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Introduction. In this article by R¢ we denote the d-dimensional Euclidean
space. Let K be a convex compact set in R%. By S we denote the area of K and by L the
length of its boundary. Using arguments that nowadays belong to Integral Geometry,
Crofton in [ 1] showed the following well known formula (Fig. 1):

/(w—sinw)dP: %szns, (1)
PEK
where @ = @(P) is the visual angle of K from the point P, that is the angle between
the two tangents from P to the boundary of K. Crofton proved this formula by using
methods of integral geometry, that is he considered a pair of independent lines (g1, g>)
with the normalized invariant distribution, which intersect K. Then, he calculated the
probability that these lines intersect inside K
P(g1Ng2 €K).

In this article, we consider a three-dimensional version of the formula.

By E we denote the space of planes in R? and we represent a plane by e = (p, £),
where p is the distance of e from the origin and & is the normal of e. By de = dpdé&
we denote the element of the invariant measure in E. Let B be a convex body (compact
subset) in R?. By M we denote Minkowski’s integral, that is the invariant measure of
planes in R? that intersect B [1,2]:

M= [ 15 (e)de. @
E
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2 TWO CROFTON FORMULAS IN THE THREE-DIMENSIONAL SPACE.

here (B) is the set of planes intersecting B.

Also, by I" we denote the space of lines in R3. We use the usual parametrization
of a line y = (P,Q), where Q is the direction of y and P is the point of intersec-
tion of y with the hyperplane ep o (the hyperplane containing O and normal to Q).
By dy we denote the element of the translation invariant (invariant under the group of
Euclidean motions of R?) measure on I'. It is known that dy can be decomposed up to
a constant factor by

dy=dPdQ,

where dP is the volume elementonep o [1,3].

Fig. 1. An illustration on (1).

Main Result. The following formula is proved in this work. Let B be a convex
body in R3. Let |dB]| be the surface area of the boundary of B and M be Minkowski’s
integral of the body. We consider a pair of independent planes (ej,e;), with the
normalized invariant distributions that intersect convex body B. By calculating the
probability of the intersection of these planes intersecting B

P(eyNe;NB#0), (3)
we obtain the following theorem.

Theorem 1. The following formula holds:
M2
/ (w—sinw)dy:7—7r2|83\, (4)
yNB=0

where @ = () is the visual angle of B from the line v, that is the angle between the
two tangents plane from vy to the boundary of B (Fig. 2).

By ¢(Q,&) we denote the hyperplane containing Q and normal to &.
For the point Q ¢ B by W(Q,B) C S2+ (the upper hemisphere) we denote it by

W(Q,B) ={§ €81 :¢(0,5)NB # 0} )
and call it the solid angle of B from Q.
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Theorem 2. The following formula holds:

[ wi.B)Pag = —szv(s) ©)
O¢B
where V(B) is the volume of B and |W(Q,B)| is the area of W(Q, B).

Fig. 2. An illustration on Theorem 1.

Proof of Crofton’s Formula on the Plane. By G we denote the space of
straight lines in R?. It is well known [2] that the invariant measure u on G can be
decomposed by

dg=dg-dp,
here (p, @) is the usual parametrization of a line g, p is the distance of g from the
origin O, @ € S! is the direction of g and dg is the element of u. By [K] we denote
the set of lines intersecting a convex domain K. It is known that [1,2])

u(K)) =L, (1)
where L is the perimeter of K.
Now we consider the ordered pair of lines (g1,82) € G x G. There is another
representation for an ordered pair of lines
(81,82) = (P, @1, 92),
where P = g1 N g».

Lemma 1. The following representation holds [],4]:
dg1dg2= ]sin((pl _(PZ)’de(Pl d(pz, 8)
where d@;, i = 1,2, is the arc measure on S'.

Let us calculate the invariant measure pairs of lines that intersect K. According

to (7), we have
e x p([K] < [K]) = L. ©)
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On the other hand we have

wxp(KIxK)= [ [ dndg= [ / / [sin(g1 — @2)[dPdp dgs = (10)
(KX [K] K00

T T
///Ism @1 — @2)|dydidgr + / //\sm @1 — @2)|dyd e des.
P¢K 0 0

peEK 0
For the first term of (10) we obtain

/ //|s1n 01— @) |dPde,de; = S//|s1n 01— @)|deide, =2nS.  (11)
PEK 0
For the second term we have

///|sm O1— @) |dPde,de; = ///[sm O — @)|dPdo;de, = (12)

P¢K O P¢K o O
B o
/ dp/d(Pl [/ sin(@ — @2)d gz + /sin(<pz —Q1)dpy] =
P¢K @ a o

B
/ dP/[Z — cos(g1 — &) —cos(B — ¢1)|dgr = 2 / (@ — sin@)dP.
P¢K @ PEK
here [, B] is the visual angle of K from P and @ = @ (P) = 8 — « is the length of the
angle. Substituting (10)—(12) into (9), we obtain (1).
Proof of Theorem 1. By E we denote the space of planes in R3. It is well
known [2] that the invariant measure v on E can be decomposed by

de=d¢& -dp,

where (p, &) is the usual parametrization of a plane e, p is the distance of e from
the origin O, & € 8? is the normal direction of e and de is the element of v. By (B)
we denote the set of planes intersecting a convex body (compact set) B. M is the
Minkowski’s integral of B, that is the invariant measure of planes in R? that intersect
B. Now we consider ordered pairs of planes (ej,e;) € E x E. There is another
representation for a ordered pair of planes (see [2])

(81)62) - (% (pla(p2)7

where ¥ = e; Ney, ¢ and ¢, are directions orthogonal to Y determining e; and e;
respectively.

Lemma 2. The following representation holds [1,2]:
deide; = [sin(@1 — @2)|dyd g1 d s, (13)

where dy is the element of the invariant measure in T (the space of lines in R?), d,,
i=1,2, is the arc measure on S'.
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Let us calculate the invariant measure pairs of planes that intersect B. According
to (3), we have
v x v((B) x (B)) = M>. (14)

On the other hand we have

v X v( / / deides = ///|s1n 01— @)|dydoide, = (15)
00
T

I
/ //\sm 01— @)|dydo, de, + / //|s1n 01— @)|dydo, de,.
yNB=0 0 yNBA0 0

Here by [B] we also denote the set of lines in R? intersecting a convex domain
B. The following formula for the invariant measure of lines intersecting a convex body
B is known [2]:

v([B]) = |dB|, (16)

here dB is the area of the boundary of B.
For the second term of (15) taking into account (11), we have

/ / / [sin(1 — ¢2)|dydg) dp: = 7|B] / / [sin(91 — @2)|d @1 dgs = 27|98

yNB#£0 0 0
(17)
For the first term of (15) we have

B B
/ //\sm 01— @)|dydo de, = //\sm ©1— @2)|dydeide, = (18)

yNB=0 0 MB=0 o «

(%]
/ dy/dqn [/sin(wl —<pz)d<pz+/sin(<pz— ¢1)dey] =
yB=0 « o o

/ d}//[z — cos(@1 — ) —cos(B — ¢1)|dgr =2 / (0—sin@)dP, (19)

yB=0 yNB=0
here [, B] is the visual angle of B from yand ® = @(y) = B — a is the length of the
angle. Substituting (15)—(18) into (14), we obtain (4).

Theorem 1 is proved. U

Proof of Theorem 2. Now we consider an ordered triple of planes
(e1,e2,e3) €E 3. There is another representation for an ordered triple of planes [2]

(e1,€2,€3) = (0,81,5,53),

where Q = e1 NeyNes, & is the normal direction to e;, i = 1,2,3.

Lemma 3. The following representation holds [2]:
deideydes = dQd& d&ydEs, (20)
where dy is the element of the invariant measure in T (the space of lines in R?), d&,
i=1,2, is the area measure on the hemisphere Si.
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Let us calculate the invariant measure of triples of planes that intersect B.
According to (2), we have

vxVvxV((B)x (B)x (B))=Vv((B) x (B) x (B)) = M>. 1)

On the other hand we have

v3((B) x (B / / deldezde3 / / / / dQdé& dédés =

R3 §% 8% §2
(22)
/ / / / dQd&; d&d&; + / / / / dQd& dEdé&;.
QcB w(B 0¢B $2 2 §2
For the first term of (22) we have
/ ///deéldizd& V(B)|S:] =87V (B), 23)

0eB 2§

where |S2 | is the area of the hemisphere. For the second term of (22) we have

/ / / /deéldéZd63 /\WQBIdQ, (24)

o¢B W(B 0¢B
here |W(Q,B)| is the area of the sohd angle of B from Q. Substituting (22)—(24) into
(21), we obtain (6).
Theorem 2 is proved. O
Conclusion. In this article we obtain two Crofton type integral formulas in
three-dimensional Euclidean space using methods of integral geometry.
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N N\, Urgusuyy, b0 4rgusuy

uMNdENLE ShMh BRUNF ATLURBIEN BNAURUP SUNrUCNFE3NFLNFT

Wu hnnpwonmd dtbp uypubmd thp Gpym Gpndpendh pphyh htptgpuyg
pwiwaltp tonwsunh EYyhnywi pupwdnpyui gty ogqupuugnpdbny hptgpuyg
tpypuwswthnipjub dtpnnbbpp:

P. I. APAM{H, 5. P. APAMSAH

JIBE ®OPMVYJIbI KPO®TOHA B TPEXMEPHOM IIPOCTPAHCTBE

B nannoit crarbe MeTO/IaMU MHTErPaJIbHOM I'€OMETPHH TOJIyYEHBI J[BE
uHTerpajbabie (opmyabl  Tuna KpodToHa B TpPEXMEPHOM E€BKJIMJIOBOM
IIPOCTPAHCTBE.



