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Introduction. In this article by Rd we denote the d-dimensional Euclidean
space. Let K be a convex compact set in R2. By S we denote the area of K and by L the
length of its boundary. Using arguments that nowadays belong to Integral Geometry,
Crofton in [1] showed the following well known formula (Fig. 1):∫

P/∈K

(ω− sinω)dP =
1
2

L2−πS, (1)

where ω = ω(P) is the visual angle of K from the point P, that is the angle between
the two tangents from P to the boundary of K. Crofton proved this formula by using
methods of integral geometry, that is he considered a pair of independent lines (g1,g2)
with the normalized invariant distribution, which intersect K. Then, he calculated the
probability that these lines intersect inside K

P(g1∩g2 ∈ K).

In this article, we consider a three-dimensional version of the formula.
By E we denote the space of planes in R3 and we represent a plane by e=(p,ξ ),

where p is the distance of e from the origin and ξ is the normal of e. By de = d pdξ

we denote the element of the invariant measure in E. Let B be a convex body (compact
subset) in R3. By M we denote Minkowski’s integral, that is the invariant measure of
planes in R3 that intersect B [1, 2]:

M =
∫
E

I(B)(e)de, (2)
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2 TWO CROFTON FORMULAS IN THE THREE-DIMENSIONAL SPACE.

here (B) is the set of planes intersecting B.
Also, by Γ we denote the space of lines in R3. We use the usual parametrization

of a line γ = (P,Ω), where Ω is the direction of γ and P is the point of intersec-
tion of γ with the hyperplane eO,Ω (the hyperplane containing O and normal to Ω).
By dγ we denote the element of the translation invariant (invariant under the group of
Euclidean motions of R3) measure on Γ. It is known that dγ can be decomposed up to
a constant factor by

dγ = dPdΩ,

where dP is the volume element on eO,Ω [1, 3].

Fig. 1. An illustration on (1).

Main Result. The following formula is proved in this work. Let B be a convex
body in R3. Let |∂B| be the surface area of the boundary of B and M be Minkowski’s
integral of the body. We consider a pair of independent planes (e1,e2), with the
normalized invariant distributions that intersect convex body B. By calculating the
probability of the intersection of these planes intersecting B

P(e1∩ e2∩B 6= /0), (3)

we obtain the following theorem.

T h e o r e m 1. The following formula holds:∫
γ∩B= /0

(ω− sinω)dγ =
M2

2
−π

2|∂B|, (4)

where ω = ω(γ) is the visual angle of B from the line γ , that is the angle between the
two tangents plane from γ to the boundary of B (Fig. 2).

By e(Q,ξ ) we denote the hyperplane containing Q and normal to ξ .
For the point Q /∈ B by W (Q,B)⊂ S2

+ (the upper hemisphere) we denote it by

W (Q,B) = {ξ ∈ S2
+ : e(Q,ξ )∩B 6= /0} (5)

and call it the solid angle of B from Q.
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T h e o r e m 2. The following formula holds:∫
Q/∈B

|W (Q,B)|3dQ = M3−8π
3V (B), (6)

where V (B) is the volume of B and |W (Q,B)| is the area of W (Q,B).

Fig. 2. An illustration on Theorem 1.

Proof of Crofton’s Formula on the Plane. By G we denote the space of
straight lines in R2. It is well known [2] that the invariant measure µ on G can be
decomposed by

dg = dϕ ·d p,

here (p,ϕ) is the usual parametrization of a line g, p is the distance of g from the
origin O, ϕ ∈ S1 is the direction of g and dg is the element of µ . By [K] we denote
the set of lines intersecting a convex domain K. It is known that [1, 2])

µ([K]) = L, (7)

where L is the perimeter of K.
Now we consider the ordered pair of lines (g1,g2) ∈ G×G. There is another

representation for an ordered pair of lines

(g1,g2) = (P,ϕ1,ϕ2),

where P = g1∩g2.

L e m m a 1. The following representation holds [1, 4]:

dg1dg2 = |sin(ϕ1−ϕ2)|dPdϕ1 dϕ2, (8)

where dϕi, i = 1,2, is the arc measure on S1.

Let us calculate the invariant measure pairs of lines that intersect K. According
to (7), we have

µ×µ([K]× [K]) = L2. (9)
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On the other hand we have

µ×µ([K]× [K]) =
∫ ∫

[K]×[K]

dg1dg2 =
∫
K

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dPdϕ1 dϕ2 = (10)

∫
p∈K

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 +
∫

P/∈K

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2.

For the first term of (10) we obtain∫
P∈K

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dPdϕ1 dϕ2 = S
π∫

0

π∫
0

|sin(ϕ1−ϕ2)|dϕ1 dϕ2 = 2πS. (11)

For the second term we have∫
P/∈K

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dPdϕ1 dϕ2 =
∫

P/∈K

β∫
α

β∫
α

|sin(ϕ1−ϕ2)|dPdϕ1 dϕ2 = (12)

∫
P/∈K

dP

β∫
α

dϕ1[

ϕ1∫
α

sin(ϕ1−ϕ2)dϕ2 +

β∫
ϕ1

sin(ϕ2−ϕ1)dϕ2] =

∫
P/∈K

dP

β∫
α

[2− cos(ϕ1−α)− cos(β −ϕ1)]dϕ1 = 2
∫

P/∈K

(ω− sinω)dP,

here [α,β ] is the visual angle of K from P and ω = ω(P) = β −α is the length of the
angle. Substituting (10)–(12) into (9), we obtain (1).

Proof of Theorem 1. By E we denote the space of planes in R3. It is well
known [2] that the invariant measure ν on E can be decomposed by

de = dξ ·d p,

where (p,ξ ) is the usual parametrization of a plane e, p is the distance of e from
the origin O, ξ ∈ S2 is the normal direction of e and de is the element of ν . By (B)
we denote the set of planes intersecting a convex body (compact set) B. M is the
Minkowski’s integral of B, that is the invariant measure of planes in R3 that intersect
B. Now we consider ordered pairs of planes (e1,e2) ∈ E × E. There is another
representation for a ordered pair of planes (see [2])

(e1,e2) = (γ,ϕ1,ϕ2),

where γ = e1 ∩ e2, ϕ1 and ϕ2 are directions orthogonal to γ determining e1 and e2
respectively.

L e m m a 2. The following representation holds [1, 2]:

de1de2 = |sin(ϕ1−ϕ2)|dγdϕ1 dϕ2, (13)

where dγ is the element of the invariant measure in Γ (the space of lines in R3), dϕi,
i = 1,2, is the arc measure on S1.
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Let us calculate the invariant measure pairs of planes that intersect B. According
to (3), we have

ν×ν((B)× (B)) = M2. (14)

On the other hand we have

ν×ν([B]× [B]) =
∫ ∫

[B]×[B]

de1de2 =
∫
Γ

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 = (15)

∫
γ∩B= /0

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 +
∫

γ∩B6= /0

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2.

Here by [B] we also denote the set of lines in R3 intersecting a convex domain
B. The following formula for the invariant measure of lines intersecting a convex body
B is known [2]:

ν([B]) = π|∂B|, (16)

here ∂B is the area of the boundary of B.
For the second term of (15) taking into account (11), we have∫

γ∩B6= /0

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 = π|∂B|
π∫

0

π∫
0

|sin(ϕ1−ϕ2)|dϕ1 dϕ2 = 2π
2|∂B|.

(17)
For the first term of (15) we have∫

γ∩B= /0

π∫
0

π∫
0

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 =
∫

γ∩B= /0

β∫
α

β∫
α

|sin(ϕ1−ϕ2)|dγdϕ1 dϕ2 = (18)

∫
γ∩B= /0

dγ

β∫
α

dϕ1[

ϕ1∫
α

sin(ϕ1−ϕ2)dϕ2 +

β∫
ϕ1

sin(ϕ2−ϕ1)dϕ2] =

∫
γ∩B= /0

dγ

β∫
α

[2− cos(ϕ1−α)− cos(β −ϕ1)]dϕ1 = 2
∫

γ∩B= /0

(ω− sinω)dP, (19)

here [α,β ] is the visual angle of B from γ and ω = ω(γ) = β −α is the length of the
angle. Substituting (15)–(18) into (14), we obtain (4).

Theorem 1 is proved. �
Proof of Theorem 2. Now we consider an ordered triple of planes

(e1,e2,e3) ∈ E3. There is another representation for an ordered triple of planes [2]
(e1,e2,e3) = (Q,ξ1,ξ2,ξ3),

where Q = e1∩ e2∩ e3, ξ1 is the normal direction to ei, i = 1,2,3.

L e m m a 3. The following representation holds [2]:
de1de2de3 = dQdξ1 dξ2dξ3, (20)

where dγ is the element of the invariant measure in Γ (the space of lines in R3), dξi,
i = 1,2, is the area measure on the hemisphere S2

+.
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Let us calculate the invariant measure of triples of planes that intersect B.
According to (2), we have

ν×ν×ν((B)× (B)× (B)) = ν
3((B)× (B)× (B)) = M3. (21)

On the other hand we have

ν
3((B)× (B)× (B)) =

∫ ∫
(B)×(B)×(B)

de1de2de3 =
∫
R3

∫
S2
+

∫
S2
+

∫
S2
+

dQdξ1 dξ2dξ3 =

(22)∫
Q∈B

∫
W (B)

∫
W (B)

∫
W (B)

dQdξ1 dξ2dξ3 +
∫

Q/∈B

∫
S2
+

∫
S2
+

∫
S2
+

dQdξ1 dξ2dξ3.

For the first term of (22) we have∫
Q∈B

∫
S2
+

∫
S2
+

∫
S2
+

dQdξ1 dξ2dξ3 =V (B)|S2
+|3 = 8π

3V (B), (23)

where |S2
+| is the area of the hemisphere. For the second term of (22) we have∫

Q/∈B

∫
W (B)

∫
W (B)

∫
W (B)

dQdξ1 dξ2dξ3 =
∫

Q/∈B

|W (Q,B)|3dQ, (24)

here |W (Q,B)| is the area of the solid angle of B from Q. Substituting (22)–(24) into
(21), we obtain (6).

Theorem 2 is proved. �
Conclusion. In this article we obtain two Crofton type integral formulas in

three-dimensional Euclidean space using methods of integral geometry.
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KROF�ONI TIPI ERKOW BANA�EVER E�A�A� TARA
OW�YOWNOWM

Ays hodva�owm menq stanowm enq erkow Krof�oni tipi integral

bana� er e�a�a� �vklidyan tara�ow�yan mej` �gtagor�elov integral

erkra�a�ow�yan me�odner�:

Р. Г. АРАМЯН, Э. Р. АРАМЯН

ДВЕ ФОРМУЛЫ КРОФТОНА В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ

В данной статье методами интегральной геометрии получены две
интегральные формулы типа Крофтона в трехмерном евклидовом
пространстве.


