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M a t h e m a t i c s

VERTEX DISTINGUISHING PROPER EDGE COLORINGS
OF THE CORONA PRODUCTS OF GRAPHS
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A proper edge coloring of a graph G is a mapping f : E(G)−→ Z≥0 such
that f (e) 6= f (e′) for every pair of adjacent edges e and e′ in G. A proper edge
coloring f of a graph G is called vertex distinguishing, if for any different
vertices u,v ∈V (G), S(u, f ) 6= S(v, f ), where S(v, f ) = { f (e) | e = uv ∈ E(G)}.
The minimum number of colors required for a vertex distinguishing proper
coloring of a graph G is denoted by χ ′vd(G) and called vertex distinguishing
chromatic index of G. In this paper we provide lower and upper bounds on the
vertex distinguishing chromatic index of the corona products of graphs.
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Introduction. All graphs considered in this paper are finite, undirected, and
have no loops or multiple edges. We mainly use West’s book [1] for terminologies and
notations not defined here. Let V (G) and E(G) denote the sets of vertices and edges
of a graph G, respectively. The degree of a vertex v ∈V (G) is denoted by dG(v) and
the maximum degree of G by ∆(G). A proper edge coloring of a graph G is a mapping
f : E(G)→ Z≥0 such that α(e) 6= α(e′) for every pair of adjacent edges e and e′ in
G. If f is a proper edge coloring of a graph G and v ∈ V (G), then the spectrum of
a vertex v, denoted by S (v, f ), is the set of all colors appearing on edges incident to
v. We use the standard notations Pn, Cn, Kn and Km,n for the path, cycle, complete
graph on n vertices and the complete bipartite graph with m vertices in one part and n
vertices in the other part of the bipartition, respectively.

The proper edge coloring f of a graph G is a vertex distinguishing proper
coloring (abbreviated V DP-coloring) of G if S(u, f ) 6= S(v, f ) for any two distinct
vertices u and v in G. The minimum number of colors required for a VDP-coloring
of a graph G without isolated edges and with at most one isolated vertex is called
the vertex distinguishing chromatic index (abbreviated V DP-chromatic index) and
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denoted by χ ′vd(G). The concept of vertex distinguishing proper edge colorings of
graphs was introduced by Burris and Schelp in [2] and, independently, as observability
of a graph, by Cerný, Hornák and Soták [3]. In [2–6], the vertex distinguishing proper
edge colorings of paths, cycles, complete, complete bipartite and multipartite graphs
were investigated. In partitcular, the authors determined the vertex distinguishing
chromatic index of some families of graphs. The following results have been proved
by Burris and Schelp [2].

T h e o r e m 1. If n≥ 3, then

χ
′
vd(Kn) =

{
n i f n is odd,
n+1 i f n is even.

T h e o r e m 2. Let m and n be any natural numbers. Then

χ
′
vd(Km,n) =

{
n+1 i f n > m≥ 2,
n+2 i f n = m≥ 2.

The corona product of graphs G and H is denoted by G ◦H. It consists of
one copy of G, called the center graph and |V (G)| copies of H, referred to as the
outer graphs. The i-th vertex of G is connected to every vertex of the i-th copy of H,
where 1≤ i≤ |V (G)|. The corona product of graphs was introduced by Frucht and
Harary [7] in 1970.

In [8], Baril, Kheddouci and Togni investigated vertex distinguishing proper
edge colorings of Cartesian, direct, strong and lexicographic products of graphs.
In particular, they derived upper bounds on the vertex distinguishing chromatic index
of these products of graphs in terms of the vertex distinguishing chromatic indices
of the factors. In this paper we consider vertex distinguishing proper edge colorings
of corona products of graphs. In particuar, we give lower and upper bounds for
VDP-chromatic index of the corona products of graphs.

Main Results. We begin our considerations with the following result about
lower and upper bounds on the vertex distinguishing chromatic index of corona
products of graphs.

T h e o r e m 3. If G and H are graphs with n vertices (n≥ 2) and m vertices
(m≥ 2), respectively, then

∆(G)+m≤ χ
′
vd(G◦H)≤


max

{
χ ′vd(G),χ ′vd(H)

}
+m i f m≥ n,

max
{

χ ′vd(G),χ ′vd(H)
⌈ n

m

⌉}
+m i f m < n.

Proof. First we show that χ ′vd(G◦H)≥ ∆(G)+m.
Since, by the definition of the corona product, each vertex of the graph G

is connected to all m vertices of the corresponding copy of H, we have
χ ′vd(G◦H)≥ ∆(G)+m.

Let us now prove the upper bound on χ ′vd(G◦H).
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We denote the i-th copy of graph H by Hi. We will refer to the edges connecting
two vertices from G as the inner edges of graph G, the edges connecting two vertices
from Hi as the inner edges of graph Hi and the edges connecting vertices of G to the
vertices of Hi as connector edges (1≤ i≤ m).

Let V (G) = {v1,v2, . . . ,vn} and V (Hi) = {ui1,ui2, . . . ,uim} be the vertex set of
the graph Hi (1 ≤ i ≤ n). Also, let fG be the VDP-coloring of the graph G with
colors 1,2, . . . ,χ ′vd(G) and fH be the VDP-coloring of the graph H with colors
1,2, . . . ,χ ′vd(H), respectively. Clearly, since each graph Hi is isomorphic to H,
we have χ ′vd(Hi) = χ ′vd(H) (1 ≤ i ≤ n), and we denote that VDP-coloring of the
graph Hi with colors 1,2, . . . ,χ ′vd(H) by fHi (1≤ i≤ n).

We have two cases to consider:
Case 1. m≥ n.
We set M = max

{
χ ′vd(G),χ ′vd(H)

}
. Define an edge-coloring fG◦H of G◦H as

follows: for each edge e ∈ E(G◦H), let

fG◦H(e) =


fG(e) if e ∈ E(G),

fHi(e) if e ∈ E(Hi),

M+1+(i+ j) mod m if e = viui j,vi ∈V (G),ui j ∈V (Hi)
(1≤ i≤ n,1≤ j ≤ m).

Let us show that fG◦H is a VDP-coloring of G◦H with colors 1,2, . . . ,M+m.
By the definition of fG◦H , we have
(1) for each i (1≤ i≤ n),

S(vi, fG◦H) = S(vi, fG)∪{M+1,M+2, . . . ,M+m};

(2) for each i (1≤ i≤ n) and for each j (1≤ j ≤ m),

S(ui j, fG◦H) = S(ui j, fHi)∪{M+1+(i+ j) mod m}.

Let us now show that for each pair of vertices w,z ∈V (G◦H),

S(w, fG◦H) 6= S(z, fG◦H).

Subcase 1.1. w,z ∈V (G).
By the definition of fG◦H , we have S(w, fG◦H)= S(w, fG)∪{M+1,M+2, ...,M+

m} and S(z, fG◦H) = S(z, fG)∪{M+1,M+2, ...,M+m}. Since fG is a VDP-coloring,
we have S(w, fG) 6= S(z, fG), and, hence S(w, fG) ∪ {M + 1,M + 2, ...,M + m} 6=
S(z, fG)∪{M+1,M+2, ...,M+m}.

Subcase 1.2. w = ui1 j1 ∈ V (Hi1),z = ui2 j2 ∈ V (Hi2)(1 ≤ i1, i2 ≤ n;
1≤ j1, j2 ≤ m; i1 6= i2 or j1 6= j2).

By the definition, we have S(ui1 j1 , fG◦H) = S(ui1 j1 , fH)∪ {M + 1+ (i1 + j1)
mod m} and S(ui2 j2 , fG◦H) = S(ui2 j2 , fH)∪{M + 1+(i2 + j2) mod m}. There are
two possible subcases:

Subcase 1.2.1. j1 6= j2.
fHi1

is a VDP-coloring, hence S(ui1 j1 , fHi1
) 6= S(ui1 j2 , fHi1

). On the other hand,
Hi1 is isomorphic to Hi2 , meaning that S(ui1 j2 , fHi1

) = S(ui2 j2 , fHi2
). Then we have

S(ui1 j1 , fG◦H) 6= S(ui2 j2 , fG◦H).
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Subcase 1.2.2. j1 = j2 = j.
Hi1 is isomorphic to Hi2 , so S(ui1 j, fHi1

) = S(ui2 j, fHi2
). By the definition, i1 6= i2

and i2− i1 < n≤ m, hence (i1 + j) mod m 6= (i2 + j) mod m and M+1+(i1 + j)
mod m 6= M+1+(i2 + j) mod m. Then, S(ui1 j1 , fG◦H) 6= S(ui2 j2 , fG◦H).

Subcase 1.3. w ∈V (G),z = ui j ∈V (Hi),(1≤ i≤ n; 1≤ j ≤ m).
By the definition of fG◦H , S(w, fG◦H) = S(w, fG)∪{M + 1,M + 2, ...,M +m}

and S(z, fG◦H) = S(z, fHi) ∪ {M + 1 + (i + j) mod m}. On the other hand,
we have S(z, fHi) ∩ {M + 1,M + 2, . . . ,M + m} = /0. As m ≥ 2, we have
S(w, fG◦H)\S(z, fG◦H) 6= /0. Thus, inequality holds.

Case 2. m < n.
Define an edge-coloring f ′Hi

of Hi as follows: for each edge e ∈ E(Hi), let

f ′Hi
(e) = fHi(e)+χ

′
vd(H)

⌊ i−1
m

⌋
(1≤ i≤ n).

We set M′ = max
{

χ ′vd(G),χ ′vd(H)
⌈ n

m

⌉}
. Then, edge-coloring fG◦H of G◦H

is defined as follows: for each edge e ∈ E(G◦H), let

fG◦H(e) =


fG(e) if e ∈ E(G),

f ′Hi
(e) if e ∈ E(Hi),

M′+1+(i+ j) mod m if e = viui j,vi ∈V (G),ui j ∈V (Hi)
(1≤ i≤ n,1≤ j ≤ m).

Let us show that fG◦H is a VDP-coloring of G◦H with colors 1,2, . . . ,M′+m.
By the definition of fG◦H , we have
(1) for each i (1≤ i≤ n),

S(vi, fG◦H) = S(vi, fG)∪{M′+1,M′+2, . . . ,M′+m};
(2) for each i (1≤ i≤ n) and for each j (1≤ j ≤ m),

S(ui j, fG◦H) = S(ui j, f ′Hi
)∪{M′+1+(i+ j) mod m}.

Let us now show that for each pair of vertices w,z ∈V (G◦H),

S(w, fG◦H) 6= S(z, fG◦H).

Subcase 2.1. w,z ∈V (G).
The proof presented for Subcase 1.1 is valid for this subcase as well.
Subcase 2.2. w = ui1 j1 ∈ V (Hi1),z = ui2 j2 ∈ V (Hi2) (1 ≤ i1 ≤ i2 ≤ n;

1≤ j1 < j2 ≤ m; i1 6= i2 or j1 6= j2).
fHi is a VDP-coloring, hence f ′Hi

is also a VDP-colorng. By the definition of
fG◦H , S(ui1 j1 , fG◦H)= S(ui1 j1 , f ′Hi1

)∪{M′+1+(i1+ j1) mod m} and S(ui2 j2 , fG◦H)=

S(ui2 j2 , f ′Hi2
)∪{M′+1+(i2 + j2) mod m}. We need to show that S(ui1 j1 , fG◦H) 6=

S(ui2 j2 , fG◦H).
We should consider the following subcases:

Subcase 2.2.1.
⌈ i1−1

m

⌉
=
⌈ i2−1

m

⌉
and j1 = j2 = j.

From the Subcase condition, we obtain |i1− i2| < m, hence i1 6≡ i2 (mod m)
and M′+1+(i1 + j) mod m 6≡M′+1+(i2 + j) mod m. Then, inequality holds.
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Subcase 2.2.2.
⌈ i1−1

m

⌉
=
⌈ i2−1

m

⌉
and j1 6= j2.

Hi1 is isomorphic to Hi2 , so S(ui1 j1 , fHi1
) = S(ui2 j1 , fHi2

). By the definition of f ′Hi

and the condition
⌈ i1−1

m

⌉
=
⌈ i2−1

m

⌉
, we conclude that S(ui1 j1 , f ′Hi1

) = S(ui2 j1 , f ′Hi2
).

As f ′Hi2
is a vertex distinguishing coloring, S(ui2 j1 , f ′Hi2

) 6= S(ui2 j2 , f ′Hi2
). Therefore,

we have S(ui1 j1 , fG◦H) 6= S(ui2 j2 , fG◦H).

Subcase 2.2.3.
⌈ i1−1

m

⌉
6=
⌈ i2−1

m

⌉
.

Both fHi1
and fHi2

use color set {1,2, ...,χ ′vd(H)}, hence f ′Hi1
uses color set{

1+χ ′vd(H)
⌊ i1−1

m

⌋
,2+χ ′vd(H)

⌊ i1−1
m

⌋
, ...,χ ′vd(H)+χ ′vd(H)

⌊ i1−1
m

⌋}
and f ′Hi2

uses color set
{

1+χ ′vd(H)
⌊ i2−1

m

⌋
,2+χ ′vd(H)

⌊ i2−1
m

⌋
, ...,χ ′vd(H)+χ ′vd(H)

⌊ i2−1
m

⌋}
.

Assume, without loss of generality, that
⌈ i1−1

m

⌉
<
⌈ i2−1

m

⌉
, then χ ′vd(H) +

χ ′vd(H)
⌊ i1−1

m

⌋
= χ ′vd(H)

(⌊ i1−1
m

⌋
+1
)
< 1+ χ ′vd(H)

⌊ i2−1
m

⌋
. Therefore, there

is no intersection between the two color sets, used by f ′H1
and f ′H2

, meaning that
S(ui1 j1 , f ′Hi1

) 6= S(ui2 j2 , f ′Hi2
), hence S(ui1 j1 , fG◦H) 6= S(ui2 j2 , fG◦H).

Subcase 2.3. w ∈V (G),z ∈V (Hi)(1≤ i≤ n).
The proof presented for Subcase 1.3 is valid for this subcase as well.
For any k ∈ N and a color set S = {s1, . . . ,sn}, define S⊕ k as follows:

S⊕ k = {s1 + k, . . . ,sn + k}.

T h e o r e m 4. Let G and H be graphs with n vertices (n≥ 2) and m vertices
(m ≥ 2), respectively. If there is a VDP-coloring fH for graph H using
χ ′vd(H) colors, such that for any w,z ∈ V (H), there is no k ∈ N, so that
S(w, fH)⊕ k 6= S(z, fH), then

χ
′
vd(G◦H)≤max

{
χ
′
vd(G),χ ′vd(H)+

⌊n−1
m

⌋}
+m.

Proof. Consider 2 cases:
Case 1. m≥ n.
We can use the coloring from the proof of Theorem 3.
Case 2. m < n.
Let us define an edge-coloring f ′′Hi

of Hi as follows: for each edge e ∈ E(Hi),
let

f ′′Hi
(e) = fHi(e)+

⌊ i−1
m

⌋
(1≤ i≤ n).

We set M′′ = max
{

χ ′vd(G),χ ′vd(H)+
⌊n−1

m

⌋}
. Then, an edge-coloring fG◦H

of G◦H is defined as follows: for each edge e ∈ E(G◦H), let



52 VERTEX DISTINGUISHING PROPER EDGE COLORINGS OF THE CORONA PRODUCTS. . .

fG◦H(e) =


fG(e) if e ∈ E(G),

f ′′Hi
(e) if e ∈ E(Hi),

M′′+1+(i+ j) mod m if e = viui j,vi ∈V (G),ui j ∈V (Hi)
(1≤ i≤ n,1≤ j ≤ m).

We shall prove that fG◦H is a VDP-coloring of G ◦ H with colors
1,2, . . . ,M′′+m.

By the definition of fG◦H , we have
(1) for each i (1≤ i≤ n),

S(vi, fG◦H) = S(vi, fG)∪{M′′+1,M′′+2, . . . ,M′′+m};

(2) for each i (1≤ i≤ n) and for each j (1≤ j ≤ m),

S(ui j, fG◦H) = S(ui j, f ′′Hi
)∪{M′′+1+(i+ j) mod m}.

Let us now show that for each pair of vertices w,z ∈V (G◦H),

S(w, fG◦H) 6= S(z, fG◦H).

Subcase 2.1. w,z ∈V (G).
We can use the proof of the Subcase 2.1 from the proof of Theorem 3.
Subcase 2.2. w = ui1 j1 ∈ V (Hi1), z = ui2 j2 ∈ V (Hi2) (1 ≤ i1 ≤ i2 ≤ n;

1≤ j1 < j2 ≤ m; i1 6= i2 or j1 6= j2).
fHi is a VDP-coloring, hence f ′′Hi

is also a VDP-coloring. By the definition
of fG◦H , S(ui1 j1 , fG◦H) = S(ui1 j1 , f ′′Hi1

) ∪ {M′′ + 1 + (i1 + j1) mod m} and
S(ui2 j2 , fG◦H) = S(ui2 j2 , f ′′Hi2

) ∪ {M′′ + 1 + (i2 + j2) mod m}. We need to show
that S(ui1 j1 , fG◦H) 6= S(ui2 j2 , fG◦H).

We should consider the following subcases:

Subcase 2.2.1.
⌈ i1−1

m

⌉
=
⌈ i2−1

m

⌉
.

We can use the proofs of Subcase 2.2.1 and Subcase 2.2.2 from the Proof of
Theorem 3.

Subcase 2.2.2.
⌈ i1−1

m

⌉
6=
⌈ i2−1

m

⌉
.

fHi is a VDP-coloring, then f ′′Hi
is also a VDP-colorng. Hi1 is isomorphic

to Hi2 , so S(ui1 j1 , fHi1
) = S(ui2 j1 , fHi2

). Assume, without loss of generality, that⌈ i1−1
m

⌉
<
⌈ i2−1

m

⌉
. We set k =

⌈ i2−1
m

⌉
−
⌈ i1−1

m

⌉
. Then, by the definition of

f ′′Hi
, S(ui2 j2 , f ′′Hi2

) = S(ui1 j2 , f ′′Hi1
)⊕ k. Based on the Theorem conditions, we have

S(ui1 j2 , f ′′Hi1
)⊕ k 6= S(ui1 j1 , f ′′Hi1

). Then, S(ui2 j2 , f ′′Hi2
) 6= S(ui1 j1 , f ′′Hi1

).
Subcase 2.3. w ∈V (G), z ∈V (Hi)(1≤ i≤ n).
The proof presented for Subcase 1.3 from the proof of Theorem 3 can be used.

C o r o l l a r y. If n≥ m≥ 3, then

n+m≤ χ
′
vd(Kn ◦Km)≤

{
n+m+1 if m is odd,
n+m+3 if m is even.
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Proof. First we show that χ ′vd(Kn ◦Km)≥ n+m.
Consider any VDP-coloring for the graph Kn ◦Km and let w,z be any two

vertices from the graph Kn. Both vertices are incident to n+m− 1 edges. By the
definition of the VDP-coloring, the edges incident to the same vertex should have
different colors, hence at least n+m−1 colors should be used. Moreover, color set of
the edges incident to the vertex w should be different from the color set of the edges
incident to the z, therefore coloring must use at least n+m colors.

Let us now prove the upper bound on χ ′vd(Kn ◦Km).
We should consider two cases:
Case 1. m is odd.
Let Km be any complete graph with vertex set V (Km) = {u0,u1, ...,um−1}.

We define an edge coloring f ′Km
as follows:

f ′Km
(uiu j) =

{
(i+ j) mod m if i+ j < m,

m+1 if i+ j = m.

By the definition of f ′Km
, we have

S(ui, f ′Km
)=

{
{1, ...,(2i mod m)−1}∪{(2i mod m)+1, ...,m−1,m+1} if i < m;
{1, ...,m−1} if i = m.

It is easy to see that f ′Km
is a VDP-coloring with colors 1,2, ...,m−1,m+1 such

that for any vertices w,z∈V (Km) and for any k ∈N, we have S(w, f ′Km
) 6= S(z, f ′Km

)⊕k.
Then, we can use the coloring from the proof of Theorem 4, having f ′Km

as a coloring
for Km.

The number of used colors is max
{

χ ′vd(Kn),m+1+
⌊n−1

m

⌋}
+m. As n≥m,

we have m+ 1+
⌊n−1

m

⌋
≤ n+ 1. On the other hand, from Theorem 1 we have

χ ′vd(Kn)≤ n+1. Thus, the constructed VDP-coloring uses no more than n+m+1
colors. Additionally, when n is odd and n > m+ 1, we have χ ′vd(Kn) ≤ n [2] and

m+1+
⌊n−1

m

⌋
≤ n, hence the algorithm uses n+m colors, which is the lower bound

of the chromatic index of a graph.
Case 2. m is even.
We shall consider two subcases:
Subcase 2.1. m = 4.
Let K4 be a complete graph with vertex set V (K4) = {v1,v2,v3.v4}.

Define an edge-coloring f ′′K4
of K4 as follows: for each edge e ∈ E(K4), let

f ′′Km
(e) =



1 for e = v1v4,

2 for e = v1v2,

3 for e = v2v3,

4 for e = v2v4,

5 for e = v1v3,

6 for e = v3v4.
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By the definition of f ′′K4
, we have S(v1, f ′′K4

) = {1,2,5},S(v2, f ′′K4
) = {2,3,4},

S(v3, f ′′K4
) = {3,5,6} and S(v4, f ′′K4

) = {1,4,6}. It is easy to see that f ′′K4
is a

VDP-coloring with 6 colors, such that for any vertices w,z ∈ V (K4) and for any
k ∈ N, we have S(w, f ′′K4

) 6= S(z, f ′′K4
)⊕ k. Then, we can use the coloring from the

proof of Theorem 4, having f ′′K4
as a coloring for K4. The number of used colors is

max
{

χ ′vd(Kn),6+
⌊n−1

4

⌋}
+ 4. As n ≥ 4, we have 6+

⌊n−1
4

⌋
≤ n+ 2. On the

other hand, from Theorem 1 we have χ ′vd(Kn) ≤ n+ 1, therefore, the constructed
VDP-coloring uses no more than n+6 colors.

Subcase 2.2. m≥ 6.
Let fKm be any VDP-coloring for complete graph Km with colors 1,2, ...,m+1

[2]. Define an edge-coloring f ′′Km
of Km as follows: for each edge e ∈ E(Km), let

f ′′Km
(e) =


m+1 if fKm(e) = m−1,
m+3 if fKm(e) = m+1,
fKm(e) otherwise.

By the definition of f ′′Km
, we have

S(v, f ′′Km
) =

S(v, fKm) if S(v, fKm)∩{m−1,m+1}= /0,
(S(v, fKm)\{m−1})∪{m+1} if S(v, fKm)∩{m−1,m+1}= {m−1},
(S(v, fKm)\{m+1})∪{m+3} if S(v, fKm)∩{m−1,m+1}= {m+1},
(S(v, fKm)\{m−1})∪{m+1,m+3} if S(v, fKm)∩{m−1,m+1}= {m−1,m+1}.

It is easy to see that f ′′Km
is a VDP-coloring. By the definition of fKm , for

any v ∈V (Km) we have S(v, fKm)⊂ {1, ...,m+1}, hence S(v, f ′′Km
)⊂ {1, ...,m−2}∪

{m,m+1,m+3}. We will prove that for any k∈N and for any vertices v1,v2 ∈V (Km),
S(v2, f ′′Km

) 6= S(v1, f ′′Km
)⊕ k.

Suppose, for the sake of contradiction, that there is a k ∈ N and vertices
v1,v2 ∈ V (Km), such that S(v2, f ′′Km

) = S(v1, f ′′Km
)⊕ k. |S(v1, f ′′Km

)| = m− 1, hence
S(v1, f ′′Km

)∩{m,m+ 1,m+ 3} 6= /0. Since k > 0, we have m+ 3 6∈ S(v1, f ′′Km
), hence

S(v1, f ′′Km
)∩{m,m+1} 6= /0. We shall consider three subcases:

Subcase 2.2.1. S(v1, f ′′Km
) = {1,2, ...m−2}∪{m}.

S(v2, f ′′) is ether equal to {2, ..,m− 1}∪{m+ 1} or {4, ..,m+ 1}∪{m+ 3}.
As m≥ 6, both sets contain a color m−1, which is not included in the coloring f ′′Km

.
Subcase 2.2.2. S(v1, f ′′Km

) = {1,2, ...m−2}∪{m+1}.
S(v2, f ′′) can only be equal to {3, ..,m}∪{m+3}. Since m is even, we have

m≥ 4, therefore S(v2, f ′′Km
) contains a color m−1, which is not used in the coloring

f ′′Km
.

Subcase 2.2.3. {m,m+1} ⊂ S(v1, f ′′Km
).

m+ 1 ∈ S(v1, f ′′Km
), hence m+ 3 ∈ S(v2, f ′′Km

) and k = 2. On the other hand,
m ∈ S(v1, f ′′Km

), therefore S(v2, f ′′Km
) contains a color m + 2, which is not used in

coloring f ′′Km
.
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We can use the coloring from the proof of Theorem 4 for graph Kn ◦Km,
using a VDP-coloring with χ ′vd(Kn) colors of Kn and a coloring f ′′Km

of Km.

The number of used colors is max
{

χ ′vd(Kn),m+3+
⌊n−1

m

⌋}
+m. As n ≥ m, we

have
m + 3 +

⌊n−1
m

⌋
≤ n + 3. On the other hand, from Theorem 1 we have

χ ′vd(Kn) ≤ n + 1. Thus, the constructed VDP-coloring uses no more than
n+m+3 colors.

Conclusion. In this paper, we investigated vertex distinguishing proper edge
colorings (VDP-colorings) of corona products of graphs, focusing on determining
lower and upper bounds for the vertex distinguishing chromatic index. We also
provided the algorithm of the coloring and showed, that the coloring is close to the
optimal for corona product of some complete graphs.
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GRAFNERI KORONA ARTADRYALNERI GAGA�NER TARBERAKO� KO�AYIN

NERKOWMNER

G grafi �i�t ko�ayin nerkowm kanvanenq f : E(G) −→ Z≥0 arta-

patkerowm�, orte� grafin patkano� e  e′ har an ko�eri hamar

f (e) 6= f (e′): G grafi f �i�t nerkowm� ko�vowm � gaga�ner tarberako�,

e�e tarber u,v ∈ V (G) gaga�neri hamar S(u, f ) 6= S(v, f ), orte� S(v, f ) =
{ f (e) | e = uv ∈ E(G)}. Gowyneri nvazagowyn qanak�, orn anhra�e�t �

G grafi gaga�ner tarberako� ko�ayin nerkman hamar, n�anakvowm �

χ ′vd(G)-ov  ko�vowm � G-i gaga�ner tarberako� qromatik �iv: Sowyn

hodva�owm nerkayacva� en grafneri korona artadryalneri gaga�ner

tarberako� ko�ayin nerkowmneri qromatik �vi verin  storin gnahata-

kanner�:

Т. К. ПЕТРОСЯН

ВЕРШИННО-РАЗЛИЧАЮЩИЕ ПРАВИЛЬНЫЕ РЕБЕРНЫЕ РАСКРАСКИ
КОРОНЫ ГРАФОВ

Функция f : E(G)−→ Z≥0 называется реберной раскраской графа G.
Реберная раскраска f графа G называется правильной, если для любых
смежных ребер e и e′ из графа G, f (e) 6= f (e′). Правильная реберная раскрас-
ка называется вершинно-различающей, если для любых двух различных
вершин u,v ∈ V (G), S(u, f ) 6= S(v, f ), где S(v, f ) = { f (e) | e = uv ∈ E(G)}.
Наименьшее количество цветов, необходимое для вершинно-различающей
реберной раскраски графа G называется вершинно-различающим хромати-
ческим индексом и обозначается через χ ′vd(G). В этой статье представлены
верхние и нижние оценки вершинно-различающего хроматического индекса
короны графов.


