

SYNTHETIC DOCUMENT GENERATION FOR THE TASK
OF VISUAL DOCUMENT UNDERSTANDING

Kh. S. KHECHOYAN*

Chair of the Theory of Probability and Mathematical Statistics, YSU, Armenia

Solving the problem of document analysis using machine learning methods requires a large amount of labeled data. Such data is not always available, and if available, it only covers certain types of documents.

In this paper, we present a method for creating synthetic data that allows creating documents of any type by pre-defining the document components. By changing the arrangement of document components, text content, and visual elements using configurations, we create diverse and realistic datasets that mimic real documents. This method addresses the problem of the lack of labeled datasets and offers a flexible solution to improve the results of a machine learning model.

<https://doi.org/10.46991/PYSUA.2024.58.3.079>

MSC2020: 68T20.

Keywords: machine learning, data generation, document understanding.

Introduction. The task of document understanding involves analyzing and interpreting unstructured text data to extract meaningful information, enabling the conversion of raw text into structured data. The process includes several subtasks, including optical character recognition (OCR), key-information extraction (KIE), document question answering, layout parsing, and others. Labeled data are essential for training machine learning models in document understanding tasks, providing the necessary examples for models to learn from. Some of the tasks mentioned above are well-defined and have many high-quality annotated datasets available online.

Other tasks such as KIE and document question answering suffer from a lack of available data. There are several annotated datasets for the KIE task [1–7], but they solve specific tasks, and all cover a narrow set of classes. The main focus of these datasets is financial documents such as receipts and invoices.

* E-mail: khachatur.khechoyan@ysu.am

As labeled datasets are crucial for document understanding tasks, issues in their quality can significantly impact the performance of trained models. Several factors contribute to noise and inconsistencies in labeled data:

- *Human error.* Manual annotation is prone to mistakes, especially when dealing with complex document structures or ambiguous information. Differences in interpretation among annotators can lead to inconsistencies in labeling.
- *OCR errors.* Optical character recognition, while constantly improving, can still introduce errors in the extracted text. These errors can propagate into the labeled data, affecting the training process and model performance.
- *Domain-specific challenges.* Different document types (e.g., invoices, receipts, legal documents) have unique structures and language conventions. Labeled datasets often focus on specific domains, limiting their applicability to broader document understanding tasks.

These challenges associated with the quality and availability of labeled data underscore the need for alternative approaches to improve document understanding models. One such approach is the generation of synthetic data, that allows for the creation of large and diverse datasets with precise control over document characteristics and annotations. This approach offers several advantages, including the elimination of human error in annotations and the guarantee of perfect OCR accuracy, leading to cleaner training data and potentially more robust models.

In their work [8], the authors used similar ideas to generate historical documents in order to solve the task of counting records. The study showed that the well-designed synthetic data set can significantly boost the performance of the machine learning model. The idea of synthetic document generation is also discussed in [9] for the layout recognition task.

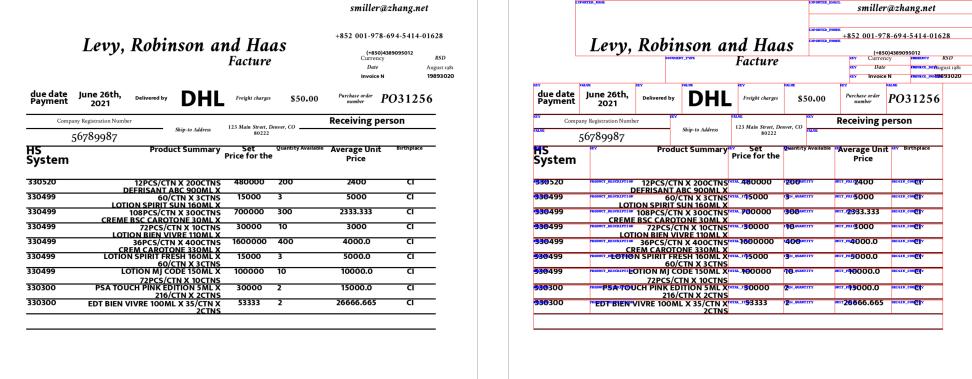
In this paper, we propose a programmatic method for synthetically generating complex documents with random layouts and texts. Furthermore, cover the implementation of text generation strategies that use large language models (LLMs) and random text generators [10] to create specific types of text data.

In the next sections, we will discuss the process of layout generation, text generation, implementation details, and baseline results on the generated data.

Synthetic Document Generation. In the following section, we will provide a comprehensive explanation of the synthetic document generation process.

From this moment, for simplicity, all the examples will be provided in the context of synthetic invoice generation (Fig. 1).

The primary objective of the synthetic data generation process outlined in this research is to facilitate customization. The intention is to provide users with the ability to generate content tailored to their specific needs and requirements and to provide them with full control over the generation process.



Levy, Robinson and Haas		Facture		smiller@zhang.net	
due date	June 26th, 2021	Delivered by	DHL	Freight charge	\$50.00
Payment		Per Order	PO31256		
Company Registration Number		Ship to Address	123 Main Street, Denver, CO 80212	Receiving person	
56789987					
HS System	Product Summary	Unit	Quantity	Average Unit Price	Line Price
130520	10PCS/CTN X 200CTNS	EA	200	2400	CI
130499	DEFENSANT ABC 500ML X	EA	480000	200	96000.00
130499	LOTION SPARKLING 500ML X	EA	3	5000	CI
130499	108PCS/CTN X 300CTNS	EA	700000	300	2333.33
130499	CREME BEBE 500ML X	EA	3000	10	300.00
130499	72PCS/CTN X 10CTNS	EA	3000	10	300.00
130499	LOTION SPARKLING 500ML X	EA	400	4000.0	CI
130499	36PCS/CTN X 400CTNS	EA	1600000	400	4000.00
130499	CREME BEBE 500ML X	EA	3000	10	300.00
130499	LOTION SPARKLING 500ML X	EA	3	5000.0	CI
130499	LOTION SPARKLING 500ML X	EA	1000000	10	10000.0
130300	PSA TOUCH PRIMER 500ML X	EA	30000	2	15000.0
130300	EDT BIEN VIVRE 100ML X 52CTNS	EA	2	33333	2
					26666.665
					CI

Fig. 1. An example of a synthetic invoice (left), and the ground truth information (right). Bounding boxes for words are not illustrated for simplicity.

Algorithm 1 Recursive Layout Generation

```

1: procedure GENERATELAYOUT(element)
2:   if ISLEAF(element) then
3:     exit
4:   else
5:     children  $\leftarrow$  SPLITELEMENT(element)
6:     for child in children do
7:       GENERATELAYOUT(child)
8:     end for
9:   end if
10:  end procedure
11: procedure SPLITELEMENT(element)
12:   layoutConfig  $\leftarrow$  GETLAYOUTCONFIG(element)
13:   children  $\leftarrow$  DIVIDELEMENT(element, layoutConfig)
14:   return children
15: end procedure
16: function ISLEAF(element)
17:   return CHECKIFLEAF(element)  $\triangleright$  User-defined logic to check if element is a leaf
18: end function
19: document  $\leftarrow$  new DocumentElement
20: GENERATELAYOUT(document)

```

Document Layout Generation. In this section, we discuss the layout sampling process in detail.

The layout is defined as a collection of the spatial positions of various elements in a given space. To construct a layout, we first need to define the elements that can occur in a layout. In the case of invoices, these elements could include a company logo, address, invoice number, list of items, etc. To construct a meaningful document,

we need to be able to group some elements in a logical and visually appealing manner, which brings us to the method of layout generation. For example, some information needs to always be at the top of the document such as an invoice number, invoice date, company name, etc.

To implement this idea, we have adapted a recursive layout generation technique. The core concept is as follows. The process starts with a single “Document” element. Then, this element is split between several other elements defined by the configuration of the user. This process repeats for each new element until the leaf element is reached. The process can be described using a pseudocode 1. In the configuration, the occurrence of each element is modeled with the *Bernoulli* distribution. The split direction of the element also needs to be determined. Each element is split horizontally or vertically. After sampling the occurrence, the size of the element is modeled by sampling the ratio of the element from a *Uniform* distribution. This ratio is then used to calculate the exact size of the element. This process is highly configurable, and by varying the sizes and elements a very diverse set of documents can be generated. The sampling parameters are configured manually. In the Fig. 2, you can see the configuration for generating a commercial invoice layout.

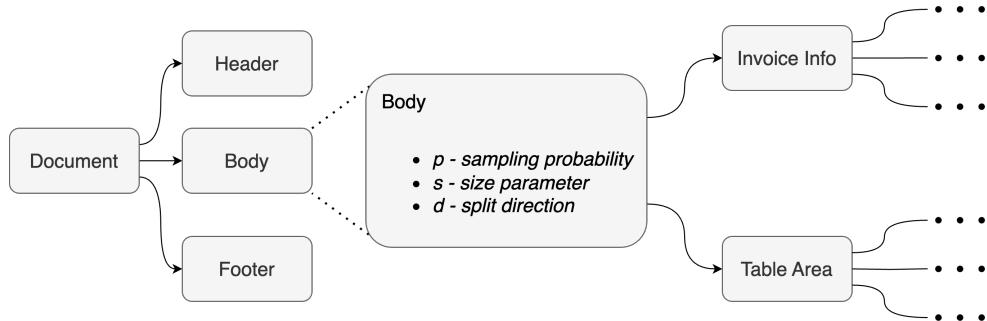


Fig. 2. Illustration of the layout configuration tree. Only a small portion is illustrated.
All the elements have the parameters p , s and d .

Generic Text Data Generation. To generate textual data for simple cases, we utilized the Faker library [10]. Faker is a Python library that creates a large amount of high-quality synthetic data. It is intended to produce credible data in a variety of formats, including names, addresses, phone numbers, dates, and others.

Key-Value Data Generation. To generate diverse and realistic key-value pairs, simple techniques are not enough. First, the keys should be diverse and relevant at the same time. Moreover, the generated values should be correct and semantically consistent with the key. Recent advances in LLMs make this kind of data generation possible.

We introduced a setup, where the LLM of choice first generates examples of keys and then generates respective values. Using prompt engineering techniques, we achieved good performance and diversity of key-value pairs. Tab. 1 illustrates some of the generated key-value pairs.

Table 1

Some key-value pairs generated by LLM

Key	Value
Payment method	Credit card
Salesperson Name	Kelly Carter
Purchase order number	P031256
Payment due date	June 26th, 2021
Currency	EUR

Tabular Data Generation For tabular data, we can use any kind of dataframe, to fill the Table. The rendered Table will then be used in the line item detection task. If the user is also interested in the classification of columns into predefined classes, they can achieve it by defining the class of each column.

Text Rendering. To render the text in the given element, we use the Pillow package. Pillow is a Python package that allows one to manipulate images, and provides a rich functionality of text rendering. To diversify the rendered text, we randomly select a font from a collection of fonts found online. Then, it is necessary to fit the sampled text into the element region. To achieve this, we render the text using different font sizes. When the horizontal space ends, we try to start a new line and write from there. If there is a font size that can be used to fit the whole text in the region, without the text being too small, we choose it as the font size. If there are multiple such font sizes, we choose one randomly. If such a font size cannot be found, we cut the sampled text and use increasingly smaller portions until fitting the whole text. We have also implemented text alignment functionality to further diversify the rendered image. The vertical alignment is randomly sampled to be one of the “left”, “center”, and “right”. Using the same logic, we sample the horizontal alignment. An example of a generated invoice and its corresponding ground truth can be found in Fig. 1.

Implementation Details. This section describes the specific software tools, hardware configurations, and parameter settings employed in the development and execution of the synthetic document generation framework.

Software and Libraries. The framework was primarily implemented using the Python programming language due to its ease of use and extensive ecosystem of libraries relevant to image processing and natural language processing tasks. The Faker [10] library was utilized to generate realistic placeholder text for common data types such as names, addresses, and dates. For rendering text onto the generated document images, the Pillow library was employed, providing control over different rendering parameters. To facilitate the creation of diverse and contextually relevant text elements, such as product descriptions and key-value pairs, a LLMs was integrated into the framework. To make the data more realistic, a private set of line items was used to fill the generated tables.

Hardware and Computational Resources. Experiments and evaluations were conducted on a single Nvidia A100 40GB GPU. Generation of 100 000 documents takes approximately 1hr, using multiprocessing with 50 processes.

Parameter Settings and Configurations. The framework provides extensive customization options to suit different types of documents and user preferences. For layout generation, users can specify the probability of occurrence for each document element and define the splitting behavior and spatial arrangement of these elements within the document layout. The text generation parameters allow users to select the appropriate generation methods for different text element types.

The flexible and user-centric design of the implementation allows users to adapt the system to generate a wide variety of synthetic documents customized to their specific requirements and use cases.

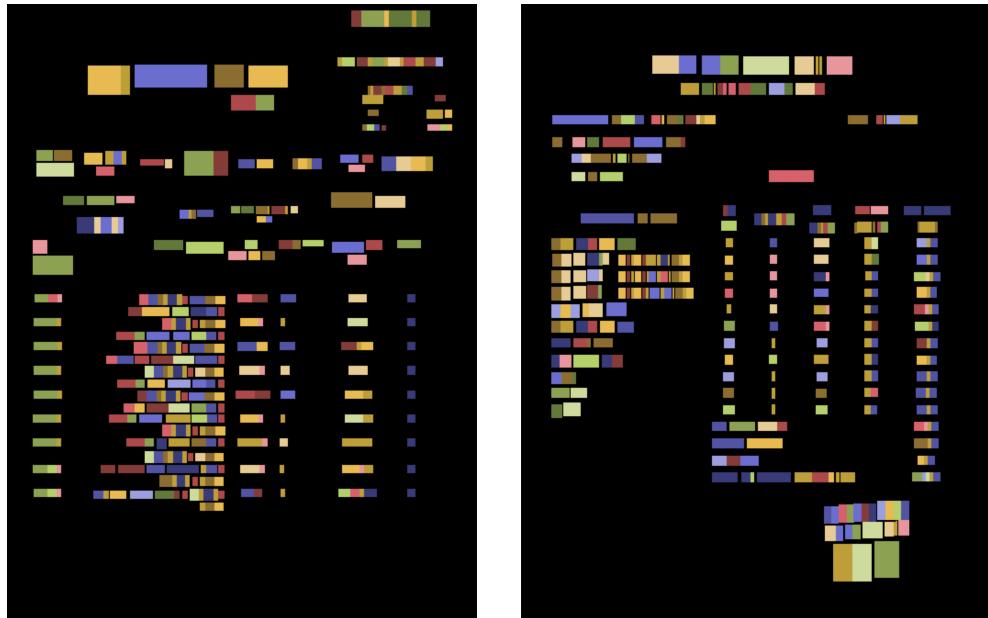


Fig. 3. Tokengrid representations of a synthetic document (left) and a real document (right).

Baseline Model for KIE Task. To assess the quality and complexity of the generated synthetic data, we employed a KIE model trained on a subset of the data and evaluated its performance on a separate held-out subset. For this purpose, we utilized the Tokengrid model [11], specifically designed to extract line items and entity values from a predefined set. In particular, Tokengrid leverages an intermediate document representation that preserves both textual and spatial information while remaining agnostic to the visual characteristics of the document image.

Fig. 3 illustrates the Tokengrid representation for both a synthetic and a real document.

This approach allows us to focus on the realism of the underlying layout and textual content rather than the visual fidelity of the generated document images.

We evaluated the performance of the model, using the token error rate (TER) metric, as presented in the Tokengrid paper [11].

Table 2

*1-Token Error Rate (TER) of the predictions
on some item-level fields*

Field name	1-TER (%)
HS CODE	99.037
TOTAL ITEM	97.412
UNIT PRICE	98.018
ITEM QUANTITY	95.502
ORIGIN COUNTRY	98.084
ITEM NET WEIGHT	64.968
ITEM GROSS WEIGHT	81.007
PRODUCT DESCRIPTION	99.153

The results, displayed in Tab. 2, serve as baseline performance indicators for this dataset. The scores indicate that the dataset presents a sufficient level of complexity, suggesting the validity and quality of the generated data. More research is required to quantify the performance gains achieved by incorporating synthetic data into the training process of various KIE models.

Received 22.05.2024

Reviewed 03.01.2025

Accepted 17.01.2025

R E F E R E N C E S

1. Kardas M., Czapla P., et al. AxCell: Automatic Extraction of Results from Machine Learning Papers. *Proc. of the 2020 Conf. on Empirical Methods in Natural Language Processing (EMNLP)* (2020), 8580–8594.
<https://doi.org/10.18653/v1/2020.emnlp-main.692>
2. Park S., Shin S., et al. CORD: A Consolidated Receipt Dataset for Post-OCR Parsing (2022).
3. Jaume G., Ekenel H.K., Thiran J.-P. FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents (2019).
<https://doi.org/10.1109/ICDARW.2019.10029>
4. Huang Z., Chen K., et al. ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction. *2019 Int. Conf. on Document Analysis and Recognition (ICDAR)* (2021), 8580–8594.
<https://doi.org/10.1109/ICDAR.2019.00244>

5. Stanisławek T., Graliński F., et al. Kleister: Key Information Extraction Datasets Involving Long Documents with Complex Layouts. *Lecture Notes in Computer Science* **12856** (2021), 428–444.
https://doi.org/10.1007/978-3-030-86549-8_36
6. Smock B., Pesala R., Abraham R. PubTables-1M: Towards Comprehensive Table Extraction from Unstructured Documents (2021).
<http://dx.doi.org/10.1109/CVPR52688.2022.00459>
7. Wang Z., Zhou Y., et al. VRDU: A Benchmark for Visually-rich Document Understanding. *Proc. of the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining* (2023), 5184–5193.
<https://doi.org/10.1145/3580305.3599929>
8. Capobianco S., Marinai S. DocEmul: A Toolkit to Generate Structured Historical Documents (2017).
<http://dx.doi.org/10.1109/ICDAR.2017.196>
9. Raman N., Shah S., Veloso M. Synthetic Document Generator for Annotation-free Layout Recognition. *Pattern Recognition* **120** (2021), 108660.
<https://doi.org/10.1016/j.patcog.2022.108660>
10. Faraglia D., et al. Faker. [Software]. Retrieved from
<https://github.com/joke2k/faker>
11. Yeghiazaryan A., Khechoyan K., et al. Tokengrid: Toward More Efficient Data Extraction from Unstructured Documents. *IEEE Access* **10** (2022), 39261–39268.
<https://doi.org/10.1109/ACCESS.2022.3164674>

Խ. Ս. ԽԵՉՈՅԱՆ

ՍԻՆԹԵՏԻԿ ՓԱՍՏԱԹՂԹԵՐԻ ՍՏԵՂԾՈՒՄ ՎԻԶՈՒԱԼ ՓԱՍՏԱԹՂԹԵՐԻ
 ԸՆԿԱԱՄԱՆ ԽՆԴՐԻ ԴԱՄԱՐ

Փաստաթղթերի վերլուծության խնդիրը մերենայական ուսուցման մեթոդներով լուծելու համար անհրաժեշտ են մեծ քանակի պիքակավորված փվյալներ: Այդպիսի փվյալներ ոչ միշտ են հասանելի, և հասանելի լինելու դեպքում ընդունուած են միայն հարուկ դիպահ փաստաթղթեր:

Այս աշխատանքում ներկայացված է սինթետիկ փվյալների սրեղծման մեթոդ, որի շնորհիվ հնարավոր է սրեղծել ցանկացած դիպահ փաստաթղթեր՝ նախապես սահմանելով փաստաթղթի բաղադրիչները: Կոնֆիգուրացիաների միջոցով փոփոխելով փաստաթղթերի բաղադրիչների դասավորությունը, դիպահին բովանդակությունը և վիզուալ դարրերը, մենք սրեղծում ենք բազմազան և իրավեսական փվյալների հավաքածուներ, որոնք նմանակում են իրական փաստաթղթերը: Այս մեթոդը լուծում է պիքակավորված փվյալների հավաքածուների սակավության խնդիրը և առաջարկում է ճկուն լուծում՝ բարելավելու մերենայական ուսուցման մոդելի արդյունքները:

Х. С. ХЕЧОЯН

ГЕНЕРАЦИЯ СИНТЕТИЧЕСКИХ ДОКУМЕНТОВ ДЛЯ ЗАДАЧИ ВИЗУАЛЬНОГО ПОНЯТИЯ ДОКУМЕНТОВ

Для решения задачи анализа документов методами машинного обучения необходимо большое количество размеченных данных. Такие данные не всегда доступны, а если и доступны, то охватывают только определенные типы документов.

В этой работе нами представлен метод создания синтетических данных, позволяющий создавать документы любого типа, предварительно определив компоненты документа. Изменяя расположение компонентов документов, текстовое содержание и визуальные элементы с помощью конфигураций, мы создаем разнообразные и реалистичные наборы данных, имитирующие реальные документы. Этот метод решает проблему нехватки размеченных наборов данных и предлагает гибкое решение для улучшения результатов модели машинного обучения.