PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2024, 58(2), p. 57-65

Mathematics

SOME BOUNDS ON THE NUMBER OF COLORS
IN INTERVAL EDGE-COLORINGS OF GRAPHS
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An edge-coloring of a graph G with colors 1,....¢ is called an interval
t-coloring, if all colors are used and the colors of edges incident to each vertex of
G are distinct and form an interval of integers. A vertex v of a graph G = (V,E)
is called a dominating vertex if dg(v) = |V| — 1, where dg(v) is the degree of
vin G. In this paper we prove, that if G is a graph with the dominating vertex
u and it has an interval z-coloring, then t < |V| 4 2A(G — u) — 1, where A(G)
is the maximum degree of G. We also show, that if a k-connected graph G =

W'_ZJ +2> (A(G)—1).

Moreover, if G is also bipartite, then this upper bound can be improved to
V|-2
<1+ (V'kJ + 1) (A(G) —1). Finally, we discuss the sharpness of the

obtained upper bounds on the number of colors in interval edge-colorings of
these graphs.
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(V,E) admits an interval z-coloring, thent < 1+

Introduction. We use [1] for terminology and notation not defined here.
We consider graphs that are finite, undirected, and have no loops or multiple edges.
Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively.
The degree of a vertex v € V(G) is denoted by dg(v), the maximum and minimum
degrees of vertices in G by A(G) and 6(G), respectively. The diameter of G is denoted
by diam(G), the connectivity of G by k(G) and the chromatic index of G by x'(G).
A vertex v of a graph G is a dominating vertex if dg(v) = |V(G)|— 1. A graph G is
k-connected (k € N) if k(G) > k. A proper edge-coloring of a graph G is a mapping
o : E(G) — N such that ot(e) # o(e’) for every pair of adjacent edges e and ¢’ in G.
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If o is a proper edge-coloring of a graph G and v € V(G), then the spectrum of a
vertex v, denoted by S (v, &), is the set of all colors appearing on edges incident to v.
If « is a proper edge-coloring of a graph G and v € V(G), then the smallest and largest
colors of S (v, &) are denoted by S (v, @) and S (v, @), respectively.

An interval t-coloring of a graph G is a proper edge-coloring ¢ of G with colors
1,...,t such that all colors are used and for each v € V(G), the set S (v, @) is an interval
of integers. A graph G is interval colorable, if there is an integer t > 1 for which G
has an interval ¢-coloring. The set of all interval colorable graphs is denoted by 1.
For a graph G € 91, the maximum value of ¢ for which G has an interval ¢-coloring is
denoted by W(G). The notion of interval colorings was introduced by Asratian and
Kamalian [2] (available in English as [3]) in 1987 and was motivated by the problem
of finding compact school timetables, that is, timetables such that the lectures of each
teacher and each class are scheduled at consecutive periods. This problem corresponds
to the problem of finding an interval edge-coloring of a bipartite multigraph.

In [2, 3], Asratian and Kamalian noted, that if G is interval colorable, then
x' (G) = A(G). Asratian and Kamalian also proved [2, 3], that if G is a triangle-free
graph and G € M, then W(G) < |V(G)|— 1. In [4], Kamalian investigated interval
colorings of complete bipartite graphs and trees. In particular, he proved that the
complete bipartite graph K,,, has an interval 7-coloring if and only if
m+n—ged(im,n) <t <m+n—1, where ged(m,n) is the greatest common
divisor of m and n. In [5,6], Petrosyan, Khachatrian and Tananyan investigated interval
colorings of complete graphs and n-dimensional cubes. In particular, they proved that

1
the n-dimensional cube Q, has an interval ¢-coloring if and only if n <t < M

On the other hand, the NP-completeness results for the interval coloring problem on
bipartite graphs were obtained in [7,8]. In fact, for every positive integer A > 11, there
exists a bipartite graph with maximum degree A that has no interval coloring [9].

First upper bounds on the number of colors in interval edge-colorings of graphs
were obtained in [10, 1 1]. In particular, Kamalian [1 1] proved, that if G is a simple
graph with at least one edge and G € 0, then W(G) < 2|V (G)| — 3. Moreover, this
upper bound is sharp for K;. In 2001, Giaro, Kubale and Matafiejski [10] slightly im-
proved the upper bound by showing, that if G is a simple graph with at least 3 vertices
and G € M, then W(G) < 2|V(G)| — 4. On the other hand, in [5] it was proved that
for any € > 0 there exists a graph G such that G € 2t and W(G) > (2 —€)|V(G)|.
In the case of planar graphs general upper bounds on W(G) were improved by

Axenovich [12]. In particular, she proved that if G is a planar graph and G € 1,

11
then W(G) < €|V(G)|, and conjectured that this upper bound can be improved

3
to W(G) < E\V(G)\ This conjecture was recently confirmed in [13, 14]. In [3],

Asratian and Kamalian proved, that if G is connected and G € 0, then
W(G) < (diam(G) + 1) (A(G) — 1) + 1. They also proved, that if G is connected bipar-
tite and G € 91, then this bound can be improved to W (G) < diam(G) (A(G) —1) + 1.
Kamalian and Petrosyan [15] showed that these upper bounds cannot be significantly
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improved. Casselgren, Khachatrian and Petrosyan [16] derived upper bounds on the
number of colors in interval edge-colorings of multigraphs. In particular they proved,
that if G is a connected cubic multigraph and G € 91, then W(G) < |V(G)|+ 1 and
this upper bound is sharp. Recently, Muradyan [17] gave a new upper bound on the
number of colors in interval edge-colorings of complete multipartite graphs.

In this paper we first give a new upper bound on the number of colors in interval
edge-colorings of graphs with a dominating vertex. Then we provide new upper
bounds on W (G) for interval colorable k-connected graphs and k-connected bipartite
graphs. Finally, we discuss the sharpness of the obtained upper bounds on W (G) of
these graphs.

Main Result. Let G be a connected graph and u,v € V(G). Two (u,v)-paths
P and Q are internally disjoint if they have no common internal vertices
(V(P)NV(Q) = {u,v}). We need the following classical result in connectivity of
graphs [1].

Theorem 1. (Menger’s theorem) A graph G is k-connected (|V(G)| > k+1)
if and only if for every pair of vertices u,v € V(G), there are at least k internally
disjoint (u,v)-paths.

Let G and H be graphs. The Cartesian product GUIH is defined as follows:
V(GOH) =V(G) xV(H),

E(GOH) = {(u1,v1)(uz,v2): (u1 =up and vivo € E(H))
or (V] =vyand ujup € E(G))}

We also need the following results on the number of colors in interval
edge-colorings of graphs Ky [5, 10] and Kp[K>q [15].
Theorem 2. Forany g € N, Kys € N and
W (Ky)>20 -2 g
Theorem 3. Forany g € N, K2[1Ky € D and
W(K,O0Kpq) >3-29-2—¢q.
We are now able to prove our first main result.

Theorem 4. If G is a graph with a dominating vertex u and G € N, then

W(G) < [V(G)| +2A(G —u) — 1.

Moreover, if G is a graph with a dominating vertex u, 8(G) > 2 and G € N, then
W(G) < |V(G)|+2A(G —u) —2.

Proof. Let V(G) = {u,vi,...,v,—1} and o be an interval W(G)-coloring
of G.

Consider the vertex u. Let us first show that 1 < S(u, ) < A(G —u) + 1.

Suppose, to the contrary, that S(u, o) > A(G —u) +2. Since for each vertex
v e V(G)\{u}, dg(v) < A(G —u)+ 1, we have that for each vertex v € V(G) \ {u},
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S(v, o) > 2, which is a contradiction, because of the definition of the interval coloring
the color 1 is not used in .
So, we obtain

1 <S(u,00) <AG—u)+1,
hence,
V(G)|—1<Su,a) <AG—u)+1+|V(G)|—2=|V(G)|+A(G—u)—1.

This implies that for each vertex v € V(G) \ {u}, we have S(v,a) < |V (G)| +
+2A(G —u) — 1. Thus, W(G) < |V(G)|+2A(G —u) — 1. Clearly, if G is a star graph,
then the upper bound is sharp.

Now assume that for a graph G € 91 with a dominating vertex u, 6(G) > 2.

Let us show that W(G) < |V(G)| +2A(G —u) — 2.

Suppose, to the contrary, that G has an interval z-coloring f3, where r > |V (G)| +
+2A(G — u) — 1. Since we have already proved that W (G) < |[V(G)|+2A(G —u) — 1
for any interval colorable graph G with a dominating vertex u, we may assume that 3
is an interval (|V(G)|+2A(G — u) — 1)-coloring of G.

Since [V(G)|—1 < S(u, B) < |V(G)|+A(G—u) —1 and §(G) > 2, there exists
an edge e = v;,v;, such that (e) = |V(G)|+2A(G — u) — 1. This implies that

S(vig,B) = S(i,,B) = [V(G)|+2A(G —u) — 1,

and from this we obtain the following lower bounds:

S(vi, B) = S(vi, ) = da(vi) +1 = [V (G)[+ A(G—u) — 1
for k € {0,1}. From these lower bounds and taking into account that
S(u,B) < |V(G)| +A(G —u) — 1, we obtain that both uv;, and uv;, edges should
have the same color |V(G)|+A(G —u) — 1 in 3, which is a contradiction. Thus,
W(G) < |V(G)| +2A(G —u) —2. 0

Let us note that the upper bound in Theorem 4 is interesting when

A(G—u) < W(2G)| — 1. A windmill graph Wd(29,2) (¢ € N) may be formed by
joining together two copies of the complete graphs Kps at a common vertex u. Clearly,
Wd(24,2) has 291! — 1 vertices, A(Wd(29,2) —u) = 29 —2 and Wd(29,2) € M.
By Theorem 4, if ¢ > 2, then W(Wd(29,2)) < 29*2 —7. On the other hand,
using Theorem 2, it can be shown that W (Wd(29,2)) > 24+2 — 4 —24. This shows
that the lower bound on W (Wd(29,2)) is close to the upper bound in Theorem 4.
The next two theorems concern upper bounds on W (G) for interval colorable

k-connected graphs and k-connected bipartite graphs.
Theorem 5. If G is a k-connected graph and G € N, then

W(G) <1+ Q'V(G]z'_zJ +2> (A(G) —1).
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Proof. Consider an interval W(G)-coloring o of G. In the coloring ¢ of G,
we consider the edges with colors 1 and W(G). Let e = uv, ¢’ = /v and o/(e) = 1,
o(e') = W(G). Also, let P be the shortest path in G between endpoints of e ({u,v})
and ¢ ({«/,v'}). Since G is k-connected, by Menger’s theorem, for every pair of
vertices x and y in G, there are at least k internally disjoint (x,y)-paths in G. This
implies that there exists a path P’ in G, which joins endpoints of the edges e and ¢’ such

that [(V (P')] < WIZ'_zJ +2. Clearly, [V(P)| < [(V(P)] < W(G]z'_zJ +2,

Without loss of generality we may assume that the path P joins the vertex u with the
V(G)| -2
vertex V. Let P =uy,un,...,uy, where uy = u,u; =1 and s < {(IEJ +2.
Since « is an interval W (G)-coloring of G, we have

a(uiuz) < dg(ur),
o(upu3) < a(ujup) +dg(uz) — 1,

o(uinipr) < o(ui—ru;) +dg(u;) — 1,
a(us—lus) < a(us—Zus—l) +dG(us—1) -1,
W(G) =a(e)=oaV) < o(us_qus) +dc(us) — 1.

Summing up these inequalities, we obtain

(do(ui) —1) < 1+ Q’V(Gz’_zJ +2> (AG) - 1).

-

W(G) <1+

i=1

Theorem 6. If G is a k-connected bipartite graph and G € i, then

vzt (|92 1)

Proof. Consider an interval W(G)-coloring ¢ of G. In the coloring o of
G, we consider the edges with colors 1 and W(G). Let e = uv, ¢ = u'v' and
ale) =1, o(e') = W(G). Also, let P be the shortest path in G between endpoints of
e ({u,v})and ¢ ({u',V'}).

Let us now show that there exists a path P*, which joins endpoints of the edges
V(G)| -2
e and ¢’ such that |(V(P*)| < V(ISIJ s

Since G is k-connected, by Menger’s theorem, for every pair of vertices x and
y in G, there are at least k internally disjoint (x,y)-paths in G. This implies that
there is a path P’ in G which joins u with V/, and there is a path P in G which joins

V(G)| -2 V(G)| -2
v with ' such that |(V ()] < {'(Ij' 2 and |(V(P")] < ‘(;‘J 2

V(G)| -2

On the other hand, the case |(V(P')| = [(V(P")| = { .

J + 2 is impossible
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since the closed odd walk C = u, P’,v/, P"~! v, u contains an odd cycle, which contra-

V(G)| -2
dicts the fact that G is bipartite. Thus, min{|(V (P')|,|(V(P")|} < V(lyJ +1.

V(G)| -2
Clearly, [V(P)| < min{|(v(P)],|(V(P")]} < W;'J 1. Without loss of
generality we may assume that the path P joins the vertex u with the vertex v'.
V(G)| -2
Let P =uy,up,...,us, where u; = u,u; =V and s < V(EJ +1.

Since ¢ is an interval W (G)-coloring of G, we have

a(ujur) <dg(ur),
o(upu3) < a(uyup) +dg(uy) — 1,

o(uintivr) < o(ui—1u;) +dg(ui) — 1,

a(usflus) < a(uxfﬂ/‘sfl) +dG(usfl) -1,
W(G) =a(e) = a(u'V) < o(us—qus) +de(ug) — 1.

Summing up these inequalities, we obtain

W(G) <1+ Y (dalu) —1) <1+ Q'V(G,BHJ + 1) (AG) - 1).
i=1

O]

Let us consider the upper bound on W (G) in Theorem 5. If we take K>JK»q
(g € N) as G in Theorem 5, then it is easy to see that K[ 1K is a 29-connected
24-regular graph and K>[OKys € M. By Theorem 5, we have that W(K;[OKp) <
3-29—2. On the other hand, by Theorem 3, we obtain that W (K>[K5q) >3-29—-2—q.
This shows that the lower bound on W (K>[0K»¢) is close to the upper bound in
Theorem 5. Let us now consider the upper bound on W(G) in Theorem 6. If we take
the complete bipartite graph K, , (n € N) as G in Theorem 6, then, clearly, K, , is a
n-connected bipartite graph with 2n vertices and K, , € 91. By Theorem 6, we have that
W (K, ) <2n— 1. On the other hand, it is well-known that W(K,, ,) = 2n— 1[4, 1 1].
Thus, the upper bound on W (G) in Theorem 6 is sharp.

Conclusion. In this paper we derived new upper bounds on the parameter W (G)
for graphs G € 91 with a dominating vertex, k-connected graphs and k-connected
bipartite graphs.

For interval colorable graphs G with a dominating vertex, we think our upper
bound on W (G) can be generalized as follows:

Conjecture. If G is a graph with a dominating vertex u and G € 1, then

W(G) < |V(G)| +2A(G — u) — 8(G).

In fact, Conjecture is true for interval colorable graphs G with a dominating
vertex, where 6(G) = 1 or §(G) = 2. Thus, Conjecture remains open only for such
graphs G with 6(G) > 3.
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Although the upper bound on W(G) in Theorem 6 for interval colorable
k-connected bipartite graphs is sharp, there exists some gap between the similar
upper bound on W(G) in Theorem 5 and lower bound on W (G) for interval colorable
k-connected graphs. In fact, for our example, the gap between the upper bound on
W (K>0K>4) and the lower bound on W (KK ) is logy A(K2[0K»q). We think that
the problems of decreasing the gap between these bounds or improving the upper
bound on W (G) for interval colorable k-connected graphs are good subjects for further
considerations.
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M. €. M6S,rNUsUL, L. L. UNFAU8UWL

A LUDLELP UPQUUUSLUSHL UNIUBPL LELUNFULELNFT UHULUWUSNA,
ANF3LE P LULUUP NNAT FLUNUESTHULLEL

G gqnwdh Ynnuyhtt bpynudp 1,...,7 gnybbpny Yngynd & dpowljuypuypli
t-hlpynd, tipt pninp gmybtinp oguuugnpdywd tb, b G-h judwjujui ququphb
Uhg Ynnbiph gnybtpp pupptip G U juqimd Gb wdpnng pytph dhowljuyp:
G = (V,E) qpwdh v ququpp Yng|nid £ nnihbwiny, tpk dg(v) = [V| -1, npiptin
dg(v)-t v ququph wuphfwdd £ G gpudpnid: Wu wphuwpuipnid wyugnigyty L,
nn bph nnihtmbyn # ququp mitgnn G gpudp nbh dhowuypuwyhtt #-tbkpymd,
wyw ¢t < |V[4+2A(G —u) — 1, npptin A(G)-0 wnwybjugnyt wuyphbwdd & G
gnuwdnui: 8nyg kgt bwl, np bpb A-Juuyuyguwd G = (V,E) gnudp mbh

V-2
V2 ) o) - e e
tipt G-0 Dwlt Gpyynniwbh L, woyu vpugywd Yyephtt gbwhugpujuiop Junbih b
V-2
Vt{J + 1) (A(G) —1): Wohuwubiph Ytpend putiwpyymd

O upugywd Ytipht ghwhupujubttinph hwuwbtijhnipjuwb hbgp juuyywd hwipgtin:

dhowljuypwyht z-Obpynud, wyw ¢ < 14

ujugbby r < 14
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I1. A. IIETPOCHH, JI. H. MYPAJIAH

HEKOTOPBIE OIIEHKU YNCJIA IBETOB B UHTEPBAJIBHBIX
PEBEPHBIX PACKPACKAX I'PA®OB

Pebepnast packpacka rpada G B 1iseta 1, ...t HA3BIBAETCH UHMEPBAALHOU
t-packpackol, eciu BCe IBETA WMCIOJB30BAHBI U I[BETA DPEOEP, MHITHICHTHBIX
Joboit BepruHe rpada G, pazaudHbl U 00Pa3yiOT MHTEPBAJ IEJIbIX YUCEI.
Bepmmuna v rpada G = (V, E) HasbiBaercs goMuUHaHTHOM, ecan dg(v) = |V|—1,
rie dg(v) — crenens BepumHbl v B Tpade G. B macrosmieit pabore mokasaHo,
aro eciit rpad G ¢ JJOMUHAHTHOW BEPITUHON 1 00J1a/1aeT HHTEPBAIbHON 1-pac-
kpackoit, 10 ¢ < [V|+2A(G—u) — 1, rae A(G) — MakcuMaIbHast CTEIIEHb BEPIITH
B rpade G. B pabore Takike mokazaHo, uro eciu k-cszubliii rpad G = (V,E)

V-2
0bJ1a1aeT NHTePBAJILHOMN f-pacKpackoii, To F < 1+ (V ‘k +2 | (A(G)—-1).
Kpome Toro, eciu rpad G TakKe SIBIASETCS JBYJIOJIbHBIM, TO MOJIYyYEHHYIO
Vi-2
BEPXHIOIO OIEHKY MOXKHO yJIydmuThb jio ¢t < 1+ (V |k +1](A(G) —1).
B komnie paboTbl 06CyK/1a€TCs JOCTUKUMOCTD HOJIYIEHHBIX BEPXHUX OIEHOK
YUCJIa [[BETOB B MHTEPBAJIBHBIX PACKPACKAX PACCMOTPEHHBIX IPadOB.




