10. Let (Q;X) be regular division n-ary algebra. We will call
operations A,B € ¥ i associative, if there exists operations Azj,Azj_1 € X,
J€{1,....,n}\{i}, such that following identities hold:

i—1 i+n—1\ 2n—1\ _ 4 . j—1 | Jtn—1 2n—1
A(xl 7B(xi )7xi+n )—AZJ—I (x1 A2j (xj X jtn

forevery je{1,...,n}\{i}.
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Definition 11. Let (Q;X) be n-ary algebra. We will say (Q;X) is iA-algebra,
if every operations A,B € ¥ are i associative.

Lemma 1. Ifthe group (Q;-) is principally homotopic to the group (Q;+),
then they are isomorphic and x-y =x+y+1 for all x,y € Q, where |l € Q.

Lemma 2. Any quasiendomorphism ¢ of a group (Q;-) has the form
0 =L,¢', where Lix=a-x, a € Q, and ¢' is an endomorphism of the group (Q;").

Lemma 3. Any homotopy o of a group (Q;-) is a quasiendomorphism
of (Q3°)-

Lemma 4. Let ¢ be a quasiendomoprhism of the binary group (Q;-), then
for everya € Q, ¢1x = ¢x-a and ¢prx = a- ¢x will also be quasiendomorphisms of the
binary group (Q;).

It was proved in [1], that if the binary loop is principally homotopic to the
group, then they are isomorphic. Similarly, we can prove following lemma.

Lemma 5. If n-ary loop is principally homotopic to the n-ary group with
identity element, then they are isomorphic.

Working at the German Cryptographic Center during World War II,
R. Schauffler obtained applications of invertible algebras satisfying second-order
associativity identity in cryptography [2—4], by proving the following theorem:

Theorem 1. (Schauffler) Let Q be not empty set. The following statements
are equivalent:

o for every (Q;X), (Q;Y) quasigroups, there exist (Q;X"), (0;Y') quasigroups,
such that the following ¥Y3(V)-identity holds:

VX,Y3X',Y'Vx,y,2X (Y (x,y),2) = X'(x,Y'(y,2)): (1)

o for every (0;X), (Q;Y) quasigroups, there exist (Q;X"), (0;Y') quasigroups,
such that the following Y3(V)-identity holds:

VX,Y3X',Y'Vx,y,2X (x,Y (,2)) = X' (Y'(x,¥),2); (2)
° ]Q‘ <3.

Schaufler in [5] proved likewise theorems for binary algebras with quasigroup
operations for other V3(V)-identities [6—9].

It was shown in [10] the linearity of n-ary algebras with quasigroup operations
with V3(V)-identities, and by using those results Schaufler proved in [ 1] a similar
theorem for n-ary invertible algebras.

Theorem 2. Let (Q;Q) be the n-ary algebra of all n-ary quasigroup
operations. (Q;Q) will be (iA)-algebra if and only if |Q| < 3.

We will prove similar results for n-ary regular division algebras.
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Main Results. In [1] the following theorem was proved for regular division
binary groupoids.

Theorem 3. Let four operations A,B,C,D be division groupoids on Q and
let either A or C be regular. If these operations satisfy the following associativity

identity
A(x,B(y,2)) = C(D(x,y),2)
forall x,y,z € Q, then:
o there is a group (Q;-) such that all these groupoids are epitopic to (Q;-), and
e there are surjections o, 3,Y,0,A,0,v, 1 : Q < Q such that:
A(x,y) = ox- fx,
BB(x,) = Byx- By,
C(x,y) = Ax- Ox,
AD(x,y) = Avx-Avy.
The group (Q;-) is unique up to isomorphisms.

First of all, we need to prove a similar result for ternary regular division
groupoids.

Theorem 4. Let (Q;Ay,...,Aq) be division regular ternary algebra that
satisfies the following identity of associativity:
Ay (AZ(xaya Z) YU, V) = A3 (va4(ya <, M)’V) =As (xvyaA6(Z> u, V)) 3)

Then there exists binary group (Q;-) such that every A; is epitopic to that group,
moreover:

Ai(x,y,2) = Rix-S3Lsy - LsLez, S3A4(x,y,z) = R1S2x - LsRey - LsSez,
R1A>(x,y,2) = RiRyx - S3R4y - LsRz, As(x,y,z) = RiRox-S3R4y - Lsz,
A3(x,y,2) = RiRox- 83y LsLez, LsAe(x,y,2) = RiLox - S3L4y - LsLez,

where L;,S;i,R; are left, central and right translations of operation A;.

Proof. We can write (3) identity in three separate identities in following way:

Al(Az(x,y,z),u,v) :A3(X7A4(yaz7 I/t),V), (4)
AI(AZ(xvyaZ)vl’t?v) :A5(x,y,A6(z,u,v)), &)
A3(x7A4(yaZ7 M),V) :AS(xvyaA6(Z’uav))' (6)

Let’s fix kK € Q and do the following replacements, y =z =k x =y =k
in identity (4), u = v = k in identity (5) and z = u = k in (6). After the replacements
we will have

A1(Rox,y,z) = A3(x, Lay,2),
A1(Lax,y,z) = LsAg(x,y,2),
R1A3(x,y,z) = As(x,y,Rez)
A3(x,R4y,2) = )

(7

9

AS(xayaLf)Z )
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where Lix = A;(k,k,x), Six = Aij(k,x,k) and Rix = Ai(x,k,k) for every
i= 2,4,6, le = A](Az(k,k,k),k,x), Slx = Al(Az(k,k,k),x,k), R1X = Al(x,k,k),
Lix = As(k,Aq(k,k,k),x), Ssx = As(k,x,k), Rsx = As(x,Aq(k,k,k),k),
L5x = A5 (k,k,x), S5x :As (k,x,Aé(k,k,k)) and R5x = A5 (x,k,A(,(k,k,k)). From this,
we will have that A;,A,,A3,As,Ag operations are epitopic to each other.
From (7) we can obtain the following identities:
Ly = L3 = LsLe; S1 = S3L4 = L5Se; R1Ly = S$354 = LsRe;
RS2 = 83R4 = Ss; RiRy = R3 = Rs.

Let’s fix k € Q and denote

Bl(xay) :Al(x,y,k), C4(X,y) :A4(X?K7y)7
B =Ar(k
2(x,y) 2(k,x,y), Cs(x,y) = As(x,,k),
B3(x7y) :AS(kvxvy)7 o
B =A k
B4(X,y) :Aﬁ(x,y,k), 3()6,)1) 2()(, 7y)>
Bi(x,y) = A1 (x,k,y), By (x,y) = Aa(x,y,k),

for every x,y € Q.
Replacingx=u=kin (4),x=u=kin (5),z=v=kin (6),x=v =k in (4)
and x =v =k in (5), we will have:

A3(x,Ray,2) = B1(B2(x,Y),2), (8)
Bi(B2(x,y),2) = B3(Ba(x,y),2), )
Bi(Ba(x,y),2) = C3(Ca(x,y),2), (10)

S3A4(x,y,2) = B1(B2(x,y),2), (11)
Bi(Ba(x,y),2) = B3(Ba(x,y),2), (12)

where Ry is the right translation of the operation A4.
From identity (12) and Theorem 3 we will have that there exists binary group
(Q;-) such that:
B3(x,y) = Rp,x - Lg,),
Bl (x,y) = Rle’LBly7
RBIBZ(xuy) = RBlRBzx 'RBlLBzy)
where Rp,(x) = B3(x,k), Rp,(x) = Ba(x,k), Rp,(x) = Bi(x,k), Lp,(x) = Bz(k,x),
Lp,(x) = By(k,x), Lp, (x) = B; (k,x) for all x € Q.
From (11) we will have:
S3A4(x,y,2) = Rp,Rp,x-Rp,Lp,y- Lz,
which is the same as
S3A4(x,y,2) = R1Sox - LsRey - LsSez.
From the proof of Theorem 3 and (9), (10) it is easy to notice that By, By, Cs,
C4, By, By, B3, B4 operations will be epitopic to the same group (Q;-), moreover, the
following identities will hold:
Rp,B2(x,y) = Rp,Rp,x- R, Lg,y, Bi(x,y) =Rgx-Lgy,
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where RB1 = Bl(x,k), REZ = Ez(x, k), LEZ = Ez(k,x), REI = El (x, k), L§1 = El (k,x)
for all x € Q.
Observe that Rg, = Rp,:
Rp, (x) = B1(x,k) = A1 (x,k,k) = Ry (x),Rp, (x) = Bi(x,k) = A1 (x, k, k) = Ry (x)
for all x € Q.
From identity (8) we obtain
A3(x,Ray,2) = Rg Ry, x- Ry Lp,y- Lp,z,
from where we will get
A3z(x,R4y,z7) = RiRyx - S3y - LsLgz.

We know that Ay, Ay, As, Ag operations are epitopic to the operation Az, so they
also will be epitopic to the group (Q;-), and from (7) we will have for the operations
Ay, As the following representations:

Ai(x,y,2) = A3(hg,x,Lsy,z) = Rix-S3Ls4y - LsLez,
A5 (x,y, Z) = A3 (x,R4y, hL()Z) = R]sz . S3R4y . sz.
From the representations of A; and As, we can easily obtain the following
representations for the operations A, and Ag:
R1A2 (x,y,z) = A5 (x,y, R6Z) = R1R2X . S3R4Z . L5R6Z,
L5A6(x,y, Z) =A (sz,y, Z) =R1Lyx- S3L4y -LsLez.
O

Using Theorem 3 and Theorem 4, we can prove the identical result for n-ary

regular division groupoids.

Theorem 5. Let (Q;A;), i = 1,...,2n, be regular division n-ary groupoids
satisfying the following identities:
A] (Ag(xl s ...,x,,),x,,+1 y ...,XQn_l) =
Azjfl(xl, ...,Xjfl,Azj(Xj, ...,xj+n,1),xj+n, ...,)C2n71)
forall j=2,....n. Then there exists a (Q;A) n-ary group with identity element such
that every A; is epitopic to that group, moreover

. n
- a( (et} )

1=

. . n
ot =a({gs))

Proof. Let’sfix any j = 2,...,n. By fixing j we will also fix one identity from
(13), and we will call that identity (1, j) associativity identity.

For the proof of the theorem we will need (1,r), (1,2), (1,n—1) and (1,3)
associativity identities:

Ay (A2 (xrll> ,Xi:lil) =A-1 (xrll_] 7A2n (xin_l ) ) ; (14)

(13)

forall j=1,...,n

A](A2<x’;>,x§’gl) :A3<x1,A4(xg“),xﬁ’51 , (15)
Ay (Az (x'f) ,xi'i_ll) =Ax3 (xﬁl_z,Aznfz (xiri_lz) 7x2n71> , (16)
A (A ()2 ) = 4s (00,46 (1412) 22251, (17)
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Set:

(L.d)

A2 ( ) A (k7k k-xlv Xd),

i )
D) = Ag(x1, ceoxa by s ),
At (1) Ay (x1,k, .k x2,,Xa),
AFD () = Ar (a1, o5 K ),

where d =2,....n— 1 and k € Q. If d = n, then we will have:

(Ln) _ 4(Rn) _ (Ln) _ 4(Rm) _
AV =AY = Ay, AV =AY = AL

Substituting x| = ... =X, 2 =Xpp1 = ... =Xy 2 =kin(14), x3 = ... =x, =

Xp+2 = oo = X2p—1 = k, in (]5), Xl = oo = Xp—2 = Xp42 = .. = X2p—1 = k,
in (14) we will obtain:

Agm) (AéL’z) (xnfl ,xn) ,xznq) =G (xnfl ,Cq (xnax2n71) ) ; (18)

A§R72) (AéR’Z) (Xl ,XBig),an) =G (XI,CAIL <X2,Xn+1) ) ; (19)

AFD (AL (5-150) i) = € (50, (50 ) ) (20)

where Cs, C4, Cj, C), C§ and CJ are respectively retracts of Ay,—1, Az, A3, As, Agp—
and Aj,. .

It’s easy to notice that RgL’l) = Rs = Ry for all i = 2,....,n —1,
where Rix = Aj(x,k, ..., k), R&L’l)x = AEL’i) (x,k,...,k) and RER’i)x = AgR’i) (x,k, ..., k).
From the Theorem 3 and (17), (18), (9) identities we will have that there exists a group
(Q;G) such that AEL’Z) ,AER'Z) ,AgL’Z) ,AgR’Z) will be epitopic to that group, moreover:

AL (xy) = G(Rx, .,
RAL (x,y) = G(..),

R.i)

(21)
AF (xy) = G(Rix, ),
RiAS? (x,y) = G(..),

where Rix = Aj(x,k,...,k). By doing the following replacements x4 = ... = x, =
Xpi3 = ...=Xop—1 =kand x; = ... = x,_3 = X1 = ... = Xp,—3 = k, respectively in

(15), (17) and (14), (16), we will obtain
AFIAED (x,y,2),1,v) = A3 (x, 440, 2,10, ), (22)
AP AL (0, y,2),u,v) = A (x,, A (2,1,0)), (23)
A AT (x,y,2),u,v) = A3 (6, Ay, 2, 0),v), (24)
AP AS (x,y,2),1,v) = As (x,3,Ag (2, 1,v))- (25)

By putting x = u = k and z = u = k, respectively in (22) and (24), we obtain
L3) /(L2
oAy (x,y,2) =AY (A5 (x,),2.K),
— R3), 4 (R2
As(x.03.2) = AV (A2 (x,9), k. 2),
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where ¢ and o are surjections. From the proof of Theorem 3, second and fourth
identities of (21) we will have that A} and A3 are epitopic to the same ternary group
with identity element (Q;A), where A(x,y,z) = G(G(x,y),z) and (Q;G) is a binary

group epitopic to operations A(IL’2) ,AgL"z) ,Ang) and AgR’z). From the Theorem 4 we
(L3) 4(L3) 4(R3) (R3)

will have that A" ,A5""" A" and A, " are epitopic to the ternary group (Q;A),
moreover:

AP (x,y) = AR, ) AR (0y) = AR x, ),

L3 R3
RAY (x,y) = A RASY (x,y) = A(),
where Rix = A (x,k,...,k).

Let’s do an induction proposition. Suppose ASL’l),AgL”),AgR’I) and AgR")
(i=23,...,n—1) i-ary operations are epitopic to the same i-ary group with identity
element (Q; G;), where Gj(x1,...,x;) = G(Gi_1(x1,...,xi—1),x;) and (Q;G) is a binary

group epitopic to the operations ASL’Z) ,AgL’z) ,A(IR’Z) and AgR’z , moreover:

A (xy) = G(Ryx,..): AR (x,y) = G(Ryx, ..,
RAY) (x,y) = Gj(..): RIAR) (x,y) = Gy(.),

where Rjx = Aj(x,k,...,k).

First of all, let’s show that Ay, j = 2,...,n — 1, are regular division n-ary
operations that are epitopic to the same (Q;A) n-ary group with identity element,
where A(x]) = G(Gp—1(x1, ..., Xn—1),Xn).

Let’s do the following replacements, x| = ... = X; | =Xqj = ... = X2, 1 =k
in the (1, j) associativity identity. We obtain

Loj-1A2j(x}) = AT (Aémfjﬂ) (x’f*jﬂ) 7XZ*J'+2)

forevery j=2,...,n—1, where Ly;_; is (2j — 1)-th translation of the operation A,;_.

It’s easy to notice that when j =2,...,n— 1, thenn—j+1¢€ {2,...,n—1},
and from induction proposition we will have that operations Ay;,j =2,...,n— 1,
will be epitopic to the same n-ary group with identity element (Q;A), moreover:

n—j+1
A(xrf) = Gj (Gn7j+1 (xl ! ) >XZ—j+2) :
From the induction assumption we have

G[(x’i) = G(G(...(G(xl,xz)X3)))...),xn,l),x,,)

foreveryi=3,....n—1.
Let’s show that operation Aj,_3 also will be epitopic to the same n-ary group
with identity element (Q;A).
By doing the following replacements x,, = ... = xp,—1 = k, in the (1,n—1)
associativity identity, we obtain:
Aon—3(X1,..c; Ron—2Xp—_1,Xn) ZASR’Z) (AéL’”‘” (¥ ,Xn) , (26)

where R;,_» is the right translation of the operation Ay, _».
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From the induction assumption we will have that the operation A,,_3 is epitopic
to the n-ary group with an identity element (Q;A).

Observe that operation Ay,A>,A2,,A2j1,j = 2,...,n, are epitopic to each other.
Since Aj,—3 is one of these operations, all these operations also will be epitopic to the
n-ary group with an identity element (Q;A). We proved the first part of the Theorem
and for the second part it’s enough to show the following identities:

A](x’]l) :A(Rlxl,...); R]Az(xrll) :A()

Set x,+1 = ... = xp,—1 = k in the (1, n) associativity identity and x,, = ... = xp, 2

in the (n — 1,n) associativity identity. We obtain
RiAx(x}) = Aguy (¥}, Lyyxn) 27
A2n—1 (xrll_laLgnxn) - AZn—x (Xl, -"7Lén—2xn1 7xn) ) (28)

where L} , L3, L} , are respectively the first, n-th and first translations of the
operations Ay, Az,—2.
From the induction assumption and identities (26), (27) and (28) it follows that

RiAs () = A(...).

Let’s do the following replacements x; = ... = x,_; = k in the (1,n)
associativity identity, x| = ... = x,—1 = x2,—1 = k in the (1,n — 1) associativity
identity, x; = ... = x,—2 = X, = X2,—2 = k in the (1,n— 1) associativity identity and
X] =...=x,_1 =k in the (n — 1,n) associativity identity. We obtain

Ay () = L3, 1A% (L5 'x1,25) (29)
_ _ 1)
L5 A0 (k") :ASR” (Lsx,28), (30)
Ay (koo ks Ly, x1,00) = AP (L7 30 31)
L3, At (¥)) = Agu_s (ky ok Anna (k1) ) (32)

where L, ,Lg;_13, Z,Lénfl , Lg_l L3, are respectively the n-th, n — 1-th, second,
third, first, second and n-th translations of the operations Ay,_1,A2,-3,A>.
From the induction proposition and (29), (30), (31) and (32) identities we have:

A (x]) =A(Ryxy,...).
U

Theorem 6. Let (Q;X) be a regular division n-ary (iA)-algebra with
n-ary quasigroup operation, then there exists (Q;-) binary group such that every
A € X will be epitopic to that group, moreover:

n
A(X]) = 00Xy - o O X - Qi - O 1 X~ . Oy,

where §; is surjective endomorphism of the group (Q;-) and aj, j = {1,...,n}/{i},
are surjections from Q to itselft.

Proof. Let’s prove for the (1A)-algebra. Let’s fix Ay = A| n-ary quasigroup
operation, then there exists n-ary operations As;_1,A2; € Q,j=2,...,n, such that (13)
identity holds.
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From the Theorem 5 we have that there exists a binary group (Q;-) such that:

A](X’f) = 0X] ...  OpXy,
OClAl(xrf) = ﬁlxl C e -ann
for every xj,...,x, € Q. From this we obtain o (0t x; - ... - QpXy) = Bix1 - ... - BuXn-

This means ¢ is quasiendomorphism of the binary group (Q;-).
Let’s fix operation A; and for every operation A, € ¥ there exist operations
5i 1,45, € Q,j =2,...,n, such that (13) identity holds. From the Theorem 5 we
know that there exists a binary group (Q;-4, ), such that:

2 2
Al(x'f) = 01X "4, Oté ) Ay Otr(l )xn,

2 2
s (¥) = B x1 -4, woeay B
for every x1,...,x, € Q. Which is the same as

2 (2
01 X1 "4, 062( )'Al <Ay O )xn = 0X1 ... Oyxy.

This means that the binary groups (Q;-) and (Q;-4, ) are epitopic and based on
Lemma 1 they will be isomorphic, moreover, x-4, y =x-y-t.
So we will have

Az(x’f) = 061_1 (ﬁl(z)xl Ay e Ay B,Sz)xn> =
al_l (Rtﬁl(Z)xl D 'Rtﬁygi)lxnfl : ﬁn(Z)xn) =NX1" - YXn,

where ¥, = R(afle),]al_lRtﬁi(z),i =1,.,n—1,and y, = Otl_lﬁ,EZ), where R(al’le)*]
and R, are right translations of the binary group (Q;-).

We obtained that for the (1A)-algebra there exists a binary group (Q;-)
such that every operation A € X can be reperesented in the following way:

A(X’ll) = ’)/14)61 taet y,?xn,
where 7,i = 1,...,n, are surjections.
By doing replacements for each operation with its representation in identity
(13), we will get

7/141 (7/142)61 . ...~7’,?ZXn> '7/24'xn+1 : ‘-“%?IXM—] =

Azj1 Azj1 Azj—1 [ Az A Azj1 Azj1
" xl-...-’)/jil xj,l-}/j YioXj e Xjn—1 -’}/j+n Xjtn oo Yop_1X2n—1-

Let’s do the following replacements:

X1 =h ax1,x; =h ax;
1 7'12 1,Aj ij ]

}/142)62 =..= ’}/;\31)6]'_1 = '}/jq_,'z_lx]}] =..= y,?zxn = }/241)6,1_,_1 =..= ')/r?lx2n—1 =e,
where e is the identity of the binary group (Q;-). We obtain
7 (X1 -xj) = px - vxj,

where v and [ are surjections.
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From the Lemma 3 we have that }/f” is the quasiendomorphism of the binary
group (Q;-), and from Lemma 2 we have that there exists (Pf“ endomorphism of the
binary group (Q;-) and element a € Q such that )/flx = q)lA‘x -a. From which we
obtain for every operation A; € ¥ the representation

Al(xﬁ’):}/?‘xl-...-y:‘xn: IA‘- flxz-...-ﬁ,f'xn,

where ﬁfl = La)/;‘z,ﬁ;“ = }/l-‘“,i = 3,...,n, are surjections, and )/141 is a surjective
endomorphism of the binary group (Q;-). O

Theorem 7. Let (Q;X) be a regular division n-ary (iA)-algebra with
n-ary quasigroup operation, then there exists a binary group (Q;-) such that every
A € X will be endo-linear over that group.

Proof. Let’s prove for the (1a)-algebra. Since (Q;X) is also (1a)-algebra,
then from the Theorem 6 we know that there exists binary group (Q;-) such that every
operation A € ¥ can be represented in the following way:

AW = ofxr - Boxa - B,

where A

2,1 =2,...,n, are surjections, and ¢1A is a surjective endomorphism of the
group (Q;).

Let’s fix operation A; as an n-ary quasigroup operation and for every operation
A, € X there exist operations Ay;_1,A2; € X, j = 2,...,n, such that (13) holds.

By doing replacements for each operation by its representation in identity (13),
we will get

Ay Ay A Ay Ay Al A Azjq
¢1 ( 1 xl‘ﬁz x2'~-'Bn Xn 'ﬁz xn+1"-"ﬁn Xon—1 = @ X1:Py 7 X2...
Azj Azj i Azj Azj Azj Azj
B xj-1-B; X B X1 ) By Xjn et Byl g Xon-1-
Substituting
_pA2,. . _ pA _ RA2 _  _pA — RAI _  _pA _
xi=B == X1 fﬁj+1xj+1 = =B % =B X2 = .. =B x2u1 = e,

where e is the identity of the binary group (Q;-), we obtain
A pA A TpRA2%-1 (A2 Tppd
11ﬁj2xj'ﬁ21xn+1:LRBj j < ] /xj.LRBn+’2_an+1),

where Z,F,Z,ﬁ are right and left translations of the binary group (Q;-).
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From Lemma 3 we have that 6 = ¢f“ [3;‘2 is a quasiendomorphism of the binary
group (Q;-). Since A is an n-ary quasigroup operation, (j)fl will be an automorphism
of the binary group (Q;-). This means that /3?2 = (¢1A1)*19 is a composition of two
quasiendomorphisms, hence it will also be a quasiendomorphism. This means that
for every operation A; € ¥ and for every j =2,...,n, ﬁfz is a quasiendomorphism of
the binary group (Q;).

From which we obtain that every operation A € £ will have the following
representation:

A = oy Boxa - By,

where ¢7! is a surjective endomorphism of the binary group (Q;-) and B,i =2, ...,n,
are surjective quasiendomoprhisms of the binary group (Q;-). From the Lemma 2 and
Lemma 4 we will have y,i =2, ...,n, endomorphisms of the binary group (Q;-) and
element #4 € Q such that

A = ofx - yhno - ylix, o1
O

Theorem 8. Let (Q;Q) be (iA)-algebra of all regular division n-ary groupoids,
then |Q| < 3.

Proof. Firstofall, let’s prove that if |Q| > 4, then (Q; Q) can’t be (iA)-algebra.
If |Q| > 4, then there exists a B nonassociative binary loop, which is not isomorphic
to a binary group. Let’s define operation A € Q in the following way:

A(X) = BB(...(B(x1,%2),%3), ...), Xn).

It’s obvious that (Q;A) will be an n-ary loop.

Suppose (Q;Q) is (iA)-algebra, then from the Theorem 7 we have that
there exists an n-ary group with identity element (Q;G) such that every operation
C € Q will be endo-linear over that group. This means that n-ary loop A will
also be endo-linear over that group, and from Lemma 5 we know, they will be
isomoprhic, which contradicts the definition of the operation A.

We have that |Q| < 4. We also know that on a finite set every surjection will
also be bijection, so every regular division n-ary operation will be n-ary quasigroup
operation, so every n-ary operation in Q will be a quasigroup, and from Theorem 2
we obtain |Q| < 3. O

Received 17.02.2023
Reviewed 04.05.2023

Accepted 17.05.2023



LINEARITY OF n-ARY ASSOCIATIVE ALGEBRAS 21

10.

11.

REFERENCES

. Davidov S., KrapeZ A., Movsisyan Yu. Functional Equations with Division and Regular

Operations. Asian-Eur. J. Math. 11 (2018), 1850033.
https://doi.org/10.1142/S179355711850033X

. Schauffler R. Eine Anwendung Zyklischer Permutationen and Ihretheorie. Ph.D. Thesis.

Marburg University (1948).
https://doi.org/10.1142/12796

. Schauffler R. Uber die Bildung von Codewoértern. Arch. Elekt. Ubertragung 10 (1956),

303-314.

. Schauffler R. Die Associativitit im Ganzen. Besonders bei Quasigruppen 67 (1957),

428-435.

. Movsisyan Yu. Hyperidentities: Boolean and De Morgan Structures. World Scientific

(2022), 560.
https://doi.org/10.1142/12796

Movsisyan Yu. Introduction to the Theory of Algebras with Hyperidentities.
Yerevan, YSU Press (1986) (in Russian).

. Movsisyan Yu. Hyperidentities and Hypervarieties in Algebras. Yerevan, YSU Press

(1990) (in Russian).

. Movsisyan Yu. On a Theorem of Schauffler. Math. Notes 53 (1993), 172-179.

https://doi.org/10.1007/BF01208322

Movsisyan Yu. Hyperidentities in Algebras and Varieties. Russ. Math. Surv. 53 (1998),
57-108.
https://doi.org/10.1070/RM1998v053n01ABEHO00009

Ushan Ya. Globally Associative Systems of n-ary Quasigroups (Constructions of
iA-systems. A generalization of the Hossu—Gluskin Theorem). Publ. Inst. Math. 19
(1975), 155-165 (in Russian).

Ushan Ya., Zhizhovich M. n-Ary Analog of Schauffler’s Theorem. Publ. Inst. Math. 19
(1975), 167-172 (in Russian).

2. L. SUCOFE8NAFL3UL

n-S6NULP 2NFAN/IIUEL SULLUNUSPILENP GoUdLNEE-8NFLL

Snnjudnid nhypupyynud &b 7z-ipnuidh ntign jup pudwbnudng gnignpnw-

Jui hwbpwhwyhyutip W gnyg £ ypynud, np 7-iptinuih ntgnyjwnp pwdwinuing
gnignpnuui  hwipwhwoyh jnipupwbsymp gnponnnipinith Juptih £ Ebngn-
qowjinptll Gtipyuywgtty dhubnyb Gpyyptnuih podph dhengny: Wwwgnigynud
L Swndptipyud phyh phnptd wynyhuh hwipwhwohybtiph hwdwn:
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. H. APYTIOHAH

JIMTHEMHOCTDH n-APHBIX ACCOIIMATUBHBIX AJITEBP

B sr0ii craTbe nuzyuatorcs n-apHble peryJsipHble aCCOIMATUBHBIE AJIreOPbhI
¢ nemerneM. [Tokazamo, ITO KayKaast ONMEpaIs B n-apHOl peryspHOil accorna-
TUBHOH aJirebpe ¢ JIeJIEHUEM UMeEeT dHJOJUHEIHOe MPeJICTABICHUE HAJl OIHOMN
u TOi ke OGunapuoi rpynmoii. /lokaswiBaerca Teopema tuna Illaydaepa s
TaKIX ajareop.



