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This paper considers the problem for an elastic infinite plate (sheet), which 
on parallel finite parts of its upper surface is strengthened by three finite stringers, 
two of which are located on the same line, having different elastic properties. 
The stringers are deformed under the action of horizontal forces. The interaction 
between infinite sheet and stringers takes place through thin elastic adhesive 
layers having other physical-mechanical properties and geometric configuration. 
The problem of determining unknown shear forces acting between the infinite 
sheet and stringers is reduced to a system of Fredholm integral equations of 
second kind with respect to unknown functions, which are specified on three 
finite intervals. It is shown that in the certain domain of the change of the charac-
teristic parameters of the problem this system of integral equations can be solved 
by the method of successive approximations. Particular cases are considered, the 
character and behaviour of unknown shear forces are investigated. Further, for 
various values of changing characteristic parameters of the problem the multiple 
numerical results and its analysis are presented.
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Introduction. The problems associated with of load transfer from thin-
walled elastic elements in the form of elastic stringers or overlays to more massive
elastic bodies (modeled in the form of classical or non-classical regions of elasticity
theory) through adhesive layers is one of the actual in both theoretical and applied
aspects in the region of the contact and mixed problems of elasticity theory. Without
going into details, we note that some of them which is closely associated with this
article. In paper [1] considers the problem of loads transfer from two parallel elastic
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stringers with finite lengths to an infinite sheet through adhesive layers. The problems
for an elastic strip and infinite sheet through adhesive layers, when two finite stringers
are arranged on the same line, with different approach to the solution are considered
in [2, 3]. The paper [4] considers the problem for an infinite sheet with two finite
stringers when only one of the stringers is connected through an adhesive layer.
In [5–8], using various approaches, problems are investigated for various elastic
bodies, which are strengthened by a single finite stringer through adhesive layer.
In [9, 10] transfer of loads from finite number of finite elastic stringers to an elastic
infinite sheet (or half-plane) and to an infinite strip through an adhesive layers are
considered. Some contact problems for an elastic infinite sheet strengthened by
parallel finite stringers without adhesive layer are considered in [11]. In this article,
a problem is considered for an elastic infinite sheet, which along two parallel lines
of its upper surface is strengthened by three finite stringers two of which are located
on the same line, having different elastic properties. The interaction between sheet
and stringers is assumed to be carried out through thin adhesive layers with different
physical-mechanical properties and geometric configuration.

Statement of the Problem and Obtaining the System of Integral Equations.
Let an elastic infinite plate (sheet) of small constant thickness h, the Young’s modulus
E and the Poisson’s ratio ν , which is in a generalized plane stress state (xOy is its
middle plane), on its upper surface along y = b and y = −d parallel lines being
ℓ = b+ d (b, d > 0) distance from each other on the [a1,b1], [a2,b2] (a2 > b1) and
[c1,d1] finite intervals is strengthened by three finite stringers modulus of elasticity
equal to E1 for x ∈ [a1,b1] (b1 > a1), E2 for x ∈ [a2,b2] (b2 > a2) and equal to E3 for
x ∈ [c1,d1] (d1 > c1), respectively. It is supposed that the stringers have a rectangular
cross-sections with small areas F1 = b∗1h1, F2 = b∗1h2 and F3 = b∗3h3, respectively,
where b∗1 (b∗1 ≪ b1−a1; b2−a2), and b∗3 (b∗3 ≪ d1−c1), are the widths of the stringers
and h j ( j = 1,3) are their small constant thicknesses. The interaction between

Fig. 1.
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infinite sheet and stringers takes place through thin, uniform, elastic adhesive layers 
with Young’s modulus Ek, Poisson’s ratio νk, and small constant thickness hk. The 
problem is to specify the law of distribution of unknown forces acting between the 
sheet and the stringers, when the concentrated forces P1, P2 and Q are applied at one 
end points of the stringers x = b1, x = b2 and x = d1, respectively, and are directed to 
parallel along the Ox axis (see Fig. 1).

It is assumed that during the deformation for the stringers the model of uniaxial 
strain state in combination with the model of contact along the line is realized [12], 
and for the adhesive layer there is the pure shear condition [5], i.e. as in [5, 11, 12] 
bending is neglected and the interaction between sheet and stringers is idealized as a 
line loading of the sheet [1–10].

In view of above assumptions, let write the horizontal displacements u1(x,b) and 
u2(x,−d)of the points of the elastic infinite plate ( sheet), when tangential (shear) 
forces with intensity p1(x), p2(x) and q(x) act on the [a1,b1], [a2,b2] and [c1,d1], 
finite intervals of its upper surface along y = b and y = −d parallel lines, respectively, 
as in [1], in the following form:

u1(x,b) =
1

πA∗

b1∫
a1

(
ln

1
|x− s|

+C
)

p1(s)ds+
1

πA∗

b2∫
a2

(
ln

1
|x− s|

+C
)

p2(s)ds

+
1

πA∗

d1∫
c1

(N(x− v)+C)q(v)dv, (1)

u2(x,−d) =
1

πA∗

d1∫
c1

(
ln

1
|x− v|

+C
)

q(v)dv+
1

πA∗

b1∫
a1

(N(x− s)+C) p1(s)ds

+
1

πA∗

b2∫
a2

(N(x− s)+C) p2(s)ds, (2)

where

N(x) = ln
1√

x2 + ℓ2
− κℓ2

x2 + ℓ2 , A∗ =
4Eh

(1+ν)(3−ν)
, κ =

1+ν

3−ν
,

p1(x) = b∗1τ(1)(x,b), τ(1)(x,b) is the shear stresses, acting under of the stringer on the
[a1,b1] finite part, p2(x) = b∗1τ(2)(x,b), τ(2)(x,b) is the shear stresses, acting under
of the stringer on the [a2,b2] finite part, and q(x) = b∗3τ(3)(x,−d), τ(3)(x,−d) is the
shear stresses, acting under of the stringer on the [c1,d1] finite part, C is arbitrary
constant.

Note that, the horizontal displacements u(x,y) of the points of an infinite sheet,
arising in the upper half-plane, when shear forces act on its surface along the line
y =−d with intensity τ(x) (−∞ < x < ∞) is given by the formula:

u(x,y) =
1

πA∗

∞∫
−∞

[
ln

1√
(x− s)2 +(y+d)2

− κ(y+d)2

(x− s)2 +(y+d)2

]
τ(s)ds+ const,

−∞ < x < ∞, 0 < y < ∞.
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Now, assuming that each differential element of the adhesive layers is in
a condition of pure shear [1–10], the following contact conditions are obtained:

u(1)(x)−u1(x,b) = k∗1 p1(x) , a1 ⩽ x ⩽ b1 , (3)

u(2)(x)−u1(x,b) = k∗1 p2(x) , a2 ⩽ x ⩽ b2 , (4)

u(3)(x)−u2(x,−d) = k∗2q(x) , c1 ⩽ x ⩽ d1, (5)

where k∗1 = hk/b∗1Gk, k∗2 = hk/b∗3Gk, Gk = Ek/2(1+νk), Gk is the shear modulus of
adhesive layers, u(1)(x) = u(1)(x,b), u(2)(x) = u(2)(x,b) and u(3)(x) = u(3)(x,−d) are
the horizontal displacements of the points of the stringers at y = b and y =−d parallel
lines, on the [a1,b1], [a2,b2] and [c1,d1] finite intervals, respectively,

p1(x) = b∗1τ
(1)(x,b) = b∗1Gkγ

(1)
k (x,b), p2(x) = b∗1τ

(2)(x,b) = b∗1Gkγ
(2)
k (x,b)

and

q(x) = b∗3τ
(3)(x,−d) = b∗3Gkγ

(3)
k (x,−d), γ

(1)
k (x,b),γ(2)k (x,b) and γ

(3)
k (x,−d)

are the shear deformations of the adhesive layers, on the [a1,b1], [a2,b2]and [c1,d1]
finite intervals, respectively.

Further, taking into account the above assumptions, the differential equations for
the equilibrium of the stringers on finite intervals [a1,b1], [a2,b2] and [c1,d1] will be
written in the following form:

d2u(1)

dx2 =
p1(x)
E1F1

, a1 ⩽ x ⩽ b1 , (6)

d2u(2)

dx2 =
p2(x)
E2F2

, a2 ⩽ x ⩽ b2 , (7)

d2u(3)

dx2 =
q(x)
E3F3

, c1 ⩽ x ⩽ d1 , (8)

which by virtue of (3), (4) and (5) can be written in the form:

d2u(1)

dx2 − γ
2
1 u(1)(x) =−γ

2
1 u1(x,b) , a1 ⩽ x ⩽ b1 , (9)

d2u(2)

dx2 − γ
2
2 u(2)(x) =−γ

2
2 u1(x,b) , a2 ⩽ x ⩽ b2 , (10)

d2u(3)

dx2 −α
2u(3)(x) =−α

2u2(x,−d) , c1 ⩽ x ⩽ d1 . (11)

where we have also the following boundary conditions:

du(1)

dx

∣∣∣∣∣
x=a1

= 0 ,
du(1)

dx

∣∣∣∣∣
x=b1

=
P1

E1F1
, (12)

du(2)

dx

∣∣∣∣∣
x=a2

= 0 ,
du(2)

dx

∣∣∣∣∣
x=b2

=
P2

E2F2
, (13)

du(3)

dx

∣∣∣∣∣
x=c1

= 0 ,
du(3)

dx

∣∣∣∣∣
x=d1

=
Q

E3F3
. (14)
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Here γ2
1 = 1/k∗1E1F1, γ2

2 = 1/k∗1E2F2, α2 = 1/k∗2E3F3.
The solutions to the boundary value problems (9) and (12), (10) and (13),

(11) and (14), respectively, we obtain in the form:

u(1)(x) = u(1)0 (x)+ γ
2
1

b1∫
a1

G1(x,s)u1(s,b)ds , a1 ⩽ x ⩽ b1 , (15)

u(2)(x) = u(2)0 (x)+ γ
2
2

b2∫
a2

G2(x,s)u1(s,b)ds , a2 ⩽ x ⩽ b2 , (16)

u(3)(x) = u(3)0 (x)+α
2

d1∫
c1

K(x,v)u2(v,−d)dv , c1 ⩽ x ⩽ d1 , (17)

where u(1)0 (x), u(2)0 (x) and u(3)0 (x) are the general solutions of the homogenous
equations corresponding to Eqs. (9), (10) and (11), respectively, with the boundary
conditions (12), (13) and (14), respectively, and have the following form:

u( j)
0 (x) =

Pj cosh[γ j(x−a j)]

γ jE jFj sinh[γ j(b j −a j)]
( j = 1,2), u(3)0 (x) =

Qcosh[α(x− c1)]

αE3F3 sinh[α(d1 − c1)]
.

In Eqs. (15), (16) and (17), u( j)
∗ (x) = γ2

j

b j∫
a j

G j(x,s)u1(s,b)ds, j = 1,2, and

u(3)∗ (x) = α2

d1∫
c1

K(x,v)u2(v,−d)dv are the particular solutions of (9), (10) and (11)

with zero boundary conditions corresponding to conditions (12), (13) and (14),
respectively, G j(x,s) ( j = 1,2) and K(x,v) are Green’s functions [13], and

G j(x,s) =
1

γ j sinh[γ j(b j −a j)]

{
cosh[γ j(x−b j)]cosh[γ j(s−a j)] , x > s,
cosh[γ j(x−a j)]cosh[γ j(s−b j)] , x < s.

K(x,v) =
1

α sinh[α(d1 − c1)]

{
cosh[α(x−d1)]cosh[α(v− c1)] , x > v,
cosh[α(x− c1)]cosh[α(v−d1)] , x < v.

It is obvious that the functions G j(x,s) and K(x,v) are continuous functions and
G j(x,s) = G j(s,x), K(x,v) = K(v,x).

Further, by virtue of (15), (16) and (17), according to (3), (4) and (5), we obtain
the following equations:

k∗1 p1(x)+u1(x,b) = γ
2
1

b1∫
a1

G1(x,s)u1(s,b)ds+u(1)0 (x) , a1 ⩽ x ⩽ b1 , (18)

k∗1 p2(x)+u1(x,b) = γ
2
2

b2∫
a2

G2(x,s)u1(s,b)ds+u(2)0 (x) , a2 ⩽ x ⩽ b2 , (19)

k∗2q(x)+u2(x,−d) = α
2

d1∫
c1

K(x,v)u2(v,−d)dv+u(3)0 (x) , c1 ⩽ x ⩽ d1 . (20)
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Now, by virtue of (1) and (2), from (18), (19) and (20) we obtain the following
system of integral equations:

p1(x)+
1

πA∗k∗1

 b1∫
a1

(
ln

1
|x− s|

+C
)

p1(s)ds+
b2∫

a2

(
ln

1
|x− s|

+C
)

p2(s)ds

+

d1∫
c1

(N(x− v)+C) q(v)dv

=
γ2

1
πA∗k∗1

b1∫
a1

G1(x,s)

 b1∫
a1

(
ln

1
|s− t|

+C
)

p1(t)dt

+

b2∫
a2

(
ln

1
|s− t|

+C
)

p2(t)dt +
d1∫

c1

(N(s− τ)+C)q(τ)dτ

 ds+
u(1)0 (x)

k∗1
, a1 ⩽ x ⩽ b1,

p2(x)+
1

πA∗k∗1

 b1∫
a1

(
ln

1
|x− s|

+C
)

p1(s)ds+
b2∫

a2

(
ln

1
|x− s|

+C
)

p2(s)ds

+

d1∫
c1

(N(x− v)+C) q(v)dv

=
γ2

2
πA∗k∗1

b2∫
a2

G2(x,s)

 b1∫
a1

(
ln

1
|s− t|

+C
)

p1(t)dt

(21)

+

b2∫
a2

(
ln

1
|s− t|

+C
)

p2(t)dt +
d1∫

c1

(N(s− τ)+C)q(τ)dτ

 ds+
u(2)0 (x)

k∗1
, a2 ⩽ x ⩽ b2,

q(x)+
1

πA∗k∗2

 d1∫
c1

(
ln

1
|x− v|

+C
)

q(v)dv+
b1∫

a1

(N(x− s)+C) p1(s)ds

+

b2∫
a2

(N(x− s)+C) p2(s)ds

=
α2

πA∗k∗2

d1∫
c1

K(x,v)

 d1∫
c1

(
ln

1
|v− τ|

+C
)

q(τ)dτ

+

b1∫
a1

(N(v− t)+C) p1(t)dt +
b2∫

a2

(N(v− t)+C) p2(t)dt

 dv+
u(3)0 (x)

k∗2
, c1 ⩽ x ⩽ d1.

It should be noted that the spectrum of the symmetric second-order differential
operator D =−d2/dx2 + γ2I, with the domain of definition being twice continuous
differentiating functions, satisfying the boundary conditions

(
du(1)/dx

)
x=a = 0 and(

du(1)/dx
)

x=b = 0, are eigenvalues λn = γ2 + n2π2/(b− a)2 (n = 0,1,2, . . .) with
corresponding eigenfunctions cos[nπ(x−a)/(b−a)] (n = 0,1,2, . . .).

It is known [13], that symmetric quite continuous integral operator A:

Aϕ =

b∫
a

G(x,s)ϕ(s)ds ,
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which acts in the space L2(a,b) is an inverse of the operator D. Hence, we have:

b j∫
a j

G j(x,s)cos
[

nπ(s−a j)

b j −a j

]
ds =

(b j −a j)
2

(b j −a j)2γ2
j +n2π2 cos

[
nπ(x−a j)

b j −a j

]
,

n = 0,1,2, . . . , j = 1,2, (22)

d1∫
c1

K(x,v)cos
[

mπ(v− c1)

d1 − c1

]
dv =

(d1 − c1)
2

(d1 − c1)2α2 +m2π2 cos
[

mπ(x− c1)

d1 − c1

]
,

m = 0,1,2, . . . , (23)

where the functions cos
[

nπ(x−a j)

b j −a j

]
( j = 1,2) and cos

[
mπ(x− c1)

d1 − c1

]
(n,m= 0,1,2, . . .) form full orthogonal systems in the spaces L2(a j,b j) and L2(c1,d1),
respectively.

Further, after replacing the variables x, s, v, t and τ by ax, as, av, at and aτ ,
respectively, where a > 0 is the coordinate of one of the end points of stringers, we
will represent the system of integral Eq. (21) in the following form:

ϕ1(x)+δ
2
1

β1∫
α1

M1(x, t)ϕ1(t)dt +δ
2
1

β2∫
α2

M1(x, t)ϕ2(t)dt

+δ
2
1

η1∫
ξ1

H1(x,τ)ψ(τ)dτ = f (1)0 (x), α1 ⩽ x ⩽ β1,

ϕ2(x)+δ
2
1

β1∫
α1

M2(x, t)ϕ1(t)dt +δ
2
1

β2∫
α2

M2(x, t)ϕ2(t)dt

+δ
2
1

η1∫
ξ1

H2(x,τ)ψ(τ)dτ = f (2)0 (x), α2 ⩽ x ⩽ β2 ,

(24)

ψ(x)+δ
2
1

η1∫
ξ1

R(x,τ)ψ(τ)dτ +δ
2
1

β1∫
α1

T (x, t)ϕ1(t)dt

+δ
2
1

β2∫
α2

T (x, t)ϕ2(t)dt = q0(x), ξ1 ⩽ x ⩽ η1 ,

where
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ϕ1(x) = p1(ax), ϕ2(x) = p2(ax), ψ(x) = q(ax),

N(ax) = ln
1
a
+N1(x), N1(x) = ln

1√
x2 + ℓ2

∗
− κℓ2

∗
x2 + ℓ2

∗
,

α1 = a1/a, β1 = b1/a, α2 = a2/a, β2 = b2/a, ξ1 = c1/a, η1 = d1/a,

ℓ∗ = ℓ/a, δ 2
1 = a/πk∗1A∗, δ

2
1 = a/πk∗2A∗.

M j(x, t) = ln
1

|x− t|
−aγ

2
j

β j∫
α j

G j(ax,as) ln
1

|s− t|
ds, j = 1,2,

H j(x,τ) = N1(x− τ)−aγ
2
j

β j∫
α j

G j(ax,as)N1(s− τ)ds, j = 1,2,

R(x,τ) = ln
1

|x− τ|
−aα

2
η1∫

ξ1

K(ax,av) ln
1

|v− τ|
dv,

T (x, t) = N1(x− t)−aα
2

η1∫
ξ1

K(ax,av)N1(v− t)dv,

f0
( j)
(x) =  p(0

j)
(ax) =

u(0
j)
(ax)
k∗1

=
Pjγ j cosh[aγ j(x −α j)] , j = 1,2,

q0(x) = q(0
3)
(ax) =

u(0
3)
(ax)
k∗2

=

sinh[aγ j(β j −α j)] 
Qα cosh[aα(x − ξ1)]

sinh[aα(η1 −ξ1)]
.

(25)

since according to (22) and (23) we have also the following equalities:

β j∫
α j

G j(ax,as)ds =
1

aγ2
j
, j = 1,2,

η1∫
ξ1

K(ax,av)dv =
1

aα2 . (26)

It is obvious, that the functions f ( j)
0 (x) and q0(x) are integrable functions on the

segments x ∈ [α1,β1], x ∈ [α2,β2] and x ∈ [ξ1,η1], respectively.
Note that the system of integral equations (24) is obtained by the changing the

order of integration, the validity of which follows from the Fubini’s theorem [13].
This theorem will often be used below without special mention.

Now let us consider several particular cases that are directly obtained from the
system (24). In the case δ 2

1 = δ
2
1 = 0, from the system (24) we obtain the solution

of the corresponding problem for the case of a rigid sheet (i.e. when E → ∞) in the
form ϕ1(x) = f (1)0 (x), x ∈ [α1,β1], ϕ2(x) = f (2)0 (x), x ∈ [α2,β2] and ψ(x) = q0(x),
x ∈ [ξ1,η1], respectively. In the case of two parallel finite stringers arranged on the
segments [a1,b1] and [c1,d1], instead of the system (24), we will obtain a system of
Fredholm integral equations of the second kind with respect to an unknown functions
ϕ1(x) and ψ(x) defined on the segments [α1,β1] and [ξ1,η1], respectively, in the
following form:
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ϕ1(x)+δ
2
1

β1∫
α1

M1(x, t)ϕ1(t)dt +δ
2
1

η1∫
ξ1

H1(x,τ)ψ(τ)dτ = f (1)0 (x), α1 ⩽ x ⩽ β1,

ψ(x)+δ
2
1

η1∫
ξ1

R(x,τ)ψ(τ)dτ +δ
2
1

β1∫
α1

T (x, t)ϕ1(t)dt = q0(x), ξ1 ⩽ x ⩽ η1.

(27)

In the case of two finite stringers arranged on the segments [a1,b1] and [a2,b2],
instead of (24), we will obtain the system of Fredholm integral equations of the second
kind with respect to an unknown functions ϕ1(x) and ϕ2(x) defined on the segments
[α1,β1] and [α2,β2], respectively, in the following form:

ϕ1(x)+δ
2
1

β1∫
α1

M1(x, t)ϕ1(t)dt +δ
2
1

β2∫
α2

M1(x, t)ϕ2(t)dt = f (1)0 (x), α1 ⩽ x ⩽ β1,

ϕ2(x)+δ
2
1

β1∫
α1

M2(x, t)ϕ1(t)dt +δ
2
1

β2∫
α2

M2(x, t)ϕ2(t)dt = f (2)0 (x), α2 ⩽ x ⩽ β2.

(28)

In the case of one finite stringer defined on the segment [a1,b1] or on the segment
[c1,d1], instead of system (24), we will obtain the Fredholm integral equation of the
second kind with respect to an unknown function ϕ1(x) defined on the segment [α1,β1]
in the following form:

ϕ1(x)+δ
2
1

β1∫
α1

M1(x, t)ϕ1(t)dt = f (1)0 (x), α1 ⩽ x ⩽ β1, (29)

or with respect to an unknown function ψ(x) defined on the segment [ξ1,η1],
respectively, in the following form:

ψ(x)+δ
2
1

η1∫
ξ1

R(x,τ)ψ(τ)dτ = q0(x), ξ1 ⩽ x ⩽ η1.

Note that the system (24) was obtained without using the stringers equilibrium
conditions:

β1∫
α1

p1(ax)dx = P1/a,

β2∫
α2

p2(ax)dx = P2/a,

η1∫
ξ1

q(ax)dx = Q/a. (30)

In the system (24), the conditions (30) are satisfied automatically, since the
following equalities hold:

β1∫
α1

f0
(1)
(x)dx = P1/a,

β2∫
α2

f0
(2)
(x)dx = P2/a,

η1∫
ξ1

q0(x)dx = Q/a.

These can be easily verified by integrating the first equation of (24) from α1 to β1,
the second equation from α2 to β2, and the third equation from ξ1 to η1, then changing
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the order of integration in the resulting double integrals and taking into account the
equalities

β1∫
α1

M1(x, t)dx = 0,
β2∫

α2

M2(x, t)dx = 0,
β1∫

α1

H1(x,τ)dx = 0,
β2∫

α2

H2(x,τ)dx = 0,

η1∫
ξ1

R(x,τ)dx = 0,
η1∫
ξ1

T (x, t)dx = 0, which follow from (26).

Thus, solving the problem is reduced to solving the system (24) of Fredholm
integral equations of the second kind with squarely integrable kernels in two variables
and with right-hand sides, which are the solutions of the problem in the case of rigid
sheet. From the system (24), it is easy to see that at the end points of the stringers
x = α1, x = β1, x = α2, x = β2 and x = ξ1, x = η1, the values of unknown functions
ϕ1(x), ϕ2(x) and ψ(x), respectively, are finite.

Investigation of the Solvability of the System of Integral Equations (24).
Now write the system (24) in the following form:

ϕ +Kϕ = y0, (31)

where

ϕ =

 ϕ1
ϕ2
ψ

 , y0 =

 f (1)0

f (2)0
q0

 , K =

 δ 2
1 k11 δ 2

1 k12 δ 2
1 k13

δ 2
1 k21 δ 2

1 k22 δ 2
1 k23

δ
2
1k31 δ

2
1k32 δ

2
1k33

 ,

k11ϕ1=

β1∫
α1

M1(x, t)ϕ1(t)dt, k12ϕ2=

β2∫
α2

M1(x, t)ϕ2(t)dt, k13ψ=

η1∫
ξ1

H1(x,τ)ψ(τ)dτ,

k21ϕ1=

β1∫
α1

M2(x, t)ϕ1(t)dt, k22ϕ2=

β2∫
α2

M2(x, t)ϕ2(t)dt, k23ψ=

η1∫
ξ1

H2(x,τ)ψ(τ)dτ,

k31ϕ1=

β1∫
α1

T (x, t)ϕ1(t)dt, k32ϕ2=

β2∫
α2

T (x, t)ϕ2(t)dt, k33ψ=

η1∫
ξ1

R(x,τ)ψ(τ)dτ. (32)

Further, consider operator Eq. (31) in Banach space with elements y =

 y1
y2
y3

,

where y1(x) ∈ L2(α1,β1), y2(x) ∈ L2(α2,β2), y3(x) ∈ L2(ξ1,η1) and with norm:
∥y∥ = max

{
∥y1∥L2(α1,β1)

, ∥y2∥L2(α2,β2)
, ∥y3∥L2(ξ1,η1)

}
. L2(α j,β j), j = 1,2, and

L2(ξ1,η1) are spaces of square integrable functions, specified on the intervals (α j,β j),
j = 1,2, and (ξ1,η1), respectively.

Operators k11, k22 and k33 act in the spaces L2(α1,β1), L2(α2,β2) and L2(ξ1,η1),
respectively, and operators k12, k13, k21, k23, k31 and k32 act in the following form:
k12 : L2(α2,β2)→L2(α1,β1), k13 : L2(ξ1,η1)→L2(α1,β1), k21 : L2(α1,β1)→L2(α2,β2),
k23 : L2(ξ1,η1)→L2(α2,β2), k31 : L2(α1,β1)→L2(ξ1,η1), k32 : L2(α2,β2)→L2(ξ1,η1).
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Obviously, the operator K acts in the Banach space and is a Fredholm operator.
A sufficient condition for inversion of operator I + K is the condition ∥K∥ < 1.
Then (31) can be solved by the method of successive approximations, if ∥K∥ < 1,
where

∥K∥= max
{

δ
2
1 (∥k11∥+∥k12∥+∥k13∥), δ

2
1 (∥k21∥+∥k22∥+∥k23∥),

δ
2
1(∥k31∥+∥k32∥+∥k33∥)

}
.

Therefore, the condition ∥K∥< 1 will be satisfied, if

δ
2
1 (∥k11∥+∥k12∥+∥k13∥)< 1, δ

2
1 (∥k21∥+∥k22∥+∥k23∥)< 1,

δ
2
1(∥k31∥+∥k32∥+∥k33∥)< 1. (33)

In this case, the solution of Eq. (31) is written in the form

ϕ = (I+K)−1y0 =
∞

∑
m=0

(−1)mKmy0.

Now let’s determine the values of δ 2
1 and δ

2
1 parameters of the problem, for which

the conditions (33) will be satisfied. From (32), by virtue of Cauchy–Bunyakovski
inequality, we get:

∥k11∥⩽ c11, c11 =

 β1∫
α1

β1∫
α1

M2
1(x, t)dxdt


1
2

, ∥k12∥⩽ c12, c12 =

 β2∫
α2

β1∫
α1

M2
2(x, t)dxdt


1
2

,

∥k13∥⩽ c13, c13 =

 η1∫
ξ1

β1∫
α1

H2
1 (x,τ)dxdτ


1
2

, ∥k21∥⩽ c21, c21 =

 β1∫
α1

β2∫
α2

M2
2(x, t)dxdt


1
2

,

∥k22∥⩽ c22, c22 =

 β2∫
α2

β2∫
α2

M2
2(x, t)dxdt


1
2

, ∥k23∥⩽ c23, c23 =

 η1∫
ξ1

β2∫
α2

H2
1 (x,τ)dxdτ


1
2

,

∥k31∥⩽ c31, c31 =

 β1∫
α1

η1∫
ξ1

T 2(x, t)dxdt


1
2

, ∥k32∥⩽ c32, c32 =

 β2∫
α2

η1∫
ξ1

T 2(x, t)dxdt


1
2

,

∥k33∥⩽ c33, c33 =

 η1∫
ξ1

η1∫
ξ1

R2(x,τ)dxdτ

1
2

. (34)

Obviously, the expressions for ci j (i, j = 1,3), are difficult to calculate, but they
can be estimated. It was found out in [1, 4, 10], that the following estimates take place:
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c11 <

 β1∫
α1

β1∫
α1

ln2 |x− t|dxdt


1
2

, c12 <

 β2∫
α2

β1∫
α1

ln2 |x− t|dxdt


1
2

,

c21 <

 β1∫
α1

β2∫
α2

ln2 |x− t|dxdt


1
2

, c22 <

 β2∫
α2

β2∫
α2

ln2 |x− t|dxdt


1
2

,

c33 <

 η1∫
ξ1

η1∫
ξ1

ln2 |x− τ|dxdτ

 1
2

, c13 <

 η1∫
ξ1

β1∫
α1

N2
1 (x− τ)dxdτ


1
2

,

c23 <

 η1∫
ξ1

β2∫
α2

N2
1 (x− τ)dxdτ


1
2

, c31 <

 β1∫
α1

η1∫
ξ1

N2
1 (x− t)dxdt


1
2

,

c32 <

 β2∫
α2

η1∫
ξ1

N2
1 (x− t)dxdt


1
2

.

(35)

The estimates (35) for c13, c23, c31 and c32 can be obtained also in the form:

c13 <
1
2

 η1∫
ξ1

β1∫
α1

ln2 [(x−τ)2 + ℓ2
∗
]

dxdτ


1
2

+κℓ2
∗

 η1∫
ξ1

β1∫
α1

[
(x−τ)2 + ℓ2

∗
]−2

dxdτ


1
2

,

c23 <
1
2

 η1∫
ξ1

β2∫
α2

ln2 [(x−τ)2 + ℓ2
∗
]

dxdτ


1
2

+κℓ2
∗

 η1∫
ξ1

β2∫
α2

[
(x−τ)2 + ℓ2

∗
]−2

dxdτ


1
2

,

c31 <
1
2

 β1∫
α1

η1∫
ξ1

ln2 [(x−t)2 + ℓ2
∗
]

dxdt


1
2

+κℓ2
∗

 β1∫
α1

η1∫
ξ1

[
(x−t)2 + ℓ2

∗
]−2

dxdt


1
2

,

c32 <
1
2

 β2∫
α2

η1∫
ξ1

ln2 [(x−t)2 + ℓ2
∗
]

dxdt


1
2

+κℓ2
∗

 β2∫
α2

η1∫
ξ1

[
(x−t)2 + ℓ2

∗
]−2

dxdt


1
2

.

(36)

Then the conditions (33) will be realized, if

δ
2
1 < (c11 + c12 + c13)

−1 = c1, δ
2
1 < (c21 + c22 + c23)

−1 = c2,

δ
2
1 < (c31 + c32 + c33)

−1 = c3, (37)

where c1, c2 and c3 are positive numbers less than unity. The values of unknown
functions ϕ1(x), ϕ2(x) and ψ(x) in the end points of stringers x = α1, x = β1, x = α2,
x = β2 and x = ξ1, x = η1, respectively, can be obtained from system (24).
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We also note that, from the condition of solvability of the system of Fredholm
integral equations (27), for δ 2

1 , δ
2
1 parameters correspond to (33), (35) and (36)

conditions, in this case, we can obtain the condition of solvability in the form:

δ
2
1 < (c∗11 + c∗12)

−1 = c∗1, δ
2
1 < (c∗21 + c∗22)

−1 = c∗2, (38)

where also we have the following corresponding to the above notations: c∗11 = c11,
c∗12 = c13 and c∗21 = c31, c∗22 = c33, respectively.

For the integral equation (29) we obtain the condition of solvability in the form:

δ
2
1 <

 β1∫ β1∫
ln2 |x− t|dxdt

− 1
2

. (39)
α1 α1

Further, note that the multiple numerical results to solving of the system (24), (27) 
and the integral equation (29) and its analysis are presented on Appendix.

Conclusion. For investigation the changes in the law of distribution of 
unknown shear forces in this article an effective solution of considered problem is 
presented. The problem is reduced to solving a system of Fredholm integral 
equations of the second kind with respect to unknown shear forces which are 
specified o n three different finite intervals and with right-hand sides of which are 
the solutions of the problem in the case of a rigid sheet. Through this 
system of integral equations depending on the change of characteristic 
parameters of the problem the multiple numerical results and its analysis 
are presented. The law of distributions of shear forces is revealed depending 
on the changes in rigidity as from the materials of the stringers and sheet, as the 
changes of horizontal and also vertical distances between the parallel stringers, 
which are presented through its corresponding graphics.
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VERJAVOR ERKAROW�YAMB EREQ TARASE� A�A�GAKAN

STRINGERNERIC BE�NAVOROWMNERI �OXANCOWM� ANVERJ SALIN

KP�OWN 
ERTERI MIJOCOV

Ditarkva� � xndir a�a�gakan anverj sali hamar, orn ir verin

maker owy�i vra irar zowgahe� erkow g�eri erkarow�yamb verjavor

te�amaserowm ow�e�acva� � verjavor erkarow�yamb ereq stringernerov,

tarber a�a�gakan  erkra�a�akan bnow�agrerov: Stringerner� de-

formaciayi en en�arkvowm irenc �ayrerowm kira�va� horizonakan ow�eri

azdecow�yan tak: �oxazdecow�yown� anverj sali  stringerneri mij 
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iragor�vowm � ayl fizikamexanikakan  erkra�a�akan bnow�agrer owne-

co� kp�own �erteri mijocov: Anhayt �o�a�o� larowmneri oro�man xndir�

hangecva� � mimyanc zowgahe� verjavor mijakayqerowm ereq anhayt

fownkcianeri nkatmamb Fredholmi erkrord se�i integral havasarmneri

hamakargi low�man�: Cowyc � trva�, or xndrin bnoro� bnow�agri� para-

metreri �o�oxman oro� tirowy�nerowm ayd havasarowmneri hamakarg�

kareli � low�el hajordakan motavorow�yownneri me�odov: Ditarkva� en

hnaravor masnavor depqer  arzabanva� en verjavor te�amaserowm

gor�o� anhayt �o�a�o� larowmneri varq�  bnowy��: Aynowhet , xndrin

bnoro� bnow�agri� parametreri ar�eqneri bazma�iv �o�oxow�yownneric

kaxva� nerkayacva� en �vayin ha�varkner  nranc bazmako�mani

verlow�ow�yownner:

À. Â. ÊÅÐÎÏßÍ, Ê. Ï. ÑÀÀÊßÍ

ÏÅÐÅÄÀ×À ÍÀÃÐÓÇÎÊ ÎÒ ÒÐÅÕ ÐÀÇÍÎÐÎÄÍÛÕ ÓÏÐÓÃÈÕ
ÑÒÐÈÍÃÅÐÎÂ ÊÎÍÅ×ÍÛÕ ÄËÈÍ Ê ÁÅÑÊÎÍÅ×ÍÎÉ ÏËÀÑÒÈÍÅ

ÏÎÑÐÅÄÑÒÂÎÌ ËÈÏÊÈÕ ÑËÎÅÂ

Ðàññìàòðèâàåòñÿ çàäà÷à äëÿ óïðóãîé áåñêîíå÷íîé ïëàñòèíû, êîòîðàÿ

íà êîíå÷íûõ ó÷àñòêàõ âäîëü äâóõ ïàðàëëåëüíûõ ëèíèé ñâîåé âåðõíåé

ïîâåðõíîñòè óñèëåíà òðåìÿ êîíå÷íûìè ñòðèíãåðàìè. Ñòðèíãåðû äåôîð-

ìèðóþòñÿ ïîä äåéñòâèåì ãîðèçîíòàëüíûõ ñèë, ïðèëîæåííûõ íà èõ êîíöàõ.

Êîíòàêòíûå ñâÿçêè ìåæäó ïëàñòèíîé è ñòðèíãåðàìè îñóùåñòâëÿþòñÿ

ïîñðåäñòâîì îäèíàêîâûõ, òîíêèõ ëèïêèõ ñëîåâ ñ äðóãèìè ôèçèêî-

ìåõàíè÷åñêèìè è ãåîìåòðè÷åñêèìè õàðàêòåðèñòèêàìè. Â ðàáîòå çàäà÷à

îïðåäåëåíèÿ çàêîíà ðàñïðåäåëåíèÿ íåèçâåñòíûõ êàñàòåëüíûõ íàïðÿæåíèé,

äåéñòâóþùèõ ìåæäó áåñêîíå÷íîé ïëàñòèíîé è ñòðèíãåðàìè, ñâåäåíà ê ðå-

øåíèþ ñèñòåìû èíòåãðàëüíûõ óðàâíåíèé Ôðåäãîëüìà âòîðîãî ðîäà ñ òðåìÿ

íåèçâåñòíûìè ôóíêöèÿìè, îïðåäåëåííûìè íà ðàçëè÷íûõ êîíå÷íûõ èíòåð-

âàëàõ. Ïîêàçàíî, ÷òî â îïðåäåëåííîé îáëàñòè èçìåíåíèÿ õàðàêòåðíûõ

ïàðàìåòðîâ çàäà÷è ïîëó÷åííàÿ ñèñòåìà èíòåãðàëüíûõ óðàâíåíèé ìîæåò

áûòü ðåøåíà ìåòîäîì ïîñëåäîâàòåëüíûõ ïðèáëèæåíèé. Ðàññìîòðåíû íå-

êîòîðûå ÷àñòíûå ñëó÷àè è âûÿñíåíû õàðàêòåð è ïîâåäåíèå íåèçâåñòíûõ êà-

ñàòåëüíûõ íàïðÿæåíèé, äåéñòâóþùèõ íà òðåõ êîíå÷íûõ ó÷àñòêàõ. Äàëåå,

â çàâèñèìîñòè îò èçìåíåíèÿ çíà÷åíèé õàðàêòåðíûõ ïàðàìåòðîâ çàäà÷è

îñóùåñòâëåíû ÷èñëåííûé ðàñ÷åò è àíàëèç ïîëó÷åííûõ ðåçóëüòàòîâ.




