
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2023, 57(3), p. 69–78

M a t h e m a t i c s

THE SOLVABILITY OF AN INFINITE SYSTEM OF NONLINEAR
ALGEBRAIC EQUATIONS WITH TOEPLITZ MATRIX

Kh. A. KHACHATRYAN 1∗ , V. G. DILANYAN 2∗∗

1 Chair of Theory of Functions and Differential Equations, YSU, Armenia
2 Chair of Algebra and Geometry, YSU, Armenia

The work is focused on studying of the existence, uniqueness, and various
qualitative properties of the constructive solution of an infinite system of
algebraic equations with a concave nonlinearity property, which are gener-
ated by Toeplitz matrices. In addition to its independent mathematical interest,
such systems have a significant application in several branches of mathemat-
ical physics and mathematical biology. Those particularly appear in discrete
problems within radiative transfer theory, kinetic theory of gases, dynamic the-
ory of p-adic strings, and the mathematical theory of epidemic propagation.
We establish the existence of a positive solution for the system in the class of
bounded sequences, as well as provide an iterative method to approximate to
the solution. We also study the asymptotic behavior of the solution at infinity
and the uniqueness of the nontrivial solution with non-negative elements in the
class of bounded sequences. The last section of the paper provides examples of
applications of the corresponding Toeplitz matrix and the function that describes
the nonlinearity.
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Introduction. The work is focused on the following infinite system of nonlinear
algebraic equations:

xi =
∞

∑
j=0

ai− jG(x j), i = 0,1,2, . . . , (1)

with respect to an infinite vector x = (x0, x1, . . . , xn, . . .)
T ∈ m with non-negative

coordinates, where T is the transposition sign and m is the class of bounded sequences.
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It is assumed that the elements of Toeplitz matrix A = (ai− j)
∞
i, j=0 satisfy the

following conditions:

1) am > 0, ∀m ∈ Z= {0,±1,±2, . . .},
∞

∑
m=−∞

am = 1;

2)
∞

∑
m=−∞

|m|am <+∞.

The function G, which describes the nonlinearity, satisfies the following
properties:

a) G ∈C(R+), and G is monotonically increasing on R+ = [0,+∞);

b) G(0) = 0, and there exists η > 0 such that G(η) = η ;

c) y = G(u) is strictly concave on R+;

d) there exists ϕ : [0, 1]→ [0, 1] continuous, monotonous, concave function
such that ϕ(0) = 0, ϕ(1) = 1 and G(σu)≥ ϕ(σ)G(u) for anyσ ∈ [0, 1],u ∈ [0, η ].

Beyond its theoretical interest, the study of system (1) is crucial in deter-
mining the solvability of various discrete model problems in physics and biology.
In particular, certain equations like (1) are used in the radiative transfer theory in
an inhomogeneous mediums, kinetic theory of gases (within the framework of the
model of Bhatnagar–Gross–Kruk), in the mathematical theory of epidemic distribution
(within modified discrete models of Diekmann–Kaper and Atkinson–Reuter) and
dynamic theory of p-adic strings (see [1–5]).

It is noteworthy that when G(u) = u, the system (1) turns into
Wiener–Hopf type discrete equations, a subject that is extensively studied in nu-
merous works (see for instance [6–9]). In the case when G(u) = uα , 0 < α < 1, and

ν(A) =
∞

∑
m=−∞

mam < 0, the system (1) has been considered in [10]. It was proved

that a non-negative solution exists for system (1) in the class of bounded sequences.
Later, that result was generalized in the case when G(u) satisfies a)–c) and ν(A)< 0
(see [11]). Note that papers [10] and [11] did not consider the uniqueness problem
and the provided proofs of existence theorems are not constructive.

In this work, under conditions 1)–2) and a)–d), it becomes possible to es-
tablish the existence of a non-negative solution of (1) in the class of bounded se-
quences. Besides, it provides a successive approximations converging to the so-
lution with a geometric progression rate. Additionally, the work establishes the

convergence of the positive series
∞

∑
n=0

(G(xn)− xn). Utilizing this fact alongside

Jensen’s inequality and some a’priori estimates for concave functions, we successfully
demonstrate the uniqueness of the solution for system (1) within the class of non-
trivial bounded sequences with non-negative elements when a−n = an, n = 1,2, . . .
At the end of this paper, examples of matrix A and nonlinearity G are provided.
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The Existence of the Nontrivial Solution. In this section, we are going to
prove the existence of a solution of the system (1) under conditions 1) and a)–d).

T h e o r e m 1. Under conditions 1) and a)–d), infinite system (1) of
nonlinear equations has a positive solution x∗ = (x∗0, x∗1, . . . , x∗n, . . .) in the class
m, moreover, there exists lim

i→∞
x∗i = η .

Additionally, successive approximationsx∗
(k+1)

i =
∞

∑
j=0

ai− jG(x∗
(k)

j ),

x∗
(0)

i = η ,

i = 0,1,2 . . . , k = 0,1,2, . . . , (2)

provided for system (1) converge to the system solution in a geometric progression
rate.

P ro o f. Consider the successive approximations (2). It is easy to verify by
induction that for any i = 0,1,2, . . .

x∗
(k)

i is decreasing with respect to k (3)

and
x∗

(k)

i > 0, k = 0,1,2, . . . (4)

Denote σ0 :=
0

∑
s=−∞

as. Condition 1) immediately implies that σ0 ∈ (0, 1).

From (2)–(4) we get the following simple inequality σ0x∗
(0)

i ≤ x∗
(1)

i ≤ x∗
(0)

i ,
i = 0,1,2, . . . Taking into account the monotonicity of function G and 1), from the
preceding inequality and from (2) we come to the following inequality:

∞

∑
j=0

ai− jG(σ0x∗
(0)

j )≤
∞

∑
j=0

ai− jG(x∗
(1)

j )≤
∞

∑
j=0

ai− jG(x∗
(0)

j ), i = 0,1,2, . . . (5)

From (2), (5) and condition d), the following double inequality is immediately derived

ϕ(σ0)x∗
(1)

i ≤ x∗
(2)

i ≤ x∗
(1)

i , i = 0,1,2, . . . (6)

Once again considering the monotonicity of function G and the conditions 1)
and d), from the inequality (6) we obtain the following chain of inequalities:

ϕ(ϕ(σ0))x∗
(2)

i ≤ x∗
(3)

i ≤ x∗
(2)

i .

Continuing this process, it is straightforward to confirm that at the k-th step of
induction, we reach the following inequalities:

Fk(σ0)x∗
(k)

i ≤ x∗
(k+1)

i ≤ x∗
(k)

i , i = 0,1,2, . . . , k = 1,2, . . . , (7)

where Fk(σ) := ϕ(ϕ(. . .ϕ(σ) . . .))︸ ︷︷ ︸
k

.

Denote by l :=
1−ϕ

(
σ0

2

)
1− σ0

2

. It follows from the properties of function ϕ that

l ∈ (0, 1). It is easy to show that ϕ(σ0) ≥ lσ0 + 1− l, which, in its turn, implies
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that ϕ(ϕ(σ0))≥ ϕ(lσ0 +1− l)≥ l(lσ0 +1− l)+1− l = l2σ0 +1− l2. Once more,
employing inductive reasoning, at the k-th step we obtain

Fk(σ0)≥ lk
σ0 +1− lk, k = 1,2, . . . (8)

From (3), (7) and (8) we get that

0≤ x∗
(k)

i − x∗
(k+1)

i ≤ η(1−σ0)lk, i = 0,1,2, . . . , k = 0,1,2, . . . (9)

We conclude from (3), (4) and (9) that the sequence of infinite vectors
x∗

(k)
:= (x∗

(k)

0 , x∗
(k)

1 , . . . , x∗
(k)

n , . . .)T , k = 0,1,2, . . . , with non-negative coordinates
converges to the vector x∗=(x∗0, x∗1, . . . , x∗n, . . .)

T ∈m, i.e. lim
k→∞

x∗
(k)

i = x∗i , i= 0,1,2, . . . ,
moreover,

0≤ x∗i ≤ η , i = 0,1,2, . . . (10)

Taking into account the continuity of the function G and the evident

double inequality
∞

∑
j=0

ai− jG(x∗
(k)

j )≤η

∞

∑
j=0

ai− j≤η for k= 0,1,2, . . . and i= 0,1,2, . . . ,

we conclude that the infinite vector x∗ = (x∗0, x∗1, . . . , x∗n, . . .)
T is a solution of the

system (1).
Now, we write the inequality (9) for k+1, k+2, . . . , k+ t:

0≤ x∗
(k+1)

i − x∗
(k+2)

i ≤ η(1−σ0)lk+1,

0≤ x∗
(k+2)

i − x∗
(k+3)

i ≤ η(1−σ0)lk+2,
...

0≤ x∗
(k+t−1)

i − x∗
(k+t)

i ≤ η(1−σ0)lk+t ,

i = 0,1,2, . . .

By adding the left and right hand sides of obtained inequalities to the inequality

(9), we get 0 ≤ x∗
(k)

i − x∗
(k+t)

i ≤ η(1−σ0)lk

1− l
, i = 0,1,2, . . . In the last inequality by

fixing k and passing to the limit as t→ ∞, we obtain the following uniform estimation:

0≤ x∗
(k)

i − x∗i ≤
η(1−σ0)lk

1− l
, i = 0,1,2, . . . , k = 1,2, . . . (11)

We now ensure that there exists lim
i→∞

x∗i = η . To achieve this, we first note that it

is straightforward to verify by induction with respect to k that

lim
i→∞

x∗
(k)

i = η , k = 0,1,2 . . . (12)

Then, we show that x∗i+1 ≥ x∗i . Indeed, by initially rewriting the successive
approximations (2) asx∗

(k+1)

i =
i

∑
s=−∞

asG(x∗
(k)

i−s),

x∗
(0)

i = η ,

i = 0,1,2, . . . ,

and using induction with respect to k with monotonicity of function G, it is easy
to verify that x∗

(k)

i+1 ≥ x∗
(k)

i for any k ∈ Z+ := {0, 1, 2, . . .}. Passing to the limit
as k → ∞ we get the inequality x∗i+1 ≥ x∗i . Since 0 ≤ x∗i ≤ η , then there exists
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lim
i→∞

x∗i =: λ ≤ η . Passing to the limit as i→ ∞ in inequality (11), we obtain that

0≤ η−λ ≤ η(1−σ0)lk

1− l
, for any k = 1,2, . . . Since 0 < l < 1, passing to the limit as

k→ ∞ yields λ = η .

Some Properties of a Non-negative Nontrivial Solution of System (1). The
following theorem holds:

T h e o r e m 2. Let conditions 1) and a)–c) hold. Then, for any
x = (x0, x1, . . . , xn, . . .)

T nontrivial, non-negative bounded solution of system (1)
the following double inequality holds:

0 < xi < η , i = 0,1,2, . . . (13)

Moreover, if the condition 2) holds, then
∞

∑
i=0

(G(xi)− xi)<+∞. (14)

P ro o f. Since there exists i0 ∈ Z+ such that xi0 > 0, then from conditions a),
b) and 1), the inequality xi ≥ ai−i0G(xi0)> 0, i = 0,1,2, . . . , is immediately obtained.

Now we prove the inequality xi < η , i = 0,1,2, . . . To achieve that, we
initially prove that xi ≤ η , i = 0,1,2, . . . Denote by c := sup

i∈Z+

xi. Taking into account

conditions 1) and a), b), from system (1) we get that xi ≤ G(c). This immediately

implies that c≤G(c). Since c > 0 and the function
G(u)

u
is monotonically decreasing

on (0,+∞), then from the last inequality and the condition b) it follows that c≤ η .
Notice that xi 6≡ η , hence there exists i∗ ∈Z+ such that xi∗ < η . Therefore, considering
conditions 1) and a), it is obtained from (1) that xi < η , i = 0,1,2, . . .

We now proceed to prove the second part of the theorem. Initially employing
(13) and condition 1), we have

0 < η− xi = η

∞

∑
j=−∞

ai− j−
∞

∑
j=0

ai− jG(x j) = η

−1

∑
j=−∞

ai− j +
∞

∑
j=0

ai− j(η−G(x j)).

Denote by Ii := η

−1

∑
j=−∞

ai− j, i = 0,1,2, . . . Let us prove, that

∞

∑
i=0

Ii <+∞. (15)

Under the conditions 1) and 2) we have that for any positive integer N

N

∑
i=0

Ii = η

N

∑
i=0

∞

∑
s=i+1

as = η

N

∑
i=0

N+1

∑
s=i+1

as +η

N

∑
i=0

∞

∑
s=N+2

as

= η

N+1

∑
s=1

sas +η

∞

∑
s=N+2

as(N +1)≤ η

∞

∑
s=1

sas <+∞.
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Passing to the limit as N → ∞ we come to (15). Now, we denote by

c1 := η

∞

∑
s=1

sas and c2 := η

∞

∑
s=0

(s+1)a−s <+∞, and let N1 be some positive integer.

Once again considering conditions 1), 2), a) along with (15), we deduce
N1

∑
i=0

(η− xi)≤ c1 +
N1

∑
i=0

∞

∑
j=0

ai− j(η−G(x j))

= c1 +
N1

∑
i=0

N1

∑
j=0

ai− j(η−G(x j))+
N1

∑
i=0

∞

∑
j=N1+1

ai− j(η−G(x j))

≤ c1 +
N1

∑
j=0

(η−G(x j))
N1

∑
i=0

ai− j +η

N1

∑
i=0

i−N1−1

∑
s=−∞

as

≤ c1 +
N1

∑
j=0

(η−G(x j))+η

N1

∑
i=0

∞

∑
s=N1−i

a−s

= c1 +
N1

∑
j=0

(η−G(x j))+η

N1

∑
k=0

∞

∑
s=k

a−s

≤ c1 +
N1

∑
j=0

(η−G(x j))+ c2,

from which we get
N1

∑
i=0

(G(xi)− xi)≤ c1 + c2 <+∞.

Passing to the limit as N1→+∞, we come to (14).

R e m a r k . Note that Theorem 2 and existence Theorem 1 imply
∞

∑
i=0

(η− x∗i )<+∞. (16)

Indeed, since lim
i→∞

x∗i = η , then there exists i0 ∈ Z+ such that x∗i ≥
η

2
for any

i > i0. Considering conditions a)–c) alongside inequality (13), we can establish

η−G(x∗i )
η− x∗i

≤
η−G

(
η

2

)
η

2

=: α ∈ (0, 1),

from which G(x∗i )− x∗i ≥ (1−α)(η − x∗i ). From the resulted inequality and due to
∞

∑
i=0

(G(x∗i )− x∗i )<+∞, (16) is derived.

The Uniqueness of the Solution. Examples.

T h e o r e m 3. Under conditions of Theorem 1, if a−i = ai, i = 1,2 . . . , holds
alongside condition 2), then the system (1) does not have more than one solution
within the class of non-negative, nontrivial bounded sequences.
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P ro o f. For the sake of contradiction suppose that the system (1) apart from
the solution x∗ = (x∗0, x∗1, . . . ,x

∗
n, . . .) (constructed by the successive approximations

(2)) also has another solution x = (x0, x1, . . . , xn, . . .) within the class of non-negative,
nontrivial, bounded sequences. By using Theorem 2 and applying induction on k, it is
easy to check that xi ≤ x∗

(k)

i for any i = 0,1,2, . . . , k = 0,1,2, . . . Passing to the limit
as k→ ∞, we have

xi ≤ x∗i , i = 0,1,2, . . . (17)

Hence

0≤ x∗i − xi =
∞

∑
j=0

ai− j(G(x∗j)−G(x j)), i = 0,1,2, . . . (18)

Denote by Q the reverse function of G on R+. Considering (14) and the
condition a−i = ai, we have

∞

∑
i=0

(G(xi)− xi)(x∗i − xi) =
∞

∑
i=0

(G(xi)− xi)
∞

∑
j=0

ai− j(G(x∗j)−G(x j))

=
∞

∑
j=0

(G(x∗j)−G(x j))
∞

∑
i=0

ai− j(G(xi)− xi)

=
∞

∑
j=0

(G(x∗j)−G(x j))

(
∞

∑
i=0

a j−iG(xi)−
∞

∑
i=0

a j−ixi

)

=
∞

∑
j=0

(G(x∗j)−G(x j))

(
x j−

∞

∑
i=0

a j−iQ(G(xi))

)
.

Taking into account the easily verifiable inequality vQ(u)≥ Q(vu), v ∈ [0, 1],
u ∈ R+ with Jensen’s inequality, we have

∞

∑
i=0

a j−iQ(G(xi))≥
∞

∑
i=0

a j−iQ


∞

∑
i=0

a j−iG(xi)

∞

∑
i=0

a j−i


≥ Q

(
∞

∑
i=0

a j−iG(xi)

)
= Q(x j).

(19)

Thus, by using (19), we reach the following inequality
∞

∑
i=0

(G(xi)− xi)(x∗i − xi)≤
∞

∑
j=0

(G(x∗j)−G(x j))(x j−Q(x j)). (20)

Define the following set of indices
P := {i ∈ Z+ : x∗i > xi}.

According to our assumption P 6= ∅ and Pc := Z+ \P = {i ∈ Z+ : x∗i = xi}.
From the definition of the set P and inequality (13), one can see that inequality (20)
can be rewritten as

∑
i∈P

(x∗i − xi)(xi−Q(xi))

(
G(xi)− xi

xi−Q(xi)
− G(x∗i )−G(xi)

x∗i − xi

)
≤ 0. (21)
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On the other hand, when i ∈ P, the following inequalities hold:

x∗i > xi > Q(xi)> 0,
G(xi)− xi

xi−Q(xi)
=

G(xi)−G(Q(xi))

xi−Q(xi)
>

G(x∗i )−G(xi)

x∗i − xi
.

These inequalities contradict with (21), hence P = ∅, that is x∗i = xi,
i = 0,1,2, . . .

At the end of this work, we provide a few examples of theoretical nature of
Toeplitz matrix A and the nonlinearity G.

Examples of Toeplitz matrix A:

1∗)


an =

45
2π4 ·

1
n4 , n =±1,±2, . . . ,

a0 =
1
2

;

2∗) an =
1−q
1+q

·q|n|, 0 < q < 1;

3∗)


an =

1
2

(
45

2π4 ·
1
n4 +

1−q
1+q

·q|n|
)
, n =±1,±2, . . . ,

a0 =
1
2

(
1
2
+

1−q
1+q

)
,

0 < q < 1.

Examples of function G:
a∗) G(u) = uα , ϕ(σ) = σα , 0 < α < 1;

b∗) G(u) =
uα +uβ

2
,ϕ(σ) = σ

α+β

2 , 0 < α, β < 1;

c∗) G(u) = γ(1− e−uα

), ϕ(σ) = σα , γ > 1, 0 < α < 1.
It should be noted that provided examples 2∗), a∗) and c∗) besides of

theoretical significance, are also interesting in the context of discrete problems in the
dynamic theory of p-adic strings and the mathematical theory of spatial-temporal
spread of epidemic diseases.

Conclusion. In this work, sufficient conditions for the existence of a positive
solution to system (1) in the space of bounded sequences are obtained. The asymptotic
behavior of the constructed solution in the class of non-negative, non-trivial and
bounded sequences is studied. At the end, specific examples of the matrix A and
nonlinearity G are given that satisfy all the conditions of the proved theorems.
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hatkow�yownneri owsowmnasirman harcrerin:

Ditarkvo� hamakarg�, baci inqnowrowyn ma�ematikakan heta-

qrqrow�yownic, owni na kira�akan kar or n�anakow�yown ma�ematikakan
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tesow�yownowm, gazeri kinetik tesow�yownowm, p-adik lareri dinamik

tesow�yan  hama�araki tara�man ma�ematikakan tesow�yan diskret
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Х. А. ХАЧАТРЯН, В. Г. ДИЛАНЯН

О РАЗРЕШИМОСТИ ОДНОЙ НЕЛИНЕЙНОЙ СИСТЕМЫ
БЕСКОНЕЧНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С МАТРИЦАМИ

ТИПА ТЕПЛИЦА

Работа посвящена вопросам конструктивной разрешимости, единст-
венности и изучению некоторых качественных свойств решения для одной
бесконечной системы алгебраических уравнений с вогнутой нелинейностью
и матрицами Тeплица. Рассматриваемая система, кроме самостоятельного
математического интереса, имеет важный прикладной интерес в различных
отраслях математической физики и математической биологии. В частности
такие системы возникают в теории переноса излучения, в кинетической
теории газов, в динамической теории p-адических струн и в дискретных
задачах математической теории распространения эпидемии.

В работе доказывается существование положительного решения для
этой системы в пространстве ограниченных последовательностей. Пред-
лагается метод построения приближенного решения данной системы.
Исследуется асимптотическое поведение построенного решения. Удается
также доказать единственность нетривиального решения в классе ограни-
ченных последовательностей, имеющих неотрицательные элементы.

В конце работы приводятся примеры прикладного характера для
соответствующей матрицы Тeплица и нелинейности.


