ON CORRECT SOLVABILITY OF DIRICHLET PROBLEM IN A HALF-SPACE FOR REGULAR EQUATIONS WITH NON-HOMOGENEOUS BOUNDARY CONDITIONS

M. A. KHACHATURYAN *

Chair of Mathematics and Mathematical Modeling, RAU, Armenia

In this paper we consider the following Dirichlet problem with non-homogeneous boundary conditions in a multianisotropic Sobolev space $W^{2n}_2(R^2 \times R_+)$

\[
\begin{align*}
P(D_{x_1}, D_{x_3})u &= f(x, x_3), \quad x_3 > 0, \quad x \in R^2, \\
D_{x_3}^s u \big|_{x_3=0} &= \varphi_s(x), \quad s = 0, \ldots, m - 1.
\end{align*}
\]

It is assumed that $P(D_{x_1}, D_{x_3})$ is a multianisotropic regular operator of a special form with a characteristic polyhedron M. We prove unique solvability of the problem in the space $W^{2n}_2(R^2 \times R_+)$, assuming additionally, that $f(x, x_3)$ belongs to $L_2(R^2 \times R^+)$ and has a compact support, boundary functions φ_s belong to special Sobolev spaces of fractional order and have compact supports.

https://doi.org/10.46991/PYSU:A/2023.57.2.044

MSC2020: 32Q40.

Keywords: regular operator, characteristic polyhedron, multianisotropic Sobolev space.

Introduction. In paper [1] a similar problem is considered with homogeneous boundary conditions in the multianisotropic Sobolev space $W^{2n}_p(R^{n-1} \times R_+)$, where for a given completely regular polyhedron Ω, with principal vertices $\alpha^k \in Z_+^n$, $k = 0, 1, \ldots, M$, the space $W^{2n}_2(R^{n-1} \times R_+)$ is defined as follows [2]:

\[
W^{2n}_2(R^{n-1} \times R_+) = \{ f : f \in L_2(R^{n-1} \times R_+) \text{ and } D^{\alpha^k} f \in L_2(R^{n-1} \times R_+) \forall k = 0, \ldots, M \},
\]

with a norm

\[
\|f\|_{W^{2n}_2(R^{n-1} \times R_+)} = \|f\|_{L_2(R^{n-1} \times R_+)} + \sum_{k=0}^M \|D^{\alpha^k} f\|_{L_2(R^{n-1} \times R_+)}. \]

* E-mail: khmikayel@gmail.com
Using a special integral representation, containing all generalized derivatives of a function, corresponding to the vertices of the polyhedron \(\Omega \) (see [3–9]), in [1] an approximate solution for the problem with homogeneous boundary conditions was constructed and conditions for its unique solvability were obtained. In this paper, using the results from [10] related to the traces of functions from the multianisotropic Sobolev spaces, we obtain conditions, under which the problem with inhomogeneous boundary conditions is uniquely solvable in the space \(W^{\alpha}_{2}(R^2 \times R_+) \).

Basic Definitions and Notations. We denote by \(R_+ \) and \(Z_+ \) the set of non-negative real and integer numbers respectively. \(R^n \) is the \(n \)-dimensional real Euclidean space of points \(x = (x_1, x_2, \ldots, x_n) \) \((\xi = (\xi_1, \ldots, \xi_n)) \), \(Z^n_+ \) is the set of \(n \)-dimensional multi-indices \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \), \(\alpha_j \in Z_+ \), \(j = 1, 2, \ldots, n \).

For \(x, \xi \in R^n \), \(t \in Z_+ \) and \(\alpha \in Z^n_+ \) denote \(|\alpha| := \alpha_1 + \cdots + \alpha_n \), \(x^\xi = \sum_{k=1}^n x_k \xi_k \), \(\xi^\alpha := (\xi_1^\alpha_1, \xi_2^\alpha_2, \ldots, \xi_n^\alpha_n) \), \(\xi^\alpha \) is the \(n \)-dimensional non-coordinate face with \(\alpha \in Z^n_+ \) and \(\alpha_1 \geq 0 \), \(\alpha_2 \geq 0 \), \(\ldots \), \(\alpha_n \geq 0 \). For \(\xi \in R^n \), \(\alpha \in Z^n_+ \) and \(t \in Z_+ \), denote \(D^\alpha \cdot |\alpha| \xi^\alpha \) is the \(n \)-dimensional multi-index with \(\alpha \in Z^n_+ \) and \(\alpha_1 \geq 0 \), \(\alpha_2 \geq 0 \), \(\ldots \), \(\alpha_n \geq 0 \). For a given differential operator \(P(D) = \sum \gamma_\alpha D^\alpha \), denote \(P := \{ \alpha \in Z^n_+, \gamma_\alpha \neq 0 \} \). Polyhedron \(\Omega = \Omega(A) \) is called the characteristic polyhedron of the operator \(P(D) \). An operator \(P(D) \) is said to be regular, if for some constant \(C > 0 \)

\[
|P(\xi)| \geq C \sum_{\alpha \in P(D)} |\xi^\alpha|, \forall \xi \in R^n.
\]

In paper [10] two dimensional Sobolev spaces of fractional order are considered. Let \(\Omega \subset R^2 \) be a completely regular polyhedron, \(q > 0 \) be an arbitrary rational number, \(K_{q;\Omega}(\xi) := 1 + \sum_{k=0}^M (\xi^2)^{q} \alpha^k \). Through \(W^{q;\Omega}_{2}(R^2) \) we denote the Sobolev space of fractional order, defined by

\[
W^{q;\Omega}_{2}(R^2) := \{ u : u \in L_2(R^2) & \sqrt{K_{q;\Omega}(\xi)} F[u](\xi) \in L_2(R^2) \}\]

with a norm

\[
||u||_{W^{q;\Omega}_{2}(R^2)} = \left(\int_{R^2} K_{q;\Omega}(\xi) |F[u](\xi)|^2 d\xi \right)^{\frac{1}{2}},
\]

where \(F[u] \) is the Fourier transform of function \(u \).
Let $\mathfrak{M} \subset \mathbb{R}^2$ be a two-dimensional completely regular polyhedron with principal vertices $\alpha^0 := (l_1, 0), \alpha^1, \ldots, \alpha^M := (0, l_2)$, enumerated counterclockwise. Denote by μ^t the outward normal to the side of the polyhedron, passing through the vertices $\alpha^{t-1}, \alpha^t (i = 1, \ldots, M)$, normalized in such a way, that the line, passing through this side of the polyhedron, is described by the equation $(\mu^t, t) = 1, t \in \mathbb{R}^2$.

Statement of the Main Results. Consider the following boundary value problem in a half-space:

\[
\begin{align*}
 P(D_x, D_{x_3})u &= f(x, x_3), \quad x_3 > 0, \quad x \in \mathbb{R}^2, \\
 D_{x_3}u \big|_{x_3=0} &= \phi_i(x), \quad s = 0, \ldots, m - 1.
\end{align*}
\]

(1)

Let us define the conditions imposed on the operator $P(D_x, D_{x_3})$.

1) Differential operator $P(D_x, D_{x_3})$ has the form

\[P(D_x, D_{x_3}) = D^{2m}_{x_3} + \sum_{i=0}^{M} a_i D^m_{\alpha^i} := D^{2m}_{x_3} + P_0(D_x)\]

with constant real coefficients $a_i \neq 0 (i = 0, \ldots, M), m \in \mathbb{N}, \alpha^i \in \mathbb{Z}_+^2 (i = 0, \ldots, M)$.

2) The characteristic polyhedron \mathfrak{N} of the operator $P(D_x, D_{x_3})$ is completely regular.

3) The operator $P(D_x, D_{x_3})$ is regular.

Denote

\[\mu^0 := \left(\frac{1}{l_1}, \frac{1}{l_2} \right), \quad \chi := \frac{1}{2} \left(|\mu^0| + \frac{1}{2m} \right),\]

\[q(s) := 1 - \frac{s}{2m} - \frac{1}{4m}, \quad s = 0, \ldots, m - 1.\]

Theorem 1. Let the operator $P(D_x, D_{x_3})$ satisfy conditions 1)–3). If $f \in L_2(\mathbb{R}^2 \times R_+)$ has a compact support, $\phi_i \in W_2^{(s)2m}(\mathbb{R}^2)$ and has a compact support $(s = 0, \ldots, m - 1)$, then for $\chi > 1$ problem (1) has a unique solution U from the class $W_2^{2m}(\mathbb{R}^2 \times R_+)$, and with some constant $C > 0$ (depending only on $\text{supp}(f)$, $\text{supp}(\phi_i)$) it holds the inequality

\[\|U\|_{W_2^{2m}(\mathbb{R}^2 \times R_+)} \leq C \left(\|f\|_{L_2(\mathbb{R}^2 \times R_+)} + \sum_{s=0}^{m-1} \|\phi_i\|_{W_2^{(s)2m}(\mathbb{R}^2)} \right).\]

(2)

When $\chi \leq 1$ the following theorem holds.

Theorem 2. Let $\chi \leq 1$ and the conditions of Theorem 1 hold. If the function f satisfies the orthogonality conditions

\[\int_{\mathbb{R}^2} x^a f(x, x_3)dx = 0\]

for $|s| = 0, 1, \ldots, L - 1$, where L is a natural number determined from the inequality

\[\chi + L \min_{i=1,2} \mu^0_i > 1 \geq \chi + (L - 1) \min_{i=1,2} \mu^0_i ,\]

then problem (1) has a unique solution from the class $W_2^{2m}(\mathbb{R}^2 \times R_+)$ for which inequality (2) holds.
Remark. Conditions, put on variable χ in Theorems 1, 2, as well as the orthogonality condition on function f in Theorem 2 is not explicitly used in this paper, rather they are used in [1] in order to prove the unique solvability of problem with homogeneous boundary conditions and to obtain the estimate of Sobolev norm of solution U by L_2 norm of f.

Proof of the Main Results. Let the above notations hold.

Lemma. For any given collection of functions $\varphi_k \in W^{m_k,n_k}_2(R^2)$, $s = 0, 1, \ldots, m-1$, having a compact support, there exists a function $F \in W^{2n}_2(R^3)$ with a compact support, which satisfies the following properties.

\[\| F \|_{W^{2n}_2(R^3)} \leq C \sum_{s=0}^{m-1} \| \varphi_s \|_{W^{2n}_2(R^3)}, \]

where $C > 0$ is a constant, depending only on $\text{supp}(\varphi_s)$.

Proof. It follows from Theorem 3.3 in [10], that there exists a function $F_0 \in W^{2n}_2(R^3)$ (not necessarily with a compact support), which satisfies (3) and (4) with some constant $C_0 > 0$, independent from φ_s. Let Ω be any open, bounded set which contains $\bigcup_{s=0}^{m-1} \text{supp}(\varphi_s)$, and let $g \in C^\infty_0(R^3)$ be a function with compact support, such that $g \equiv 1$ on $\Omega \times (-1, 1)$. Let’s prove that $F := F_0 \cdot g$, which also belongs to $W^{2n}_2(R^3)$ and has a compact support, satisfies (3) and (4). Indeed,

\[D_{x_3}^s F \big|_{x_3=0} = \sum_{i=0}^s \varphi_i \cdot D_{x_3}^{s-i} g \big|_{x_3=0} = \varphi_s. \]

As for the estimate of the norm, we have

\[\| F_0 \cdot g \|_{W^{2n}_2(R^3)} \leq C_1 \| F_0 \|_{W^{2n}_2(R^3)} \leq C_1 \cdot C_0 \sum_{s=0}^{m-1} \| \varphi_s \|_{W^{2n}_2(R^3)}, \]

so F satisfies (4) with constant $C = C_0 \times C_1$, depending only on $\text{supp}(\varphi_s)$.

Lemma 1 is proved. \(
\)

Proof of Theorems 1, 2. Denote $\mathcal{F} := f - P(D_{x}, D_{x_2})F$, where $F \in W^{2n}_2(R^3)$ and $D_{x}^s F \big|_{x_3=0} = \varphi_s$ (see Lemma 1). Consider the following problem with the homogeneous boundary conditions

\[
\begin{cases}
 P(D_{x}, D_{x_2})u = \mathcal{F}(x, x_3), & x_3 > 0, \ x \in R^2, \\
 D_{x_3}^s u \big|_{x_3=0} = 0, & s = 0, \ldots, m-1.
\end{cases}
\]

According to Theorems 1.1 and 1.2 of [1] problem (5) has a solution $U \in W^{2n}_2(R^2 \times R_+)$, for which the following relations hold:

\[D_{x_3}^s U \big|_{x_3=0} = 0, \ s = 0, 1, \ldots, m-1, \]

\[\| U \|_{W^{2n}_2(R^2 \times R_+)} \leq C_0 \| \mathcal{F} \|_{L_2(R^3)} , \]
where $C_0 > 0$ is a constant depending on $\text{supp}(\overline{f})$. Let us prove that the function $U := \overline{U} + F$ is a solution to problem (1) satisfying (2). Indeed,

$$
P(D_x, D_{x_3})U = P(D_x, D_{x_3})(\overline{U} + F) =
$$

$$
f - P(D_x, D_{x_3})F + P(D_x, D_{x_3})F = f,$$

$$
D_{x_3}^{s}U|_{x_3=0} = D_{x_3}^{s}\overline{U}|_{x_3=0} + D_{x_3}^{s}F|_{x_3=0} = \phi_s, \ s = 0, 1, \ldots, m - 1.
$$

Let us show that U satisfies the inequality (2).

$$
\|U\|_{\mathcal{W}_2^m(\mathbb{R}^3)} \leq \|\overline{U}\|_{\mathcal{W}_2^m(\mathbb{R}^3)} + \|F\|_{\mathcal{W}_2^m(\mathbb{R}^3)} \leq C_0 \|f - P(D_x, D_{x_3})F\|_{L_2(\mathbb{R}^2 \times \mathbb{R}_+)} + \|F\|_{\mathcal{W}_2^m(\mathbb{R}^3)}.
$$

Since with some constant $C_1 > 0$ the inequality

$$
\|P(D_x, D_{x_3})F\|_{L_2(\mathbb{R}^3)} \leq C_1 \cdot \|F\|_{\mathcal{W}_2^m(\mathbb{R}^3)}
$$

holds, taking into account Lemma 1, we have

$$
\|U\|_{\mathcal{W}_2^m(\mathbb{R}^3)} \leq C_2 \left(\|f\|_{L_2(\mathbb{R}^2 \times \mathbb{R}_+)} + \sum_{i=0}^{m-1} \|\phi_i\|_{\mathcal{W}_2^m(\mathbb{R}^3)} \right).
$$

The uniqueness of the solution is proved in the same way as in Theorems 1.1, 1.2 in [1].

Theorems 1, 2 are proved. \qed

Author expresses his deepest gratitude to the journal reviewer for the meticulous work he has dedicated to reviewing and providing feedback on the article. His expertise, attention to detail, and insightful comments have greatly contributed to improving the quality and clarity of research.

Received 16.05.2023
Reviewed 01.06.2023
Accepted 16.06.2023

REFERENCES

НОРМАЛЬНАЯ РАЗРЕШИМОСТЬ ЗАДАЧИ ДИРИХЛЕ С НЕОДНОРОДНЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ В ПОЛУПРОСТРАНСТВЕ ДЛЯ РЕГУЛЯРНЫХ УРАВНЕНИЙ

В работе рассматривается следующая задача Дирихле с неоднородными граничными условиями в мультианизотропном пространстве Соболева $W_2^{mp}(R^2 \times R_+)$:

\[
\begin{cases}
P(D_{x},D_{x_3})u = f(x,x_3), & x_3 > 0, \ x \in R^2, \\
D_{x_3}^s u|_{x_3=0} = \phi_s(x), & s = 0,\ldots,m-1.
\end{cases}
\]

Предполагается, что $P(D_x,D_{x_3})$— мультианизотропный регулярный оператор специального вида с характеристикм многогранником \mathfrak{M}.

Предполагая дополнительно, что $f(x,x_3)$ — функция из $L_2(R^2 \times R_+)$ с компактным носителем, граничные функции ϕ_s принадлежат специальным пространствам Соболева дробного порядка и имеют компактные носители, доказана однозначная разрешимость задачи в пространстве $W_2^{mp}(R^2 \times R_+)$.