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M a t h e m a t i c s

ON CORRECT SOLVABILITY OF DIRICHLET PROBLEM
IN A HALF-SPACE FOR REGULAR EQUATIONS WITH

NON-HOMOGENEOUS BOUNDARY CONDITIONS

M. A. KHACHATURYAN ∗

Chair of Mathematics and Mathematical Modeling, RAU, Armenia

In this paper we consider the following Dirichlet problem with non-
homogeneous boundary conditions in a multianisotropic Sobolev space
WM

2 (R2×R+){
P(Dx,Dx3)u = f (x,x3), x3 > 0, x ∈ R2,

Ds
x3

u
∣∣
x3=0 = ϕs(x), s = 0, . . . ,m−1.

It is assumed that P(Dx,Dx3) is a multianisotopic regular operator of a special
form with a characteristic polyhedron M. We prove unique solvability of the
problem in the space WM

2 (R2×R+), assuming additionally, that f (x,x3) belongs
to L2(R2×R+) and has a compact support, boundary functions ϕs belong to
special Sobolev spaces of fractional order and have compact supports.
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Introduction. In paper [1] a similar problem is considered with homoge-
neous boundary conditions in the multianisotropic Sobolev space WM

p (Rn−1×R+),
where for a given completely regular polyhedron N, with principal vertices αk ∈ Z+

n ,
k = 0,1, . . . ,M, the space WN

2 (Rn−1×R+) is defined as follows [2]:

WN
2 (Rn−1×R+) =

{ f : f ∈ L2(Rn−1×R+)&Dαk
f ∈ L2(Rn−1×R+) ∀k = 0, . . . ,M},

with a norm

‖ f‖WN
2 (Rn−1×R+)

= ‖ f‖L2(Rn−1×R+)+
M

∑
k=0
‖Dαk

f‖L2(Rn−1×R+).
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Using a special integral representation, containing all generalized derivatives of
a function, corresponding to the vertices of the polyhedron M (see [3–9]), in [1] an
approximate solution for the problem with homogeneous boundary conditions was
constructed and conditions for its unique solvability were obtained. In this paper,
using the results from [10] related to the traces of functions from the multianisotropic
Sobolev spaces, we obtain conditions, under which the problem with inhomogeneous
boundary conditions is uniquely solvable in the space WM

2 (R2×R+).
Basic Definitions and Notations. We denote by R+ and Z+ the set of

non-negative real and integer numbers respectively. Rn is the n-dimensional real
Euclidean space of points x = (x1,x2, . . . ,xn) (ξ = (ξ1, . . . ,ξn)), Zn

+ is the set of
n-dimensional multi-indices α = (α1,α2, . . . ,αn), α j ∈ Z+, j = 1,2, . . . ,n.

For x,ξ ∈ Rn, t ∈ Z+ and α ∈ Zn
+ denote |α| := α1 + · · ·+ αn, xξ =

n

∑
k=1

xkξk,

ξ t :=(ξ t
1,ξ

t
2, . . . ,ξ

t
n), ξ α := ξ

α1
1 ξ

α2
2 · · ·ξ αn

n , Dα :=Dα1
x1

Dα2
x2
· · ·Dαn

xn
, where Dx j = i−1 ∂

∂x j

(i2 =−1) is the generalized differentiation operator according to S.L. Sobolev.
For a given set of multi-indexes A ⊂ Zn

+ denote by N = N(A) the smallest
convex polyhedron, containing all points in A. Polyhedron N is called completely
regular, if it has a vertex at the origin, a vertex on each coordinate axis, different from
the origin, and the outer normals of all (n−1)-dimensional non-coordinate faces have
positive coordinates. A vertex of a completely regular polyhedron, different from the
origin is called a principal vertex. The set of all principal vertices is denoted by ∂ ′N.

For a given differential operator P(D) = ∑γαDα , denote (P) := {α ∈ Zn
+,

γα 6= 0}. Polyhedron N=N({0}
⋃
(P)) is called the characteristic polyhedron of the

operator P(D). An operator P(D) is said to be regular, if for some constant C > 0

|P(ξ )| ≥C ∑
α∈∂ ′N

|ξ α |, ∀ξ ∈ Rn.

In paper [10] two dimensional Sobolev spaces of fractional order are consid-
ered. Let N⊂ R2 be a completely regular polyhedron, q > 0 be an arbitrary rational

number, Kq,N(ξ ) := 1+
M

∑
k=0

(ξ 2)qαk
. Through W qN

2 (R2) we denote the Sobolev space

of fractional order, defined by

W qN
2 (R2) := {u : u ∈ L2(R2)&

√
Kq,N(ξ )F [u](ξ ) ∈ L2(R2)}

with a norm

‖u‖W qN
2 (R2)

=

∫
R2

KN(ξ )|F [u](ξ )|2dξ

 1
2

,

where F [u] is the Fourier transform of function u.
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Let N⊂ R2 be a two-dimensional completely regular polyhedron with principal
vertices α0 := (l1,0),α1, . . . ,αM := (0, l2), enumerated counterclockwise. Denote by
µ i the outward normal to the side of the polyhedron, passing through the vertices
α i−1,α i (i = 1, . . . ,M ), normalized in such a way, that the line, passing through this
side of the polyhedron, is described by the equation (µ i, t) = 1, t ∈ R2.

Statement of the Main Results. Consider the following boundary value
problem in a half-space:{

P(Dx,Dx3)u = f (x,x3), x3 > 0, x ∈ R2,

Ds
x3

u
∣∣
x3=0 = ϕs(x), s = 0, . . . ,m−1.

(1)

Let us define the conditions imposed on the operator P(Dx,Dx3).
1) Differential operator P(Dx,Dx3) has the form

P(Dx,Dx3) = D2m
x3

+
M

∑
i=0

aiDα i

x := D2m
x3

+P0(Dx)

with constant real coefficients ai 6= 0 (i = 0, . . . ,M), m ∈ N, α i ∈ Z2
+ (i = 0, . . . ,M).

2) The characteristic polyhedron M of the operator P(Dx,Dx3) is completely
regular.

3) The operator P(Dx,Dx3) is regular.
Denote

µ
0 :=

(
1
l1
,

1
l2

)
, χ :=

1
2

(
|µ0|+ 1

2m

)
,

q(s) := 1− s
2m
− 1

4m
, s = 0, . . . ,m−1.

T h e o r e m 1. Let the operator P(Dx,Dx3) satisfy conditions 1)–3).
If f ∈ L2(R2× R+) has a compact support, ϕs ∈W q(s)N

2 (R2) and has a compact
support (s = 0, . . . ,m−1), then for χ > 1 problem (1) has a unique solution U from
the class WM

2 (R2×R+), and with some constant C > 0 (depending only on supp( f ),
supp(ϕs)) it holds the inequality

‖U‖WM
2 (R2×R+)

≤C

(
‖ f‖L2(R2×R+)+

m−1

∑
s=0
‖ϕs‖W q(s)N

2 (R2)

)
. (2)

When χ ≤ 1 the following theorem holds.

T h e o r e m 2. Let χ ≤ 1 and the conditions of Theorem 1 hold. If the function
f satisfies the orthogonality conditions∫

R2

xα f (x,x3)dx = 0

for |s|= 0,1, . . . ,L−1, where L is a natural number determined from the inequality

χ +L min
i=1,2

µ
0
i > 1≥ χ +(L−1)min

i=1,2
µ

0
i ,

then problem (1) has a unique solution from the class WM
2 (R2 × R+) for which

inequality (2) holds.
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R e m a r k. Conditions, put on variable χ in Theorems 1, 2, as well as the
orthogonality condition on function f in Theorem 2 is not explicitly used in this paper,
rather they are used in [1] in order to prove the unique solvability of problem with
homogeneous boundary conditions and to obtain the estimate of Sobolev norm of
solution U by L2 norm of f .

Proof of the Main Results. Let the above notations hold.

L e m m a. For any given collection of functions ϕs ∈ W q(s)N
2 (R2),

s = 0,1, . . . ,m− 1, having a compact support, there exists a function F ∈WM
2 (R3)

with a compact support, which satisfies the following properties.

Ds
x3

F
∣∣
x3=0 = ϕs, ∀s = 0,1, . . . ,m−1, (3)

‖F‖WM
2 (R3) ≤C

m−1

∑
s=0
‖ϕs‖W q(s)N0

2 (R2)
, (4)

where C > 0 is a constant, depending only on supp(ϕs).

P ro o f. It follows from Theorem 3.3 in [10], that there exists a function
F0 ∈WM

2 (R3)(not necessarily with a compact support), which satisfies (3) and (4)
with some constant C0 > 0, independent from ϕs. Let Ω be any open, bounded set

which contains
m−1⋃
s=0

supp(ϕs), and let g ∈C∞
0 (R

3) be a function with compact support,

such that g ≡ 1 on Ω× (−1,1). Let’s prove that F := F0 · g, which also belongs to
WM

2 (R3) and has a compact support, satisfies (3) and (4). Indeed,

Ds
x3

F
∣∣
x3=0 =

Ds
x3
(F0 ·g)

∣∣
x3=0 =

s

∑
i=0

ϕi ·Ds−i
x3

g
∣∣
x3=0 = ϕs.

As for the estimate of the norm, we have

‖F0 ·g‖WM
2 (R3) ≤C1‖F0‖WM

2 (R3) ≤C1 ·C0

m−1

∑
s=0
‖ϕs‖W q(s)N0

2 (R2)
,

so F satisfies (4) with constant C =C0×C1, depending only on supp(ϕs).
Lemma 1 is proved.
Proof of Theorems 1, 2. Denote f := f −P(Dx,Dx3)F , where F ∈WM

2 (R3)
and Ds

x3
F
∣∣
x3=0 = ϕs (see Lemma 1). Consider the following problem with the

homogeneous boundary conditions{
P(Dx,Dx3)u = f (x,x3), x3 > 0, x ∈ R2,

Ds
x3

u
∣∣
x3=0 = 0, s = 0, . . . ,m−1.

(5)

According to Theorems 1.1 and 1.2 of [1] problem (5) has a solution
U ∈WM

2 (R2×R+), for which the following relations hold:

Ds
x3

U
∣∣
x3=0 = 0, s = 0,1, . . . ,m−1,

‖U‖WM
2 (R2×R+)

≤C0‖ f‖L2(R+
3 )
,
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where C0 > 0 is a constant depending on supp( f ). Let us prove that the function
U :=U +F is a solution to problem (1) satisfying (2). Indeed.

P(Dx,Dx3)U = P(Dx,Dx3)(U +F) =

f −P(Dx,Dx3)F +P(Dx,Dx3)F = f ,

Ds
x3

U
∣∣
x3=0 = Ds

x3
U
∣∣
x3=0 +Ds

x3
F
∣∣
x3=0 = ϕs, s = 0,1, . . . ,m−1.

Let us show that U satisfies the inequality (2).

‖U‖WM
2 (R2×R+)

≤ ‖U‖WM
2 (R2×R+)

+‖F‖WM
2 (R2×R+)

≤

C0‖ f −P(Dx,Dx3)F‖L2(R2×R+)+‖F‖WM
2 (R3).

Since with some constant C1 > 0 the inequality

‖P(Dx,Dx3)F‖L2(R3) ≤C1 · ‖F‖WM
2 (R3)

holds, taking into account Lemma 1, we have

‖U‖WM
2 (R3

+)
≤C2

(
‖ f‖L2(R2×R+)+

m−1

∑
s=0
‖ϕs‖W q(s)M

2 (R3)

)
.

The uniqueness of the solution is proved in the same way as in Theorems 1.1,
1.2 in [1].

Theorems 1, 2 are proved. �
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M. A. XA�ATOWRYAN

ANHAMASE� EZRAYIN PAYMANNEROV DIRIXLEYI XNDRI

NORMAL LOW
ELIOW�YOWN� KISATARA
OW�YOWNOWM

�EGOWLYAR HAVASARMAN HAMAR

A�xatanqowm owsowmnasirvowm � het yal Dirixleyi xndir�` anhamase�

ezrayin paymannerov, WM
2 (R2×R+) Sobol yan tara�ow�yownowm{

P(Dx,Dx3)u = f (x,x3), x3 > 0, x ∈ R2,

Ds
x3

u
∣∣
x3=0 = ϕs(x), s = 0, . . . ,m−1 :

En�adrvowm �, or P(Dx,Dx3)-� hatowk tesqi �egowlyar mowltianizotrop
�perator � M bnow�agri� bazmanistov:

Havelyal en�adrelov, or f (x,x3)-� L2(R2 × R+)-ic kompakt kri�ov

fownkcia �, ϕs ezrayin fownkcianer� patkanowm en hatowk kotorakayin

kargi Sobol yan tara�ow�yownneri  ownen kompakt kri�ner, apacowcva�

� xndri ezaki low�eliow�yown� WM
2 (R2×R+) dasowm:
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М. А. ХАЧАТУРЯН

НОРМАЛЬНАЯ РАЗРЕШИМОСТЬ ЗАДАЧИ ДИРИХЛЕ
С НЕОДНОРОДНЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

В ПОЛУПРОСТРАНСТВЕ ДЛЯ РЕГУЛЯРНЫХ УРАВНЕНИЙ

В работе рассматривается следующая задача Дирихле с неоднород-
ными граничными условиями в мультианизотропном пространстве
Соболева WM

2 (R2×R+):{
P(Dx,Dx3)u = f (x,x3), x3 > 0, x ∈ R2,

Ds
x3

u
∣∣
x3=0 = ϕs(x), s = 0, . . . ,m−1.

Предполагается, что P(Dx,Dx3)– мультианизоторпный регулярный
оператор специального вида с характеристическим многогранником M.

Предполагая дополнительно, что f (x,x3) – функция из L2(R2×R+) с
компактным носителем, граничные функции ϕs принадлежат специальным
пространствам Соболева дробного порядка и имеют компактные носители,
доказана однозначная разрешимость задачи в пространстве WM

2 (R2×R+).


