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ON OPTIMAL CONTROL OF THERMOELASTIC VIBRATIONS
OF A PLATE-STRIP

S. H. JILAVYAN ∗ , E. R. GRIGORYAN ∗∗
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The problem of optimal control of elastic vibrations of an isotropic plate-
strip under the influence of temperature and force fields is studied. The function
of changing the external load on the plane of the plate is represented as a control
function. Optimal control is also carried out by the distribution function of
the temperature of the external field over the plate. The well-known classical
hypotheses of thermo-elastic bending of the plate are accepted. The equations
of transverse vibrations of the plate and heat conduction in the plate are solved
under the boundary conditions of heat transfer and the stress state on the planes
of the plate. The method of Fourier series, the method of representing moment
relations, the well-known method of minimizing the functional are used.

https://doi.org/10.46991/PYSU:A.2024.58.1.013

MSC2010: Primary: 35Q93; Secondary: 74F05.
Keywords: vibrations, thermal conductivity, optimal control, thermo-

elasticity.

Introduction. The development of control theory and optimal control is driven
by important practical tasks in the fields of engineering and technology.The methods of
control theory, mathematical physics, and continuum mechanics, taking into account
certain peculiarities, make it possible to generalize control theory for solutions to
applied technological problems of heat conduction, heat transfer, and thermoelasticity
for structural elements of deformable solid bodies. It is widely accepted that these
problems are addressed through control methods applied to systems with distributed
parameters. The issues of optimal control of temperature fields, optimization of
heating, and optimal design of elastic bodies, including plates, are the subjects of
studies in [1–6]. Control of thermoelastic processes in structural elements is one of the
important and modern branches of deformable solid body mechanics. Special attention
is given to the physical-mathematical modeling of mechanical and technical problems
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that arise in various engineering sectors when designing structures that operate at
elevated temperature levels.

Problem Statement. An isotropic rectangular plate-strip with a thickness of
2 h and width a is referred to a rectangular coordinate system x1,y1,z1, z1 ∈ [−h;h],
x1 ∈ [0;a],y1 ∈ (−∞;∞). The plate is under the influence of a temperature field and
the temperature field in the plate T∗(x1,z1, t1), t1 is time parameter. The interaction
between an elastic plate and the surrounding medium is described by well-established
laws of thermo-mechanics. Heat exchange occurs between the surfaces of the plate at
z1 =±h and the external environment [3–5]

λq
∂T∗
∂ z1
±λc

(
T∗−T±c

)
= 0, z1 =±h, (1)

where λq is thermal conductivity coefficient; λc is heat transfer coefficient of the plate
surfaces; T±c (x1, t1) is the temperature at z1 =±h.

The equations of transverse vibrations of the plate-strip in a temperature field
have the form

∂ 2Mx1

∂x2
1
−2ρh

∂ 2W1

∂ t2
1

= 0. (2)

Here, classical hypotheses are adopted for the calculation of isotropic, thin plates(
h2

a2 � 1
)
, Mx1(x1, t1) =−

2
3

h3 E
1−ν2 ·

∂ 2W1

∂x2
1
− 2

3
h2 E

1−ν
αT T1 is bending moment,

W1 is deflection function, T1(x1, t1) =
3

2h2

h∫
−h

z1T∗dz1 is the integral characteristic of

the temperature field of a thin plate, E,ν ,ρ are Young’s modulus, Poisson’s ratio of the
plate material, and the density of the plate material, respectively, αT is the coefficient
of linear thermal expansion. It is known that for a given plate-strip, the functions
characterizing thermoelastic vibrations, W1(x1, t1),T1(x1, t1) represent functions of
displacement and temperature characterizing thermoelastic vibration. The long sides
of the plate x1 = 0,x1 = a are hinged

W1 = 0, Mx1 = 0, x1 = 0, x1 = a. (3)

The real process of thermoelastic deformation of a body is, strictly speaking,
non-uniform and irreversible. The mechanical energy of the oscillating body (plate)
diminishes over time, gradually decreasing from its initial value to the minimum
achievable level, ultimately leading to the establishment of an equilibrium state. The
change in the accumulated energy within the system is expressed as the rate of
mechanical energy dissipation per unit of time.The determination of the temperature
field in a thin-walled structural element, such as a plate, is carried out after reducing the
spatial heat conduction problem, considering the dissipation of mechanical energy, to
a two-dimensional problem. The differential equation of heat conduction concerning
the integral characteristic of the temperature function and the displacement function
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in the plate-strip has the following form:

h2 · ∂
2T1

∂x2
1
−3(1+Bi)T1 =

=
h2(1+ ε0)

aT
· ∂T1

∂ t1
− 3Bi

2
(T+

c −T−c )− ε0h3

αT aT
· 1−2ν

1+ν
· ∂ 3W1

∂ t1∂x2
1
.

(4)

The last term in Eq. (4) characterizes thermoelastic dissipation of mechanical
energy, and thus, Eq. (4) together with Eq. (2) forms a coupled system representing

the thermoelasticity problem for plates. Here Bi =
hλc

λq
is a Biot coefficient

of heat exchange with environment, aT =
λq

cε

is thermal diffusivity coefficient,

ε0 =
cσ − cε

3cε

· 1+ν

1−ν
characterizes the thermoelastic dissipation of the material (from

thermodynamic considerations ε0 > 0), cε is the heat capacity at constant
deformation, cσ is the heat capacity at constant stress. Note that by assuming ε0 = 0
we obtain the well-known heat conduction equation for a thin plate with heat exchange
with the external environment. The heat conduction Eq. (4) corresponds to linear
temperature distribution in a thin plate [2, 3]

T∗ = T0(x1, t1)+
z1

h
T1(x1, t1), (5)

where the integral characteristic T0 =
1
2h

h∫
−h

T∗dz1 is the temperature of the midplane

of the plate z1 = 0. Let a constant temperature be maintained on the boundary surfaces
x1 = 0,x1 = a,

T1 = 0 when x1 = 0, x1 = a. (6)

Taking the initial conditions for the functions W1 and T1 in the form

W1 = ϕ1(x1),
∂W1

∂ t1
= ψ1(x1), T1 = 0 when t1 = 0. (7)

From the perspective of mathematical modeling, a controlled system is defined as an
entity, whose temporal behavior can be manipulated by choosing external thermal
inputs. The peculiarity of controlling thermoelastic vibrations in this problem is taken
into account when heat conduction, thermal deformations, and stresses in the elastic
plate are induced by heat exchange with the surrounding environment and are also
influenced by the deformation process itself.

Let’s assume that the function characterizing the temperature difference of the
external environment on the planes z =±h is represented as

αT

2
(T+

c −T−c ) = v(x1)u(t1), (8)

u(t1) represents the control, the function characterizing the change in temperatures
over time. There is the possibility to control the shape of the external temperature
field source; v(x1) is the distribution function on the surfaces of the plate. The
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control problem is to establish, at a certain moment in time τ , the position of the
thermoelastic system that is closest to the temperature quasi-static state, taking into
account thermoelastic dissipation of mechanical energy.

The task is set to translate the thermoelastic process of plate vibrations described
by Eqs. (2), (4), and conditions (3), (6), (7), (8) into a quasi-static mode.

∂ 2Mx

∂x2
1

= 0,

h2 ∂ 2T1

∂x2
1
−3(1+Bi)T1 =

h2(1+2ε0(1−ν))

aT
· ∂T1

∂ t1
−3Biv(x1)u(t1),

when t1 = τ.

(9)

In this context, the functional characterizing the energy of the external tempera-
ture influence attains its minimum value

Φ =

τ∫
0

u2(t1)dt +2
a∫

0

v2(x1)dx (10)

in the space L2(0,τ)xL2(0,a).
Mathematical Methods and Solution. Adopting a set of new dimensionless

variables x =
x1

a
, t =

t1
τ

, W =
W1

h
, T = αT T1, where x ∈ [0;1], t ∈ [0;1]. In this case,

the vibration Eq. (2) under the influence of the temperature field takes the form

∂ 4W
∂x4 +

a2

h2 (1+ν)
∂ 2T
∂x2 +

1
ω2 ·

∂ 2W
∂ t2 = 0, (11)

where ω = τω0, ω2
0 =

Eh2

3ρa4(1−ν2)
. The heat conduction Eq. (4) taking into account

condition (8), is represented in the form

h2

a2 ·
∂ 2T
∂x2 −3(1+Bi)T = τ0

∂T
∂ t
−3Biu(t)v(x)− εh2τ0

a2(1+ν)
· ∂ 3W

∂ t∂x2 , (12)

where τ0 =
h2(1+ ε0)

τaT
, ε =

ε0(1−2ν)

(1+ ε0)
.

The boundary and initial conditions (3), (6), (7) will be

W = 0,
∂ 2W
∂x2 = 0, T = 0 when x = 0, x = 1, (13)

W = ϕ(x),
∂W
∂ t

= ψ(x), T = 0 when t = 0. (14)

For functions ϕ(x),ψ(x) there are continuity requirements along with their
derivatives of the appropriate order, as well as conditions for matching the initial and
boundary conditions.

The control problem of the thermoelastic process consists of transforming
the system (11), (12) with conditions (13), (14) into equations of the quasi-static
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thermoelastic problem.

∂ 4W
∂x4 +

a2

h2 (1+ν)
∂ 2T
∂x2 = 0,

h2

a2 ·
∂ 2T
∂x2 −3(1+Bi)T = τ1

∂T
∂ t
−3Biu1v(x), when t ≥ 1,

(15)

here u1 = u(1),τ1 = τ0(1+ε),T (t = ∞) =Const. During the time τ , i.e. at t = 1, the
functional attains its minimum value in L2(0,1)xL2(0,1)

Φ =

1∫
0

u2dt +2
1∫

0

v2dx. (16)

It should be noted that τ0 · τ (or τ1 · τ) is the characteristic time for heating the
plate through its thickness in the dynamic thermoelastic process (or in the quasi-static
process). Thermal diffusivity aT characterizes the rate, at which the temperature of the
material equalizes in non-equilibrium heat processe [2,6]. By taking ε0 = 0, we obtain
the equations for elastic transverse vibrations of the plate-strip under a temperature
field arising from heat exchange with the external environment. For solid, isotropic
bodies 0 < ε � 1.

We represent the solutions of Eqs. (11), (12) in the form

W (x, t) =
∞

∑
m=1

ηm (t)sinπmx,

T (x, t) = ∑
∞
m=1 ϑm (t)sinπmx,

(17)

that satisfies conditions (13). We also consider expansions of the functions

v(x) =
∞

∑
m=1

vm sinπmx, (18)

ϕ(x) =
∞

∑
m=1

ϕm sinπmx, ψ(x) =
∞

∑
m=1

ψm sinπmx.

To determine the function ηm(t), ϑm(t),m = 1,2, . . . , we obtain the following coupled
system of equations:

d2ηm(t)
dt2 +ω

2
mηm(t)−

a2

h2 ·
1+ν

π2m2 ω
2
mϑm(t) = 0,

τ0
dϑm(t)

dt
+Amτ0ϑm(t)+ ε

h2

a2 ·
τ0π2m2

1+ν
· dηm(t)

dt
= 3vmBiu(t)

or (
1

ω2
m
· d2

dt2 +1
)(

dηm(t)
dt

+Amηm(t)
)
+ ε

dηm(t)
dt

= Bmvmu(t), (19)

ϑm(t) =
h2π2m2

a2(1+ν)

(
ηm(t)+

1
ω2

m
· d

2ηm(t)
dt2

)
, (20)

ωm = ωπ
2m2, Am =

3(1+Bi)
τ0

+
h2π2m2

τ0a2 , Bm =
3Bi(1+ν)a2

τ0h2π2m2 .
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And for vm we will have

vm = 2
1∫

0

v(x)sinπmxdx. (21)

To satisfy the required conditions when t ≥ 1, we obtain

π
2m2

ηm(t) =
a2

h2 (1+ν)ϑm(t),

(1+ ε)
dϑm(t)

dt
+Amϑm(t)−3

Bi
τ0

u1vm = 0,

what can also be represented in the form of

d2ηm(t)
dt2 = 0, (1+ ε)

dηm(t)
dt

+Amηm(t) = Bmvmu1

when t = 1.

(22)

The unique solution to the problem (19), (20), (14) is presented in the form

ηm(t) = e−hmt(cm cosΩmt +dm sinΩmt)+ fme−λmt +Bmω
2
mvmGm(t), (23)

where

cm =
(ω2

m +λ 2
m−2hmλm)ϕm−2hmψm

(hm−λm)2 +Ω2
m

,

dm =
ϕm((λm−hm)(λmhm−ω2

m)+λmΩ2
m)+ψm(λ

2
m−h2

m +Ω2
m)

Ωm((hm−λm)2 +Ω2
m)

,

fm =
ϕm(h2

m−ω2
m +Ω2

m)+2hmψm

(hm−λm)2 +Ω2
m

,

(24)

Gm(t) =
t∫

0

Fm(t− s)u(s)ds, (25)

and

Fm(t) =
1

(hm−λm)2 +Ω2
m

[
e−λmt − e−hmt

(
cosΩmt +

hm−λm

Ωm
sinΩmt

)]
, (26)

vm = 2
1∫

0

v(x)sinπmxdx, ϕm = 2
1∫

0

ϕ(x)sinπmxdx,

ψm = 2
1∫

0

ψ(x)sinπmxdx.

(27)

The characteristic equation(
s2

ω2
m
+1
)
(s+Am)+ εs = 0 (28)
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for transverse thermoelastic vibrations of a thin, isotropic plate, from thermody-
namic considerations (as ε0� 1), has one negative solution and complex solutions
−λm, −hm± iΩm, λm > 0, Ωm > 0, hm ≥ 0 for all m = 1,2, . . . When ε0 = 0 and
thermoelastic dissipation of mechanical energy is not considered λm = Am,
hm = 0, Ωm = ωm. For the functional (16) we will have

Φ =
∞

∑
m=1

v2
m +

1∫
0

u2(t)dt, (29)

and represent function u(t) in the form

u(t) =
∞

∑
k=1

(ak cosωkt +bk sinωkt)+a0.

The control function v(x)u(t) is divided into two components, and to find the
optimal control, momentary relationships and nonlinear equations are derived [1].

Note that for the solutions of the characteristic Eq. (28), we have

λm +2hm = Am,

Ω
2
m +2hmλm +h2

m = ω
2
m(1+ ε),

λm(h2
m +Ω

2
m) = Amω

2
m,

when t > 1

ϑm(t) = e−
A

1+ε
(t−1)

ϑm(1)−3
Bi

τ0Am
u1vm(e−

A
1+ε

(t−1)−1),

ϑm(1) =
π2m2h2

a2(1+ν)
ηm(1).

Let’s assume that τ =
2α

ω0π
, α = 1,2, . . . , is a multiple of the vibration period

[1]. The system is controllable for τ ≥ 2
ω0π

, if the representation coefficients (23)

cm,dm, fm rapidly decrease with respect to m−→ ∞, besides

cm + fm = ϕm,

Ωmdm−hmcm−λm fm = ψm.

In this case

Φ1m(vm,am,bm) =
d2ηm

dt2

∣∣∣∣∣
t=1

= 0,

Φ2m(vm,am,bm) = (1+ ε)
dηm(t)

dt
+Amηm(t)−Bmvmu(1) = 0.

(30)

The minimizing functional (29) takes the form

a0 = 0, Φ =
∞

∑
m=1

v2
m +

1
2

∞

∑
m=1

(a2
m +b2

m). (31)
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A known method of minimizing the functional is used, resulting in a system of
algebraic equations to determine am,bm,vm and the multipliers δm,µm, m = 1,2, · · · :

Φ1m(vm,am,bm) = 0,
Φ2m(vm,am,bm) = 0,

2vm +δm
∂Φ1m

∂vm
+µm

∂Φ2m

∂vm
= 0,

am +δm
∂Φ1m

∂am
+µm

∂Φ2m

∂am
= 0,

bm +δm
∂Φ1m

∂bm
+µm

∂Φ2m

∂bm
= 0.

(32)

Conclusion. The second variation of the functional

Φ+
∞

∑
m=1

(δmΦ1m +µmΦ2m)

is positive, therefore, extreme solutions lead to a minimum of the functional.
The representation of the control function, i.e., the function of the external

environment temperature, in the form of Eq. (8), leads to a system of nonlinear
algebraic equations for finding the optimal control function, as well as the vibration
and temperature functions.

The solution of the system of algebraic equations is determined ambiguously.
Having one of the solutions, the functional takes the same values on other solutions.
Freedom in choosing controls is used to highlight the solution that is the best from the
point of view of practice.
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SAL-
ERTI JERMAA�A�GAKAN TATANOWMNERI �PTIMAL �EKAVARMAN

MASIN

Ditarkvowm � �ekavarvo�, ba�xva� parametrov hamakargi hamar

�ptimal �ekavarman xndir: Barak, izotrop salerowm o� stacionar,

dinamikakan jermaa�a�gakanow�yan proces� nkaragrvowm � jermasti-

�anayin da�towm laynakan tatanowmneri  sali hamar jerma-

ha�ordakanow�yan diferencial havasarowmneri hamakargov: ha�vi �

a�nvowm mexanikakan �nergiayi jermaa�a�gakan crowm�, ori pat�a�ov

ditarkvowm � jermaa�a�gakanow�yan kapakcva� xndir: Sali dimayin

har�ow�yownneri  artaqin mijavayri mij te�i owni jerma�oxanakow�yown:

Xndir � drva� jermaa�a�gakanow�yan ditarkvo� proces� oro�aki

�amanaki �n�acqowm berel qvazistatik vi�aki: �nd orowm artaqin

jermayin azdecow�yown� bnow�agro� fownkcional� hasnowm � �oqragowyn

ar�eqi, isk artaqin mijavayri jermasti�an� �ekavaro� fownkcian �:

С. А. ДЖИЛАВЯН, Э. Р. ГРИГОРЯН

ОБ ОПТИМАЛЬНОМ УПРАВЛЕНИИ ТЕРМОУПРУГИМИ
КОЛЕБАНИЯМИ ПЛАСТИНКИ-ПОЛОСЫ

Рассматривается задача оптимального управления для управляемой
системы с распределенными параметрами. Процесс нестационарной, дина-
мической термоупругости в тонких, изотропных пластинках описывается
системой дифференциальных уравнений поперечных колебаний в темпера-
турном поле и теплопроводности для пластинки. Учитывается термо-
упругое рассеяние механической энергии, что приводит к связанной задаче
термоупругости между плоскостями пластинки и окружающей средой, где
осуществляется теплообмен. Ставится задача перевода рассматриваемого
процесса термоупругости за некоторое время в квазистатический режим.
При этом функционал, характеризующий энергию внешнего теплового
воздействия, достигает наименьшего значения, а температура окружающей
среды является управляемой функцей.
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