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TRANSFER OF LOADS FROM THREE HETEROGENEOUS ELASTIC
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This paper considers the problem for an elastic infinite plate (sheet), which
on parallel finite parts of its upper surface is strengthened by three finite stringers,
two of which are located on the same line, having different elastic properties.
The stringers are deformed under the action of horizontal forces. The interaction
between infinite sheet and stringers takes place through thin elastic adhesive
layers having other physical-mechanical properties and geometric configuration.
The problem of determining unknown shear forces acting between the infinite
sheet and stringers is reduced to a system of Fredholm integral equations of
second kind with respect to unknown functions, which are specified on three
finite intervals. It is shown that in the certain domain of the change of the charac-
teristic parameters of the problem this system of integral equations can be solved
by the method of successive approximations. Particular cases are considered, the
character and behaviour of unknown shear forces are investigated. Further, for
various values of changing characteristic parameters of the problem the multiple
numerical results and its analysis are presented.
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Introduction. The problems associated with of load transfer from thin-
walled elastic elements in the form of elastic stringers or overlays to more massive
elastic bodies (modeled in the form of classical or non-classical regions of elasticity
theory) through adhesive layers is one of the actual in both theoretical and applied
aspects in the region of the contact and mixed problems of elasticity theory. Without
going into details, we note that some of them which is closely associated with this
article. In paper [1] considers the problem of loads transfer from two parallel elastic
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stringers with finite lengths to an infinite sheet through adhesive layers. The problems
for an elastic strip and infinite sheet through adhesive layers, when two finite stringers
are arranged on the same line, with different approach to the solution are considered
in [2,3]. The paper [4] considers the problem for an infinite sheet with two finite
stringers when only one of the stringers is connected through an adhesive layer.
In [5-8], using various approaches, problems are investigated for various elastic
bodies, which are strengthened by a single finite stringer through adhesive layer.
In [9, 10] transfer of loads from finite number of finite elastic stringers to an elastic
infinite sheet (or half-plane) and to an infinite strip through an adhesive layers are
considered. Some contact problems for an elastic infinite sheet strengthened by
parallel finite stringers without adhesive layer are considered in [ 1]. In this article,
a problem is considered for an elastic infinite sheet, which along two parallel lines
of its upper surface is strengthened by three finite stringers two of which are located
on the same line, having different elastic properties. The interaction between sheet
and stringers is assumed to be carried out through thin adhesive layers with different
physical-mechanical properties and geometric configuration.

Statement of the Problem and Obtaining the System of Integral Equations.
Let an elastic infinite plate (sheet) of small constant thickness £, the Young’s modulus
E and the Poisson’s ratio v, which is in a generalized plane stress state (xQOy is its
middle plane), on its upper surface along y = b and y = —d parallel lines being
¢=Db+d (b, d > 0) distance from each other on the [a;,b1], [a2,b2] (a2 > b;) and
[c1,d;] finite intervals is strengthened by three finite stringers modulus of elasticity
equal to E; for x € [a1,b;] (b1 > a1), E, for x € [az,bs] (by > ay) and equal to Ex for
x € [e1,d1] (dy > c1), respectively. It is supposed that the stringers have a rectangular
cross-sections with small areas F; = bjh;, F> = bihy and F3 = b3h3, respectively,
where b} (b] < b1 —ay; by —az), and b3 (b3 < di — c1), are the widths of the stringers
and h; (j=1,3) are their small constant thicknesses. The interaction between
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infinite sheet and stringers takes place through thin, uniform, elastic adhesive layers
with Young’s modulus Ej, Poisson’s ratio v, and small constant thickness /. The
problem is to specify the law of distribution of unknown forces acting between the
sheet and the stringers, when the concentrated forces Py, P> and Q are applied at one
end points of the stringers x = bj, x = b, and x = d, respectively, and are directed to
parallel along the Ox axis (see Fig. 1).

It is assumed that during the deformation for the stringers the model of uniaxial
strain state in combination with the model of contact along the line is realized [12],
and for the adhesive layer there is the pure shear condition [5], i.e. asin [5, 1 1, 12]
bending is neglected and the interaction between sheet and stringers is idealized as a
line loading of the sheet [1-10].

In view of above assumptions, let write the horizontal displacements u; (x, ) and
up(x, —d)of the points of the elastic infinite plate (sheet), when tangential (shear)
forces with intensity p;(x), p2(x) and g(x) act on the [a1,b1], [a2,b2] and [c1,d],
finite intervals of its upper surface along y = b and y = —d parallel lines, respectively,
asin [I], in the following form:

b| b2
1 1 1 1
ui(x,b) = oy / <ln P +C> pi(s)ds+ A" / <ln P +C> p2(s)ds
a4
oo [V g an )
17 1 1 ,
up(x,—d) = 7rA*/ <ln|x_v‘+C) q(v)dv+@/(N(x—s)+C)p1(s)ds
by
1
t— [N+ Opal9)ds, @)

where "

1 K2 A 4Eh _14v
JerE e+ L T arviiGoy)y Ta3ove
p1(x) = b5t (x,b), T (x,b) is the shear stresses, acting under of the stringer on the
[a1,b] finite part, py(x) = bit?) (x,b), T (x,b) is the shear stresses, acting under
of the stringer on the [ay, b5 finite part, and ¢(x) = b37) (x, —d), T3 (x, —d) is the
shear stresses, acting under of the stringer on the [c1,d,] finite part, C is arbitrary
constant.

Note that, the horizontal displacements u (x,y) of the points of an infinite sheet,
arising in the upper half-plane, when shear forces act on its surface along the line
y = —d with intensity T(x) (—eo < x < o0) is given by the formula:

17 1 K(y+d)?
u(x,y) = / In -
mA* ) VE=9)2+(+d)? (x—s)?+(+d)?

N(x)=In

7(s) ds + const,

—o<x< oo, 0<y< oo,
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Now, assuming that each differential element of the adhesive layers is in

a condition of pure shear [1-10], the following contact conditions are obtained:
u) (x) = w1 (x,b) = kipi (%), @ <x<bi, 3)
u® (x) =1 (x,b) = K pa(x) ay <x< by, @)
u (x) — (v, ~d) = K5q (), c <x<d, 5)

where k} = hy/bi Gy, ki = hi/b5Gk, Gy = Ex/2(1+ Vi), Gy is the shear modulus of
adhesive layers, u'") (x) = u") (x,b), u® (x) = u® (x,b) and u® (x) = u® (x, —d) are
the horizontal displacements of the points of the stringers at y = b and y = —d parallel
lines, on the [a;,b1], [az,b>] and [c1,d,] finite intervals, respectively,

(@) =bit(,b) =biGey" (x.b),  pa(x) = b7 (x,b) = biGry” (x,)
and

a(x) =057 (x.~d) = 3G (. ~d). %" (x,5). %7 (x,5) and Y (x.~d)
are the shear deformations of the adhesive layers, on the [a;,b;], [a2,b2]and [c;,d ]
finite intervals, respectively.

Further, taking into account the above assumptions, the differential equations for

the equilibrium of the stringers on finite intervals [ay,b1], [az,b2] and [c1,d;] will be
written in the following form:

d2uV pi(x)
dx2 ElFl ) aj X 1 ( )
d*u®  p(x)
= Sx< by,
2 BB ar Sx< by (7)
d*ul _ q(x)
= — <x<
dx2 E3F3 3 ClXx XX dl ’ (8)
which by virtue of (3), (4) and (5) can be written in the form:
dzl/l(l) (1)
— —nu ) =R (xb), ay <x< by, 9)
d*u®
T~ B () = —pBui(x.b), @w<x<b,  (10)
d2u®®
db)tcz —o2u® (x) = —a®us(x, —d) 1 <x<d. (11)
where we have also the following boundary conditions:
(1 () P
du o, du _ A 7 (12)
dx dx E1F1
x=a, x=b,
) © P
dx dx ExF
X=ap X=b2
du® du® (0]
=0 =—. 14
dx ’ dx ExF; (14
X=C] x=d,
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Here 7 = 1 /KE\Fy, 3 = 1 /K[ Ex B>, o = 1 /k3E3F;.
The solutions to the boundary value problems (9) and (12), (10) and (13),
(11) and (14), respectively, we obtain in the form:

by
u (x) = uy!) (x) + 73 / G (x,5)ui (s,b)ds, am<x<b, (15
a
by
u? (x) = u(()z) (x)+ Yzz/Gg(x,s) ui(s,b)ds, a) <x< by, (16)
a
d
@) — 3 2 _
u (x) =uy’ (x)+ o /K(x,v)uz(v, d)dv, 1 <x<d, (17)

cl
where u(()l) (x), u(()z) (x) and u(()3) (x) are the general solutions of the homogenous
equations corresponding to Egs. (9), (10) and (11), respectively, with the boundary
conditions (12), (13) and (14), respectively, and have the following form:

)y Picoshlyj(x—aj)] . @), Qcoshlo(x—cy)]
o) = ViEjFjsinh[y;(bj—aj)] U=12) w ()= aE3F3sinh[a(d) —c1)]
bj
In Egs. (15), (16) and (17), u'(x) = y}/Gj(x,s)ul(s,b)ds, j=1,2, and

dy
ul® (x) = o? / K(x,v)up(v,—d)dv are the particular solutions of (9), (10) and (11)

cl
with zero boundary conditions corresponding to conditions (12), (13) and (14),

respectively, G;(x,s) (j = 1,2) and K(x,v) are Green’s functions [13], and
Gilx,s) = 1 { cosh[yj(x—bj)|cosh|yj(s—a;)], x>,
I y;sinh[yj(bj—a;)] | cosh[y;(x—aj)]coshlyi(s—b;)], x<s.
K(x,v) = 1 { cosh[ol(x —dy)]coshla(v—rci)], x>,
’ asinh[a(d; —c;)] | coshla(x—cy)|coshlo(v—d;)], x<w.
)

It is obvious that the functions G;(x,s) and K(x,v) are continuous functions and
Gj(x,8) = Gj(s,x), K(x,v) = K(v,x).

Further, by virtue of (15), (16) and (17), according to (3), (4) and (5), we obtain
the following equations:

by
k]kpl(x)—I—ul(x,b):'}/lz/Gl(x,s)ul(s,b)ds—l—u(()l)(x)7 ar<x<by, 19
ap
by
kipa(x) +ui (x,b) = Yzz/Gz(x»S)ul(Sjb) ds+uf) (x), ay<x<by, (19)
a
d

k3q(x) +uz(x,—d) = ocZ/K(x,v) uz (v, —d)dv+ué3)(x), cg<x<d;. (20)

C1
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Now, by virtue of (1) and (2), from (18), (19) and (20) we obtain the following
system of integral equations:

h| bl
1 1 1
—_ 1 C d 1 C d
PO [ (it we) s+ [ (n L) misyas
aj a

')/2 by by |

— —_n 1

+/ V) +C) q(v)dv nA*kT/Gl(x,s) /(n‘s_t|+c) pi(t)dt
a

ai

@ (1)
+/(ln|1t—|—C> pz(t)dt+/(N(s—T)+C)q(7)dr ds+”°k*(x) ,ay <x < by,
-
a

1

by
1 1 1
_— In C d 1 C d
W+ J () it +/( L) palo)as

ai

by

+/ x—v)+C) q(v) = A*k*/szs /(n‘sit|+c> pi(t)dt

| 2

by

+/<n 1 )Pz(t)dt+j(N(sr)+C) (v)dt ds+”(2)(x) a5 <x< b,

|s —1| ki

as

q(x)+m;*k; j(lnxl_v—l-C) q(v)dv+/(N(x—s)+C) pi(s)ds

& 4
o? 1
— C) ds| = K 1 C d
+/ $)+C) pa(s)ds ﬂA*k;/ (x;v) /(n\v—r]+ )q(f) K
ci

C1

uy ()
ks o

+/(N(v—t)+C)p1(t)dt+/(N(v—t)—i—C)pg(t)dt dv+

ai az

It should be noted that the spectrum of the symmetric second-order differential
operator D = —d? /dx?> 4 y*I, with the domain of definition being twice continuous
differentiating functions, satisfying the boundary conditions (du(!)/dx) __ =0and
(du(l)/dx)x:b = 0, are eigenvalues A, = y* +n’x?/(b—a)? (n=0,1,2,...) with
corresponding eigenfunctions cos[nm(x —a)/(b—a)] (n=0,1,2,...).

It is known [13], that symmetric quite continuous integral operator A:

b
Ap = /G(x,s)(p(s)ds
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which acts in the space L(a,b) is an inverse of the operator D. Hence, we have:

b;

/Gj(X,s) cos [mr(s—aj)] ds = ( (bj —a;)” cos [mr(x—aj)] )

bj*aj bj—aj)zyjz—i-l’lzﬂ'Z bj*aj

aj

n=0,1,2,..., j=12, (22)

L e P S e )

dy —c d; —01)2a2+m27r2 dy —c
m=0,1,2,..., (23)

where the functions cos [n?r(x—aj)
bj—a,
(n,m=0,1,2,...) form full orthogonal systems in the spaces L, (a;,b;) and Ly (c1,d),
respectively.
Further, after replacing the variables x, s, v, t and T by ax, as, av, at and at,
respectively, where a > 0 is the coordinate of one of the end points of stringers, we
will represent the system of integral Eq. (21) in the following form:

](J' — 1,2) and cos [m”(x—cl)}

Bi
@1 (x) + 6f /M1 x,1) @i (¢)dt + 8} /M1 x,1) @a(t)dt
o (25
1
+612/H1 D) w(n)dr= D), o <x< By,
&

02(0) + 8 [ Malr) @1(1)d1+ 57 [ Ma(x.1) )

[04] n] (0%) (24)
487 [ (e y(R)dT= [P0, g <x<py.
&
m 1
= =2
V(0 +38) [ Rt y(x)de+8) [Txnpue)dr
51 o

8 [T e d = o), & <x<mi,

where
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91(x) = p1(ax), 2(x) = pa(ax), y(x) = gax),
N(ax) = lné +Ni(x), Ni(x) =1In ! Kk,

\/xz—i-ﬁﬁ_xz‘f‘g%’
oy =ay/a, B =bi/a, 062:2612/6% B> =by/a, & =ci/a, N1 =di/a,
b, =1L/a, 8} =a/nkiA*, §| =a/Tk3A*.

ﬁA
1 ' 1 ,
Mj(x,t):1n|xt|—ayjz/Gj(ax,as)lnds, j=1,2,
o

|s —1]
j
Bj
Hj(x,7) :Nl(x—f)—ayjz-/Gj(ax,as)Nl(s—T)ds, j=12,
aj (25)
m 1
R(x,7) =1In —a(xz/K(ax,av) In——dv,
|x — 1] lv—1|
m
T(x,t) =N, (x—t)—aaz/K(ax,av)Nl(v—t)dv,
&
, . () P.v:coshlav: (x — o
Dy — gy — M0 (@) _ Pixicoshlayibe—ay)l
o) =pila) =g sinhlay; (B;—a)] 71
09— o) — EE)Q@ _ Qacosh[aa(x—él)l‘
WO =40 W= g sinhlac(n —&)]

since according to (22) and (23) we have also the following equalities:

B m
1 1
G; ds=—, j=1,2 K dv=—. 26
a/ J(axaas) S a,}/]gv J i) / (axaav) v ac? ( )
J 1

It is obvious, that the functions féj ) (x) and go(x) are integrable functions on the
segments x € [ay, 1], x € [, B2] and x € [£;, 1], respectively.

Note that the system of integral equations (24) is obtained by the changing the
order of integration, the validity of which follows from the Fubini’s theorem [13].
This theorem will often be used below without special mention.

Now let us consider several particular cases that are directly obtained from the

system (24). In the case 512 = 5% = 0, from the system (24) we obtain the solution
of the corresponding problem for the case of a rigid sheet (i.e. when E — o0) in the
form @1 (x) = f3" (x). x € [a1, Bil, @2(x) = f5” (x). x € [o2, Ba] and w(x) = go(x),
x € [1,m], respectively. In the case of two parallel finite stringers arranged on the
segments [a;,b1] and [c1,d], instead of the system (24), we will obtain a system of
Fredholm integral equations of the second kind with respect to an unknown functions
@1 (x) and y(x) defined on the segments [, ] and [, 1], respectively, in the
following form:
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B
o1 (x +61/M1 (1)t dt+51/H1 (D) w(n)dt = £ (x), o <x < By,
ai &

27)

m 1
V() +3) [ R o) y(0dT+3, [ T(n)gn(t)dr = o), & <x<m.
i o
In the case of two finite stringers arranged on the segments [a;,b;] and [a;, bs],
instead of (24), we will obtain the system of Fredholm integral equations of the second
kind with respect to an unknown functions ¢; (x) and @, (x) defined on the segments
[a1, B1] and [0, B2], respectively, in the following form:

B B
01(x)+ 87 [ Mi(x,0)1 (1)t + 8F [ M1 (x,1)@a(0)dt = £ (), o <x< B,
(04} (%) (28)
1 2
@ (x) + 512/M2(x,t)(p1 (1)dr + 82 /Mg(x,t)(pz(t)dt = 1P (%), ; <x < Bo.
o o

In the case of one finite stringer defined on the segment [a;,b;] or on the segment
[c1,d1], instead of system (24), we will obtain the Fredholm integral equation of the
second kind with respect to an unknown function ¢; (x) defined on the segment [, B ]

in the following form:

1
010x)+ 87 [ Mi(en) @il dr = £ (), o <x< B, (29)
o
or with respect to an unknown function y(x) defined on the segment [&;, 1],
respectively, in the following form:

M
Y@ +3; [RxD)p(DdT=qo0). & <x<.
&
Note that the system (24) was obtained without using the stringers equilibrium
conditionS'

/p1 ax)dx = Pi/a, /pz ax)dx =P, /a, /q ax)dx = Q/a. (30)
&
In the system (24), the conditions (30) are satisfied automatically, since the
following equalities hold:

/fo x)dx = Pi/a, /fo x)dx = Py/a, /qo )dx = Qla.
&

These can be easily verified by integrating the first equation of (24) from a; to 3,
the second equation from ; to 3, and the third equation from &; to 1y, then changing
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the order of integration in the resulting double integrals and taking into account the

equalities
Bi B By B2
S My(x,t)dx=0, [My(x,t)dx=0, [Hi(x,7)dx=0, [Hp(x,T)dx=0,
o (07 o 27

m m

J R(x,7)dx =0, [T(x,t)dx=0, which follow from (26).

& ¢

1

Thus, solving the problem is reduced to solving the system (24) of Fredholm
integral equations of the second kind with squarely integrable kernels in two variables
and with right-hand sides, which are the solutions of the problem in the case of rigid
sheet. From the system (24), it is easy to see that at the end points of the stringers
x=0y,x=P1,x= 0, x= P and x = &, x = 1y, the values of unknown functions
¢1(x), ¢2(x) and y(x), respectively, are finite.

Investigation of the Solvability of the System of Integral Equations (24).
Now write the system (24) in the following form:

©+ Ko =yo, (31)
where
01 fél) 8tk Otkiy  8%kis
o= o |, yo=| P |, K= im élikzz §§k23 7
14 q0 01k31 O81k3r O1kss

Bi B m
ey 01 = / My (x, )@ (£)dt, kiopr— / My (x,) @ ()dt, kisy= / Hy(x, 1)y (7)dr,
* &

o

Bi B> m
ooy 1 = / Ma(x, )0 (£)dt, kprpr— / Ma(x, )0 ()dt, knsy— / Hy(x, 1)y ()dr,

o (0% &
B B> m
k31 1= / T(x,0) @1 (1)dt, ksp@r— / T(x,0) oo (1)dt, kazy— / R, 0)w(t)dr. (32)
a o &
V1
Further, consider operator Eq. (31) in Banach space with elements y = » |,
Y3

where yi(x) € Ly(04,B1), y2(x) € Ly(aa,B2), y3(x) € Lr(&1,m1) and with norm:

Iyl = maX{H)’l aen )+ 1721l 5 e o) ||Y3HL2(51,T;1)}~ Ly(a;,Bj), j =12, and
Ly(&;,m1) are spaces of square integrable functions, specified on the intervals (¢t;, B;),
j=1,2,and (&, 1), respectively.

Operators ki1, k2, and k33 act in the spaces Ly (o, B1), L2(0n, B2) and Ly(&1, 1),
respectively, and operators kj», k13, k21, k23, k31 and k3, act in the following form:
kia: Ly(0, Bo)—La(0u, Br), kiz: La(Er,mi)—La( e, Br), kai : Lo(ou, Bi)—La (00, B2),
kyz: Lr(&1,m1)—La(0, Ba), k3t : La(a, Bi)—La(&1,M1), kaz s La(0, B2)—La (&1, 11).



96 TRANSFER OF LOADS FROM THREE HETEROGENEOUS ELASTIC STRINGERS WITH. ..

Obviously, the operator K acts in the Banach space and is a Fredholm operator.
A sufficient condition for inversion of operator / + K is the condition [|K| < 1.
Then (31) can be solved by the method of successive approximations, if | K| < 1,
where

I = max {82k |+ [kizl| + [ kial]), 82K | + ka2 + ksl
<2
1 kst + szl + 1kssll) }

Therefore, the condition ||K|| < 1 will be satisfied, if

S (lkunl + ezl + NIkssll) < 1, 87 (|lkat]l + ka2l + K23 ]) < 1,
=2
01 (|[kst|| + [[ks2|| + [|k33]]) < 1. (33)

In this case, the solution of Eq. (31) is written in the form

S}

¢=1+K)"yo=Y (—1)"K"y,.
m=0

Now let’s determine the values of 512 and gi parameters of the problem, for which
the conditions (33) will be satisfied. From (32), by virtue of Cauchy—Bunyakovski
inequality, we get:

Bi Bi 2 B Bi >
kuill < enrsen = //M%(x,t)dxdz kil < cia, cin = //Mzz(x,t)dxdt ,
o) O 02 0

1

n B Bi B 2
||k13H C13,C13 = //Hl X, T dxdT sz]” c21,C21 = //M%(x,t)dxdt ,

& o a o

B B2 m B 3
k22l < €22, €20 = //M2 x,t dxdt) k23| < 23, €23 = //le(x,’c)dxdr ,
o O él o
Bi m B> M 3
lk3t]] < e31,¢31 = //T2 x,t dxdt) k32|l < €32, 30 = //Tz(x,t)dxdt ,
@& % &
m 111 3
k33|l < €33, ¢33 = / 2(x,T dxdf) . (34)
& &

Obviously, the expressions for ¢;; (i, j = 1,3), are difficult to calculate, but they
can be estimated. It was found out in [1,4, 10], that the following estimates take place:
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1

(Sl

B B 2 B B
e < //ln2 lx—tldxdt | , c2< //ln2 |x—t|dxdt | ,
oy o 0 O
B B2 : B B> :
1 < //ln2 |x—tldxdt ] , cn< //ln2 |x—t|dxdt | ,
o o o o
m M 2 m B 2
c33 < //1112 x—tldxdz | , < //N%(x—r)dxdr .39
&t & & o
m B : B m :
3 < //N%(x—r)dxd’r , 31 < //N]Z(x—t)dxdt ,
&1 o2 & &
B> mi :
€3 < //N%(x—t)dxdt
@

The estimates (35) for ¢13, ¢33, ¢31 and ¢3, can be obtained also in the form:

1 1

! m B 2 m P 2
13 <5 //ln2 [(x—‘c)z—i—fi] dxdt | +xf? // [(x—T)z—Fﬁ] “dxdt ,
&1 o & o
| m B : m B 2
€23 <5 //ln2 [(x—r)2+€f] dxdt | +x0? // [(x—’c)2+€i] “dxdt ,
- 1 o . (6)
1 B mi 2 Bim 2
31 <§ //ln2 [(x—t)z—i-ﬁ] dxdt | +xl? // [(x—t)z—i-ff] “dxdt ,
& & & &
| B> m 2 Bm 2
32 <5 //ln2 [(x—1)* + ¢2] dxdt | +xt? // [(x—1)* + ] “dxdt
& & & &

Then the conditions (33) will be realized, if

512 < (11 —i—6‘12+013)7l =cy, 512 < (c21 +622+023)71 =2,
-2 _
8, < (ca+enten) =, (37)

where ¢y, ¢; and c3 are positive numbers less than unity. The values of unknown
functions @; (x), @2(x) and y(x) in the end points of stringers x = o, x = B, x = 0,
x =, and x = &, x = 1y, respectively, can be obtained from system (24).
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We also note that, from the condition of solvability of the system of Fredholm

integral equations (27), for 52, 3% parameters correspond to (33), (35) and (36)
conditions, in this case, we can obtain the condition of solvability in the form:

2 * x \—1 * <2 * * \—1 *
Of <(cli+cha) =ci, 61 < (e +e3) =, (38)
where also we have the following corresponding to the above notations: ¢j; = ci1,
¢}, = c13 and ¢3; = ¢31, ¢3, = €33, respectively.

For the integral equation (29) we obtain the condition of solvability in the form:

Bi Bi 2
52 < //m2 —t|dedr | . (39)
a0
Further, note that the multiple numerical results to solving of the system (24), (27)
and the integral equation (29) and its analysis are presented on Appendix.
Conclusion. For investigation the changes in the law of distribution of
unknown shear forces in this article an effective solution of considered problem is
presented. The problem is reduced to solving a system of Fredholm integral
equations of the second kind with respect to unknown shear forces which are
specified o n three different finite intervals and with right-hand sides of which are
the solutions of the problem in the case of a rigid sheet. Through this
system of integral equations depending on the change of characteristic
parameters of the problem the multiple numerical results and its analysis
are presented. The law of distributions of shear forces is revealed depending
on the changes in rigidity as from the materials of the stringers and sheet, as the
changes of horizontal and also vertical distances between the parallel stringers,
which are presented through its corresponding graphics.
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Wd. L60NASUL, U M. UUNULE3UWL

JerQudNr, 6AUUNNFE8SUUR BMBEL SUNMUUBN UNUTQGUUUL

USChLAGENLENPS ABNLUYNCNFUTLENDh dNULSNFUL WLJUENQ UULhL

Un2NFL CELSEMh UhQNSNY,

Thypwpywd £ ppinhp wowaquiui wigtpe uwih hwdwp, npe hp ytpht

dwlbpnyph Ypw hpuwp gmquhbtn Gpyme gdtiph  tplupnipyudp  Ytpewynp
ptnuiwutipnd nudtinugywd £ ytpsuynp Gpuipnyeyudp Gptip wipphiigtintiipny,
ypuppbp wopwadqujub b Gpypusuthwljub pbmpwugptipny: Uwpphbgtipbbpp nb-
$npdughwjh to thpuplymu hptbg dSwjptpnd jhpunywd hnphgnimjub nudtph
wgntignpjub pul: Enpuwgnbignipynibp wioytpe uwih b wipphbglpbtph vholt


https://doi.org/10.1093/qjmam/23.4.521
https://doi.org/10.33018/70.3.4
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hpwgnpdynud £ wyp $hghiuibpubhljuui b tphpuswuthwlub phnipwugntip niobk-
gnn Jugmb otipyptiph dheongny: Qohwyg pnpwthnn jwpnudbtiph npnpdwd fubinhpp
hwigbhgwd L dhyjwbg gniquhtin ybpowynp dhowluwjptipnud tiptip wthwjp
$mbhghwtitiph dunpdunip dptinhnpdh Gplpnpn ubinh hinpigpuw; hwjwuwpdbotph
huwdwjupgh nudtwbp: 8nyg L yppgwo, np fubnpht pbnpny pbnipwgphs wwpw-
dtappbiph thnthnjudwb npnp phpnypittipnd wyn hwjuwuwpnuddtiph hwdwlupgp
Jupbih £ nwdtp hwonpnujub dnpuwynpnipnibbbiph dtpnngny: HYhpupyyud to
htwpwynp dwubwynp nbypbp b wpqupuwiws Gh ybipowynp phnudwutipnd
gnponn wihwpp snpunthnng jwpnwittiph Juppp b pbnyep: Wonthtapl, pinphb
punpn? pimpwqphs ywpwdtappbiph wpdbpbph puquwphy thnthnpunipynibbtiphg
upujwo bbhpuugywd b pyuyht hwpquplbtp b Gpwmbg puquulnniwbh
Jtininuonipnibdbip:

A. B. KEPOII4H, K. II. CAAKIH

[NEPEJAYA HATPY30K OT TPEX PABHOPOIHBIX VYIIPYTUX
CTPUHTEPOB KOHEYHBLIX IJMH K BECKOHEYHOW IIJIACTUHE
INOCPEACTBOM JIMIIKUX CJIOEB

Paccmarpusaerca zagada g ynpyroit 6eCKOHEUHON MIaCTHHBI, KOTOPAas
HA KOHEYHBIX YYaCTKax BJIOJIb JBYX NapaJuIeJbHBIX JIMHUI CBOEH BepXHEN
IMOBEPXHOCTU YCUJIEHA TPeMs KOHeuHbiMu cTputrepamu. CrpuHreps snedop-
MWPYIOTCS IO, TeFICTBUEM TOPM30HTAJIBHBIX CHJI, TTPUJIOKEHHBIX HA WX KOHIAX.
KonTakTHBIE CBA3KM MEXKTy TJIACTHHON W CTPUHTEPAMHU OCYIIECTBJIAIOTCS
MTOCPEJCTBOM ONWHAKOBBIX, TOHKUX JUIKUX CJIOEB C APYTUMU (DUBUKO-
MEXaHHIECKIMH ¥ TeOMETPUIECKHMHI XapaKTepucTHKaMu. B pabore zamada
OTIpeJIe/IEHNST 3aKOHA PACITPe/IeTeHNsT HEN3BECTHRIX KacaTeTbHBIX HATPIKEeHNI,
IeHCTBYIOMUX MeXKIAy OeCKOHEIHOH IJIACTHHON M CTPHHIEPAMH, CBEIEHA K pe-
MITEHUTO CUCTEMbI MHTETPAIbHBIX ypaBueHut PpearoaspmMa BTOPOro poia ¢ TpeMs
HEU3BECTHBIMU (DYHKITUAMEU, OIIPE/IEJIEHHBIMI HA, PA3JIMYHBIX KOHEUHBIX WHTED-
Basiax. llokazamo, 9TO B OIpee/IeHHON 00JIACTH M3MEHEHUS XAPAKTEPHBIX
IIapaMeTpoOB 33/1a9M IOJy4YCeHHAd CUCTEMa HMHTEIPAJIBHBIX YPABHCHUN MOXKET
OBITH PEITEHa, METOIOM ITOCIE0BATEILHBIX TPUOINKeHuit. PaccMoTpenb! He-
KOTOPBIE YaCTHBIE CIyTal W BBISICHEHBI XapaKTep U TTOBeleHre HEM3BECTHRIX Ka-
caTeTbHBIX HANPSIKEHN, TeCTBYIONMNX Ha TpeX KOHEYHLIX yJyacTKax. Jlaee,
B 3aBUCAMOCTH OT W3MEHEHWS 3HAUEeHWH XapaKTEePHBIX IapaMeTpPOB 3aJa9un
OCYIIIECTBJICHBl YUCJICHHBIN pacdeT W aHAJIN3 HOJYUYEHHBIX PE3Y/IbTATOB.





