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VERTEX DISTINGUISHING PROPER EDGE COLORINGS
OF THE CORONA PRODUCTS OF GRAPHS
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A proper edge coloring of a graph G is a mapping f : E(G) — Z> such
that f(e) # f(e') for every pair of adjacent edges e and ¢’ in G. A proper edge
coloring f of a graph G is called vertex distinguishing, if for any different
vertices u,v € V(G), S(u, f) # S(v, f), where S(v, f) = {f(e) | e=uv € E(G)}.
The minimum number of colors required for a vertex distinguishing proper
coloring of a graph G is denoted by x/,(G) and called vertex distinguishing
chromatic index of G. In this paper we provide lower and upper bounds on the
vertex distinguishing chromatic index of the corona products of graphs.
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Introduction. All graphs considered in this paper are finite, undirected, and
have no loops or multiple edges. We mainly use West’s book [ 1] for terminologies and
notations not defined here. Let V(G) and E(G) denote the sets of vertices and edges
of a graph G, respectively. The degree of a vertex v € V(G) is denoted by dg(v) and
the maximum degree of G by A(G). A proper edge coloring of a graph G is a mapping
fE(G) — Z>¢ such that a(e) # o(e’) for every pair of adjacent edges e and ¢’ in
G. If f is a proper edge coloring of a graph G and v € V(G), then the spectrum of
a vertex v, denoted by S (v, f), is the set of all colors appearing on edges incident to
v. We use the standard notations F,, C,, K, and K, , for the path, cycle, complete
graph on n vertices and the complete bipartite graph with m vertices in one part and n
vertices in the other part of the bipartition, respectively.

The proper edge coloring f of a graph G is a vertex distinguishing proper
coloring (abbreviated VDP-coloring) of G if S(u, f) # S(v, f) for any two distinct
vertices # and v in G. The minimum number of colors required for a VDP-coloring
of a graph G without isolated edges and with at most one isolated vertex is called
the vertex distinguishing chromatic index (abbreviated V DP-chromatic index) and
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denoted by . ,(G). The concept of vertex distinguishing proper edge colorings of
graphs was introduced by Burris and Schelp in [2] and, independently, as observability
of a graph, by Cerny, Horndk and Sotdk [3]. In [2-6], the vertex distinguishing proper
edge colorings of paths, cycles, complete, complete bipartite and multipartite graphs
were investigated. In partitcular, the authors determined the vertex distinguishing
chromatic index of some families of graphs. The following results have been proved
by Burris and Schelp [2].

Theorem 1. Ifn > 3, then

n if nis odd,

n+1 if n is even.

%\id (Kn) = {

Theorem 2. Let m and n be any natural numbers. Then

n+l if n>m>2,
n+2 if n=m2>2.

Xoa(Kinn) = {

The corona product of graphs G and H is denoted by Go H. It consists of
one copy of G, called the center graph and |V (G)| copies of H, referred to as the
outer graphs. The i-th vertex of G is connected to every vertex of the i-th copy of H,
where 1 <i < |V(G)|. The corona product of graphs was introduced by Frucht and
Harary [7] in 1970.

In [8], Baril, Kheddouci and Togni investigated vertex distinguishing proper
edge colorings of Cartesian, direct, strong and lexicographic products of graphs.
In particular, they derived upper bounds on the vertex distinguishing chromatic index
of these products of graphs in terms of the vertex distinguishing chromatic indices
of the factors. In this paper we consider vertex distinguishing proper edge colorings
of corona products of graphs. In particuar, we give lower and upper bounds for
VDP-chromatic index of the corona products of graphs.

Main Results. We begin our considerations with the following result about
lower and upper bounds on the vertex distinguishing chromatic index of corona
products of graphs.

Theorem 3. If G and H are graphs with n vertices (n > 2) and m vertices
(m > 2), respectively, then

max { 24(G), Xoq(H) } +m if m=n,
A(G)+m < Jyq(GoH) < i
max{xéd(G),xéd(H) [QW}%—m if m<n.

Proof. First we show that x,(GoH) > A(G) +m.

Since, by the definition of the corona product, each vertex of the graph G
is connected to all m vertices of the corresponding copy of H, we have
%y(GoH) > A(G)+m.

Let us now prove the upper bound on x/,(GoH).
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We denote the i-th copy of graph H by H;. We will refer to the edges connecting
two vertices from G as the inner edges of graph G, the edges connecting two vertices
from H; as the inner edges of graph H; and the edges connecting vertices of G to the
vertices of H; as connector edges (1 <i < m).

Let V(G) = {vi,v2,...,v,} and V (H;) = {u;1,ui,. .., uin } be the vertex set of
the graph H; (1 <i < n). Also, let f; be the VDP-coloring of the graph G with
colors 1,2,...,x!,(G) and fy be the VDP-coloring of the graph H with colors
1,2,...,x.,(H), respectively. Clearly, since each graph H; is isomorphic to H,
we have x/,(H;) = x,,(H) (1 <i<n), and we denote that VDP-coloring of the
graph H; with colors 1,2,..., x/ ,(H) by fu, (1 <i<n).

We have two cases to consider:

Case 1. m > n.

We set M = max {x/,(G), x.,(H) }. Define an edge-coloring fgoy of GoH as
follows: for each edge e € E(GoH), let

fc(e) if ecE(G),
fGoH(e) _ in(e) if e < E(Hl>,
M+1+(i+j) mod m ife=vu;j,vi € V(G),u;j €V (H;)
(1<i<n1<j<m).
Let us show that f;og is a VDP-coloring of G o H with colors 1,2, ..., M + m.

By the definition of fs.y, we have
(1) foreach i (1 <i<n),

S(vi, foor) = SOi, fo)U{M +1,M+2,... .M +m};
(2) for each i (1 <i < n) and for each j (1 < j < m),
S(uij, foor) = S(uij, fu,) U{M+1+(i+j) mod m}.
Let us now show that for each pair of vertices w,z € V(Go H),

S(W’ fGOH) 7& S(Z’fGoH)-

Subcase 1.1. w,z € V(G).

By the definition of fgom, we have S(w, foor) =S(w, fo)U{M+1,M+2,....M+
m} and S(z, feor) = S(z, f6) U{M +1,M +2,...,M+m}. Since fg is a VDP-coloring,
we have S(w, fg) # S(z, f¢), and, hence S(w, fo) U{M + I|,M +2,...M +m} #
S(z, fo)U{M+1,M+2,...M+m}.

Subcase 1.2. w = Ujj € V(H[]),Z = Upj, € V(Hiz) (1 < i, < n
1 < ji,jo <m; iy #iyor ji # jo).

By the definition, we have S(u;, j,, foorn) = S(uiy jy, fu) U{M + 1+ (i1 + j1)
mod m} and S(uj, j,, foorr) = S(tti jo, fr) U{M + 1+ (i2+ j») mod m}. There are
two possible subcases:

Subcase 1.2.1. j; # j».

fh;, is a VDP-coloring, hence S(u;,j, fi; ) # S(ui, jo» fu, ). On the other hand,
Hj, is isomorphic to H;,, meaning that S(u;, j,, fu; ) = S(uirjy, fri,,)- Then we have
S(uiljl afGOH) 7& S(”izj2>fGoH)-
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Subcase 1.2.2. j; = jo, = j.

H;, is isomorphic to H;,, so S(u,-,j,fH,.l) = S(uizj,le.z). By the definition, i; # i»
and i —i; <n < m, hence (i1 +j) mod m# (i +j) mod mand M+ 1+ (i1 + j)
mod m 7'5 M+1+ (iz +]) mod m. Then, S(“iljl ;fGoH) 7& S(uizjz,fGoH).

Subcase 1.3. w e V(G),z=u;; € V(H;),(1 <i<n; 1 < j<m).

By the definition of fgop, SW, feor) = Sw, fo) U{M +1,M +2,.... M + m}
and S(z, foor) = S(z,fu,) U{M + 1+ (i+ j) mod m}. On the other hand,
we have S(z,fu) "{M+1,M+2,... M+m} =0. As m > 2, we have
S(w, feorr) \ S(z, feor) # 0. Thus, inequality holds.

Case 2. m < n.

Define an edge-coloring flli,- of H; as follows: for each edge e € E(H;), let

i—1 .
fie) = fu(e)+ Zla(H) | == | (1 <i<n).
We set M’ = max {xéd(G),xéd(H) {EW } Then, edge-coloring fGoy of GoH
m
is defined as follows: for each edge e € E(GoH), let
fe(e) if ec E(G),
foon(e) = fi,(e) if e€ E(H;),
M +1+(i+j) mod m ife=vu;j,vieV(G),ujj €V (H;)
(1<i<n1<j<m).
Let us show that fs.g is a VDP-coloring of G o H with colors 1,2,...,M' +m.
By the definition of f;.y, we have
(1) foreach i (1 <i<n),
S(vi, foon) = S(vis fo) UM+ 1, M +2,... . M' +-m};
(2) for each i (1 <i < n) and for each j (1 < j < m),
S(uij, foorr) = S(uij, fr,) UAM' + 1+ (i+j) mod m}.
Let us now show that for each pair of vertices w,z € V(GoH),

Sw, foor) # S(z; foon)-

Subcase 2.1. w,z € V(G).

The proof presented for Subcase 1.1 is valid for this subcase as well.

Subcase 2.2. w = Ui j, € V(H,-l),z = Ujj, € V(H,'z) (1 <ih <ip <m
1 < ji < jo<myiy #iyor ji # ja).

fu; is a VDP-coloring, hence ff],- is also a VDP-colorng. By the definition of
JGoHs S(uiljl 7fGOH) :S(ui|j1 7f[/-1,-1)U{M/+1+(i1 +J1) mod m} and S(uizjzafGoH) =
S(uizjz,fgiz) U{M'+ 1+ (i + j») mod m}. We need to show that S(u;, j, foor) #
S(uiyjy, fGotr)-

We should consider the following subcases:

i — 1 i — 1
Subcase 2.2.1. Fl W = Fz 1 and j; = j, = J.
m m

From the Subcase condition, we obtain |ij —i>| < m, hence i} # i, (mod m)

and M'+ 1+ (iy +j) mod m#M +1+ (i+j) mod m. Then, inequality holds.
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i1 —1 h—1
Subcase 2.2.2. Fl W = FZ W and j; # j».
m m
H;, is isomorphic to Hj,, 50 S(u;, j,, fr, ) = S(uis j, , i, ) By the definition of £y,
i1 — 1 i — 1
and the condition F] W = [12 W we conclude that S(ui, ji, fpr, ) = S(uirjy, fiy, )-
m m 1 l
As f;ll_z is a vertex distinguishing coloring, S(u;,;, , f;,l_z) # S(uiyjy, f,’,l_Z). Therefore,
we have S(ui j,, fgor) # S(ttiyjy, fGorr)-
i1 —1 i — 1
Subcase 2.2.3. Fl -‘ #* Fz -|
m m
Both fy, and fy, use color set {1,2,...,x,,(H)}, hence fl’j,l_1 uses color set

[t 2o |22 ana g,

B lat) + | 2}

ir—1

ii—1 i1—1

{1+x£d(H) LTJ ,2+x£d(H)[

i — 1
uses color set{l +x/,(H) VZTJ 2+ 20q(H) [

1 — 1
Assume, without loss of generality, that Fl W < [ -‘, then x,,(H) +
m

20, (H) V]n_i IJ =x,(H) <Vln_1 IJ + 1) <1l4yx,(H) Vzn; IJ. Therefore, there
is no intersection between the two color sets, used by f,’{l and f,’ﬁ, meaning that
S(”iljl 7fI,J,-1 ) # S(”izjz’fléll-z )’ hence S(”iljl vfGOH) 7 S(uizj27fGoH)-

Subcase 2.3. w € V(G),z€ V(H;)(1 <i<n).

The proof presented for Subcase 1.3 is valid for this subcase as well.

For any k € N and a color set S = {s,...,s,}, define S@&k as follows:

SOk={s1+k,...,sn+k}.

Theorem 4. Let G and H be graphs with n vertices (n > 2) and m vertices
(m > 2), respectively. If there is a VDP-coloring fy for graph H using
x.,(H) colors, such that for any w,z € V(H), there is no k € N, so that
S(w, fu) ®k # S(z, fu), then

ta(Got) < max { iy @) atrny+ "L 4

Proof. Consider 2 cases:

Case 1. m > n.

We can use the coloring from the proof of Theorem 3.

Case 2. m < n.

Let us define an edge-coloring f,’}i of H; as follows: for each edge e € E(H;),
let
i—1

m

fh(&) = fule)+ | == | (1 <i<n).

—1
We set M" = max {x{,d(G),xéd(H) + {LJ } Then, an edge-coloring fGoy
m
of GoH is defined as follows: for each edge e € E(GoH), let
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fc(e) if ec E(G),
fGoH(e) — I’_}i(e) if ec E(Hl),
M'"+1+ (i—|—j) mod m ife—= Villij, Vi € V(G),Mij € V(H,')
(1<i<n1<j<m).
We shall prove that fgoy is a VDP-coloring of G o H with colors
1,2,....M" +m.
By the definition of f;.y, we have
(1) foreach i (1 <i<n),

S(vi, foor) = SOvi, fo) U{M" +1,M" +2,... . M" +m};
(2) for each i (1 <i < n) and for each j (1 < j < m),

S(uij, foorr) = S(uij, frr.) U{M" +1+(i+j) mod m}.
Let us now show that for each pair of vertices w,z € V(GoH),

S(W7fGoH) 7& S(Z,fGoH).

Subcase 2.1. w,z € V(G).

We can use the proof of the Subcase 2.1 from the proof of Theorem 3.

Subcase 2.2. w = U j, € V(H,'l), 7 = Ujpj, € V(H,'z) (1 <i <ih<mnm
L<ji<jp<mii#iorji # ja).

fu, is a VDP-coloring, hence f;}[_ is also a VDP-coloring. By the definition
of feor, S(uiyji,feon) = Sy, fr, ) UAM" + 1+ (i + j1) mod m} and
S(ttijy s fGor) = S(uizjzyf[/{/iz) U{M" + 1+ (i + jo) mod m}. We need to show
that S(uiyj,, foor) # S(tiy s fGon)-

We should consider the following subcases:

i1 —1 i — 1
Subcase 2.2.1. Fl -‘ = FZ .
m m

We can use the proofs of Subcase 2.2.1 and Subcase 2.2.2 from the Proof of

Theorem 3.
ii—1 ip—1
Subcase 2.2.2. { W #* { 1
m m

fn; is a VDP-coloring, then fy is also a VDP-colorng. H;, is isomorphic

to Hi,, so S(uij, fu, ) = S(uijy» fu;,). Assume, without loss of generality, that
i —1 i — 1 i — 1 i1 —1

[ll -‘ < Fz W We set k = [12 1 — Fl W Then, by the definition of
1/ m /! m 1/ m m ..
Heo S(uizjz,fH[z) = LS’(Ltiljz,fH[l ) @ k. Based on the Theorem conditions, we have

S(uiljzaf[/-;il ) Dk 7‘é S(”iljl 7f[l-;,-1 ) Then, S(uizjzvfll-;iz) 7& S(uiljl >f[l-},~l )
Subcase 2.3. w € V(G), z€ V(H;)(1 <i<n).
The proof presented for Subcase 1.3 from the proof of Theorem 3 can be used.

Corollary. Ifn>m >3, then

n+m+1 if misodd,

n+m< 204(Kn oK) <
XVd( n m) {I’l—|—m+3 ifml'SEVEn-
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Proof. First we show that x/,(K, 0 K,) > n+m.

Consider any VDP-coloring for the graph K, o K, and let w,z be any two
vertices from the graph K. Both vertices are incident to n 4+ m — 1 edges. By the
definition of the VDP-coloring, the edges incident to the same vertex should have
different colors, hence at least n+m — 1 colors should be used. Moreover, color set of
the edges incident to the vertex w should be different from the color set of the edges
incident to the z, therefore coloring must use at least n + m colors.

Let us now prove the upper bound on (K, 0 K;y,).

We should consider two cases:

Case 1. m is odd.

Let K, be any complete graph with vertex set V(K,,) = {uo,u1,...,Um—1}
We define an edge coloring f,’(m as follows:

i, (uint) = {
By the definition of fi , we have

S(us, fl ) = {I,...,(2imod m) —1}U{(2imod m)+1,....m—1,m+1} if i <m;
" {1,....m—1} if i=m.

It is easy to see that fl’(m is a VDP-coloring with colors 1,2,...,m—1,m+1 such
that for any vertices w,z € V(K,) and for any k € N, we have S(w, fi ) # S(z, f ) ©k.
Then, we can use the coloring from the proof of Theorem 4, having f1’<m as a coloring
for K,,,.

n—1

The number of used colors is max {xéd(Kn),m +1+ L J } +m. Asn>m,
m

(i+j) mod m if i+ j<m,
m+1 if i4+j=m.

—1
we have m+ 1+ V—J <n+1. On the other hand, from Theorem 1 we have
m

X4 (Kn) < n+ 1. Thus, the constructed VDP-coloring uses no more than n+m+ 1
colors. Additionally, when n is odd and n > m+ 1, we have x/,(K,) < n [2] and

1
m+1+ LJ < n, hence the algorithm uses n + m colors, which is the lower bound
m

of the chromatic index of a graph.

Case 2. m is even.

We shall consider two subcases:

Subcase 2.1. m = 4.

Let K4 be a complete graph with vertex set V(Ki) = {vi,v2,v3.v4}.
Define an edge-coloring f,’(’4 of K4 as follows: for each edge e € E(Ky), let
for e =vyvy,
for e =vvy,
for e =vyvs,
fx,(e) =

for e =vyvy,

for e =vvs,

AN L A~ W N =

for e = v3vy.
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By the definition of fi,, we have S(vi, f,) = {1,2,5},S(v2, fx,) = {2,3,4},
S(vs, fx,) = {3,5,6} and S(V4, ) =1{1,4 6} It is easy to see that fx, is a
VDP-coloring with 6 colors such that for any vertices w,z € V(K4) and for any
k € N, we have S(w, f¢,) # S(z, fg,) © k. Then, we can use the coloring from the
proof of Theorem 4, havmg fK as a coloring for K;. The number of used colors is

1 1
max{x;d(Kn),6+ [”4”+4. As n > 4, we have 6 + l”TJ <n+2. On the

other hand, from Theorem 1 we have x/,(K,) < n+ 1, therefore, the constructed
VDP-coloring uses no more than n + 6 colors.

Subcase 2.2. m > 6.

Let fx, be any VDP-coloring for complete graph K, with colors 1,2,...,m+ 1
[2]. Define an edge-coloring f,’<’m of K, as follows: for each edge e € E(K,,), let

m+1 if fk,(e)=m—1,
fRle)=m+3 if fx, (e)=m+]1,
fx, (e) otherwise.

By the definition of f , we have

S fx,) =

Sv, fx,,) if S(v, fx,,)N{m—1,m+1} =0,

S, fx,) \{m—1H)u{m+1} if Sv, fx,)N{m—1,m+1}={m—1},

SO, fx,, ) \{m+1})U{m+3} it S, fx,)N{m—1,m+1} ={m+1},

S, fx,)\{m—-1Hu{m+1,m+3} if S, fx,)N{m—1,m+1}={m—1,m+1}.

It is easy to see that f” is a VDP-coloring. By the deﬁnition of fx,, for

any v € V(K, )wehaveS(vam)C{l .,m~+1}, hence S(v, fg ) C {1,....m—2}U

{m, m+ 1,m+3}. We will prove that for any k € N and for any vertices vi,v, € V(Ky,),
S(va, fx,) # S(v1, f,) k.
Suppose, for the sake of contradiction that there is a k € N and vertices
Vi, V2 E V(Kn), such that S(va, fx ) = S(v1, f,) @ k. |S(v1,fg )| =m— 1, hence
S(vi, fx,) N {m,m+1,m+3} # (2) Since k > 0 we have m—|—3 ¢S(v1,fK ), hence
S(vi, fg, )N {m,m+1} # 0. We shall consider three subcases:
Subcase 2.2.1. S(vi, f ) = {1,2,...m =2} U {m}.
S(va, f") is ether equal to {2,...m—1}U{m+1}or {4,..,m+1}U{m+3}.
As m > 6, both sets contain a color m — 1, which is not included in the coloring f,’én
Subcase 2.2.2. S(vy, fx ) ={1,2,..m =2} U{m+1}.
S(va, f") can only be equal to {3,..,m}U{m+3}. Since m is even, we have

m > 4, therefore S(vs, f,’(’m) contains a color m — 1, which is not used in the coloring

1/
Kn:

Subcase 2.2.3. {m m+4-1} CS(vi, fx, )

m+l € S(v1,fx,), hence m+3 € S(vz, k,) and k = 2. On the other hand,
m e S(vi, fx, ) therefore S(va, fx,) contains a color m+ 2, which is not used in
coloring f7 K,
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We can use the coloring from the proof of Theorem 4 for graph K, o K,,,,
using a VDP-coloring with y/,(K,) colors of K, and a coloring fg of K,.

—1
The number of used colors is max {xv’d(K,,),m+ 34+ LLJ } +m. As n > m, we
m

have
m—l—3+{
m

2,(K,) < n+ 1. Thus, the constructed VDP-coloring uses no more than
n+m-+ 3 colors.

Conclusion. In this paper, we investigated vertex distinguishing proper edge
colorings (VDP-colorings) of corona products of graphs, focusing on determining
lower and upper bounds for the vertex distinguishing chromatic index. We also
provided the algorithm of the coloring and showed, that the coloring is close to the
optimal for corona product of some complete graphs.

-1
n—J < n+3. On the other hand, from Theorem 1 we have
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S. 4. MES,rNUBUL

A UDLELE UNLNLT ULSTANSULLEND GUAUELE, SULAELTUNN, UNAUBPL
uverunruLer

G gpuwdh Ghoyp Ynnuyhti dtipymd ubjuitkbp f: E(G) — Z>o wppu-
wunpybpnuwip, nppptin gpudhtt wunpuing e b ¢ hwplwd Ynntph hwdwp
fle) # f(€): G qpudh f Ghoyp Ghpynuip Yngfmd b ququpltip pupptipuynn,
tipti upptin u,v € V(G) ququpltiph hwdwp S(u, f) # S(v, f), nmptin S(v, f) =
{f(e) | e=uv € E(G)}. Qnybtph tJwqugnyl pwiwlp, npl wihpudbpyp L
G gnudh ququpdbp pupptpuynn Ynnuyhtt dbpuwd hwdiwnp, bhwiwyynmu L
Xyq(G)-n U Yngymu £ G-h ququpdlip puppbpuyng ppndunphy phy: Unyl
hnnjwond btpjuyugyuwd G gpudttiph Ynpniw wpypunpyuiitiph ququipbbp
qupptipunn Ynnuyht epymadbtiph ppndwgphy eyh Jepht b uypnphtr ghwhugpu-
Jubbtpn:

T. K. IIETPOCAH

BEPIHINMHHO-PAZ/INMYAIOIINE ITPABIJIBHBIE PEBEPHBIE PACKPACKN
KOPOHBI I'PA®OB

Oynknus f: E(G) — Z>o Ha3bBaeTcs: pebepHOil packpackoii rpada G.
Pebepnas packpacka f rpada G Ha3bBaeTCs MPABUILHON, €CJIN IJIsi JTIOOBIX
cMexkHbIX pebep e u € us rpada G, f(e) # f(e'). Ipasuwibaas pebephas packpac
Ka Ha3bIBACTCS BEPIIMHHO-PA3IUIAIONIE, eC JIJIs JTIO0BIX JABYX Pa3JIMIHBIX
Bepun u,v € V(G), S(u, f) # S(v,f), toe S(v,f) = {f(e) | e =uv € E(G)}.

HamMenbIiiiee KOJIUIECTBO TIBETOB, HEOOXOINMOE IJISI BEPITMHHO-PA3INIAOIIeit

pebepHoit packpacku rpada G Ha3bIBAETCS BEPITUHHO-PA3IMIAIONTUM XPOMATH-
4eCKHUM HHJIEKCOM 1 obosnadaercs depes X, ,(G). B aroil crarbe npejcraieHbl

BepXHUE U HUXKHUE OIIEHKN BEPIITUHHO-PA3JINYIAIONIET0 XPOMATAIECKOTO HHIEKCA
KOPOHBI I'padoB.



