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In this paper, we address the challenges faced when combining noise can-
cellation and automatic speech recognition models. When these models are
combined directly, the performance of word recognition often suffers because
the distribution of input data changes. To overcome this limitation, we propose
a novel method for combining these models, which enhances the ability of the
speech recognition model to perform well in noisy environments.

The key feature of the proposed method is the introduction of a mechanism
to control the aggressiveness of noise reduction. This mechanism enables us to
customize the noise reduction process according to the specific requirements of
the ASR model, without necessitating any retraining. This advantage makes our
method applicable to any ASR model, facilitating its implementation in practical
scenarios.
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Introduction. Advancements in big data and computing power made it possible
effective using of the automatic speech recognition (ASR) technology in various
applications. However, ensuring noise robustness in these applications is a challenging
task, as they need to function effectively in different acoustic environments. Even
though deep neural networks have achieved high accuracy in large-vocabulary speech
recognition [1–3], they require a significant amount of text-audio paired data, which
is time-consuming and expensive to collect. Researchers have explored various
approaches to improve noise robustness, including algorithms in the feature domain
[4–7] or in the model itself [8–10]. Another popular method is multi-condition
training [11], where the acoustic model is trained using noisy speech data.
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In this work, we explore how to combine noise cancellation (NC) and speech
recognition systems. It turns out that chaining these systems directly harms the model
performance. This occurs because the noise cancellation forcibly removes noisy
segments, making a shift in the input data distribution, which adversely affects to the
speech recognition performance.

To address this issue, we propose a new method called Weakly Noise Cancel-
lation that softens the effect of noise reduction without requiring retraining ASR
model. The proposed method was able to improve the accuracy of speech recognition
compared to the baseline ASR model obtained with multi-condition training [11].

Additionally, we found that augmenting the training process with noise can-
cellation, further improves word recognition accuracy. For example, when there is
0 DB of noise, meaning that the noise level is the same as the actual voice, we aim to
decrease the word error rate (WER) by 1.2% compared to the baseline model.

Noise Injection. Adding background noise (N(t)) to a speech signal (S(t))
involves mixing noise and speech signals in the time domain based on a specified
signal-to-noise ratio (SNR), which is defined as the ratio of the power of a speech
signal to the power of background noise:

SNR =
E[S(t)]
E[N(t)]

E[X(t)] =
1
N

N

∑
t=1

X(t)2, (1)

where E is the power of the signal and N is the length of the signal. Typically, it is
expressed in decibels: SNRDB = 10log10 (SNR).

Assuming that both the speech and noise signals have the same amount of
power (if not, we can simply scale the noise signal by a factor of E[S(t)]/E[N(t)]), we
can represent the mixed signal Y (t) as follows:

Y (t) = S(t)+ γN(t), (2)

where γ = 10−
SNRDB

20 . Higher positive SNRDB values indicate better speech signal
quality with less audible noise, while negative SNRDB values imply a higher noise
level and worse speech signal quality, with the speech potentially being obscured by
the noise.

Ideal Ratio Mask. The goal of noise cancellation is to reconstruct or estimate
the original speech signal S(t) from the mixed signal Y (t) as accurately as possible.
This is achieved by minimizing the error between the clean speech and the estimated
target speech signal.

In the frequency domain, Eq. 2 can be expressed as:

Y (t, f ) = S(t, f )+ γN(t, f ) = |Y | · eiθY . (3)

Here, Y (t, f ), S(t, f ) and N(t, f ) represent the spectra of the mixed, speech,
and noise signals at a given frame t and frequency f , respectively. |Y | denotes the
magnitude of the mixed signal, while θY represents its phase. For simplicity, the
time-frequency (T-F) indexes (t, f ) will be omitted from now on.
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Next, let’s define the ground truth ratio mask (M) as the ratio of the magnitudes
of the speech signal (|S|) and the mixed signal (|Y |):

M =
|S|
|Y |

=

√
|S|2

|S|2 + γ2|N|2 + γSN∗+ γS∗N
, (4)

where {}∗ is the conjugate transpose operator. Speech and noise are generally assumed
statistically independent so that expectations of the last two terms in denominator are
zero, although this assumption does not hold in real-world environments. The relaxed
version of the ratio mask is known as the Ideal Ratio Mask (IRM) [12, 13]:

IRM =

√
|S|2

|S|2 + γ2|N|2
(5)

Finally, by estimating the IRM one can estimate the speech component as
follows:

Ŝ(t, f ) = M̂ · |Y | · eiθY . (6)

Here, M̂ represents the estimated ratio mask, which is typically modelled using
Deep Neural Networks. It is important to note that only the magnitude part of the
mixed signal is transformed, while the phase remains unchanged.

Weakly Noise Cancellation. Applying noise cancellation before speech recog-
nition may negatively impact the accuracy of word recognition, even if the audio
remains audible to humans. This is because noise cancellation eliminates noisy
segments forcefully, causing a shift in the input data distribution that ultimately af-
fects speech recognition (see Figure). In this section, we present a new method for
controlling the level of noise reduction.

The top image represents the audio spectrogram before noise cancellation
and the bottom one displays the audio spectrogram after noise cancellation.

For estimated ratio mask M̂, we construct a new adjusted ratio mask by applying
the following transformation:

M̂(α) = α +(1−α)M̂, (7)
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where α takes values from [0,1]. This provides us with a new estimation of the speech
signal:

Ŝ(t, f )(α) = M̂(α) · |Y | · eiθY =

M̂(α)Y (t, f ) =

αY (t, f )+(1−α)M̂Y (t, f ) =

αY (t, f )+(1−α)Ŝ(t, f ) =

αS(t, f )+αγN(t, f )+ Ŝ(t, f )−α Ŝ(t, f ) =

Ŝ(t, f )+αγN(t, f )+α(S(t, f )− Ŝ(t, f ))

(8)

As we can see when α = 0, we achieve the maximum possible noise reduction,
and when α = 1, we do not achieve any noise reduction at all. The term αγN(t, f )
in the last row of Eq. (8) is responsible for controlling the level of noise reduction.
Moreover, if we express α as 10−

d
20 , with d ranging from zero to infinity, the parameter

d takes on a physical meaning, indicating the desired noise level to keep in decibels.
Experiments and Results.
ASR Model. In all of our experiments, for an ASR model we use Conformer-

CTC architecture [2] which effectively combines convolutional and transformer
blocks to model both local and global dependencies of an audio sequence. We use
a medium-size pre-trained Conformer checkpoint (https://catalog.ngc.nvidia.
com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium) that
was made available by Nvidia. The model generates a probability distribution across
subword units with a vocabulary size of 128. During inference, we apply a beam
search with a width of 8 and do not use an external language model.

NC Model. For noise cancellation model we use a stack of 4 GRU layers [14],
incorporating layer normalization between each layer. The final dense layer with
sigmoid activation is responsible for generating ratio mask. This mask is then applied
to the input spectrogram and transformed into a waveform using the Inverse Fourier
Transform. The model was trained on the LibriSpeech dataset [15], while the noise
data used was taken from the MUSAN dataset [16].

Test Dataset and Evaluation Metric. To evaluate the performance of the
speech recognition, we have gathered an audio dataset consisting of 10.5 h of record-
ings. These recordings feature conversational content and involve multiple speakers,
with 2 to 7 speakers per recording. To evaluate the system’s performance in noisy
environments, we also created augmented versions of the dataset by introducing
varying levels of background noise (0 DB,5 DB, and 10 DB). The results of our
experiments are presented in terms of Word Error Rate (WER), which represents the
percentage of words that were inaccurately predicted. All the relevant hyperparameters
have been carefully adjusted using this dataset, and the optimal values are presented
in Table.

Results. Augmenting training dataset with noise has been recognized as a
simple yet effective method for enhancing noise-robustness in speech recognition
models [11]. We consider this approach to be a solid baseline for our work. We fine-
tune the ASR model on an in-house dataset with around 75000 h of English speech.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
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During the training process, we introduce various levels of noise to the speech signals,
spanning from 0 to 50 DB signal-to-noise ratios. The first row in Table (labeled
Multi-Condition training) showcases the baseline WER results of the model trained
with noise augmentation.

WER results of differnet methods

Orig 0DB 5DB 10DB

Multi-Condition training (Baseline [11]) 8.78 17.1 12.07 10.26
Full Noise Cancellation 8.85 19.97 13.41 10.82
Power of Ratio Mask (M̂0.8) 8.8 19.08 12.96 10.65
Weakly Noise Cancellation (α=0.6) 8.75 16.53 11.83 10.17

Weakly Noise Cancellation (α=0.3) + NC-Augment 9.07 15.9 11.77 10.24
Teacher-Student (Amazon [8]) 9.09 14.78 11.35 10.1

Next, we implemented a cascaded approach, where we first applied noise
cancellation before feeding the signals into the speech recognition system. The second
row in Table illustrates that direct chaining of noise cancellation and speech recognition
models did not yield improvements. In fact, the performance was significantly worse
compared to the baseline.

To overcome this issue, we applied proposed Weakly Noise Cancellation method
to reduce the aggressiveness of the noise cancellation model before providing the
audio inputs to the ASR model. This approach produces better results compared to
the Full Noise Cancellation, and it also improves the model’s performance compared
to the multi-condition trained baseline.

Additionally, we experimented with an exponential ratio mask transformation,
which involves raising the ratio mask M̂ to a power β . By choosing a value of β less
than 1, we can reduce the aggressiveness of the noise cancellation. However, our
empirical findings showed that the results were much worse compared to the proposed
approach.

But can we further improve? By incorporating NC-like augmentation (see the
5th row in Table) in the training process and applying the Weakly Noise Cancellation
method, as described earlier, we were able to achieve even better results. In the 0 DB
scenario, this approach resulted in a significant 1.2% absolute reduction in WER
compared to the baseline.

Lastly, we also reproduced the results of the study by Movsner et al. [8], where
the authors adopt the Teacher-Student learning technique using a parallel clean and
noisy corpus for improving ASR performance under multimedia noise. In the proposed
approach, clean and noisy audios were fed to the Teacher and the Student models,
respectively, to enforce similarity between the output distributions. On top of that,
they apply a logits selection method, which only preserves the k = 20 highest values
to prevent wrong emphasis of knowledge from the Teacher and to reduce bandwidth
needed for transferring data. As a Teacher model, we use the one obtained via a
multi-condition training baseline. This model processes clean audio to generate logits,
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guiding the training of the Student model on noisy inputs. We fine-tuned the Student
model on an in-house dataset with around 75000 h of noisy speech data. As shown
in the Table, the Teacher-Student method outperforms all previous methods, but it
requires retraining the ASR model, which may not always be possible.

Adapting models to perform better in noisy environments (the last two rows
in Table) can sometimes lead to overfitting to noise characteristics, which affects the
model’s ability to accurately recognize speech in clean audio conditions. Although
these strategies significantly improve the model’s performance in challenging noisy
scenarios, they can introduce a slight degradation in performance on clean audio due
to the model’s increased sensitivity to noise characteristics rather than focusing solely
on the speech signal.

Conclusion. In conclusion, this paper presents a novel solution, Weakly Noise
Cancellation, to address the challenge of integrating noise cancellation with speech
recognition models. By introducing a parameter for the controlled noise reduction, we
were able to enhance the model’s performance in noisy environments compared to the
baseline model trained with the noise augmentation. Additionally, we demonstrate
that even better results can be achieved by incorporating NC-based augmentation
during the training phase.

In future studies, we aim to further develop the concept of Weakly Noise
Cancellation by making the α hyperparameter trainable. Additionally, we intend
to explore the possibility of having a separate reduction parameter for each time-
frequency index, making the method more flexible and adaptable.
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�amanak: Erb ays modelner� ow��akioren hamakcvowm en, ba�eri �ana�man

��grtow�yown� ha�ax tow�owm �, qani or mowtqayin tvyalneri ba�xowm�

�oxvowm �: Ays sahmana�akowm� ha��aharelow hamar a�ajarkvel �

hamakcman nor me�od, or� lavacnowm � xosqi �ana�man modeli ��grtow-

�yown� a�mowki paymannerowm:

A�ajarkvo� me�odi himnakan a�an�nahatkow�yown� a�mowki

he�acman modeli agresivow�yown� verahskelow mexanizmi nerdrowmn �:

Ays mexanizm� hnaravorow�yown � talis harmarecnel a�mowki he�acman

gor��n�ac�` hama�aynASR modeli pahanjneri` a�anc or � veraowsowcman

anhra�e�tow�yan:

Д. С. КАРАМЯН

АДАПТИВНОЕ ШУМОПОДАВЛЕНИЕ ДЛЯ НАДЕЖНОГО
РАСПОЗНАВАНИЯ РЕЧИ В УСЛОВИЯХ ШУМА

В данной статье рассматриваются проблемы, которые появляются
при объединении моделей шумоподавления и автоматического распознава-
ния речи. Когда эти модели объединяются напрямую, производительность
распознавания слов часто страдает из-за изменения распределения входных
данных. Чтобы преодолеть это ограничение, в данной статье рассматрива-
ется новый метод объединения этих моделей, который повышает способность
модели распознавания речи хорошо работать в шумной среде.

Ключевой особенностью предлагаемого метода является введение
механизма управления агрессивностью шумоподавления. Этот механизм
позволяет настроить процесс снижения шума в соответствии с конкретными
требованиями модели ASR без необходимости какого-либо переобучения.
Это преимущество делает данный метод применимым к любой модели
ASR, облегчая его реализацию в практических сценариях.


