
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2024, 58(3), p. 79–87

I n f o r m a t i c s

SYNTHETIC DOCUMENT GENERATION FOR THE TASK
OF VISUAL DOCUMENT UNDERSTANDING

Kh. S. KHECHOYAN∗

Chair of the Theory of Probability and Mathematical Statistics, YSU, Armenia

Solving the problem of document analysis using machine learning methods
requires a large amount of labeled data. Such data is not always available, and if
available, it only covers certain types of documents.

In this paper, we present a method for creating synthetic data that allows
creating documents of any type by pre-defining the document components.
By changing the arrangement of document components, text content, and visual
elements using configurations, we create diverse and realistic datasets that
mimic real documents. This method addresses the problem of the lack of labeled
datasets and offers a flexible solution to improve the results of a machine learning
model.

https://doi.org/10.46991/PYSUA.2024.58.3.079

MSC2020: 68T20.

Keywords: machine learning, data generation, document understanding.

Introduction. The task of document understanding involves analyzing and
interpreting unstructured text data to extract meaningful information, enabling the
conversion of raw text into structured data. The process includes several subtasks,
including optical character recognition (OCR), key-information extraction (KIE),
document question answering, layout parsing, and others. Labeled data are essential
for training machine learning models in document understanding tasks, providing the
necessary examples for models to learn from. Some of the tasks mentioned above are
well-defined and have many high-quality annotated datasets available online.

Other tasks such as KIE and document question answering suffer from a lack
of available data. There are several annotated datasets for the KIE task [1–7], but they
solve specific tasks, and all cover a narrow set of classes. The main focus of these
datasets is financial documents such as receipts and invoices.

∗ E-mail: khachatur.khechoyan@ysu.am

https://doi.org/10.46991/PYSUA.2024.58.3.079
khachatur.khechoyan@ysu.am

80 KHECHOYAN Kh. S.

As labeled datasets are crucial for document understanding tasks, issues in their
quality can significantly impact the performance of trained models. Several factors
contribute to noise and inconsistencies in labeled data:

• Human error. Manual annotation is prone to mistakes, especially when
dealing with complex document structures or ambiguous information. Differences in
interpretation among annotators can lead to inconsistencies in labeling.

• OCR errors. Optical character recognition, while constantly improving, can
still introduce errors in the extracted text. These errors can propagate into the labeled
data, affecting the training process and model performance.

•Domain-specific challenges. Different document types (e.g., invoices, receipts,
legal documents) have unique structures and language conventions. Labeled datasets
often focus on specific domains, limiting their applicability to broader document
understanding tasks.

These challenges associated with the quality and availability of labeled data
underscore the need for alternative approaches to improve document understanding
models. One such approach is the generation of synthetic data, that allows for the
creation of large and diverse datasets with precise control over document characteris-
tics and annotations. This approach offers several advantages, including the elimination
of human error in annotations and the guarantee of perfect OCR accuracy, leading to
cleaner training data and potentially more robust models.

In their work [8], the authors used similar ideas to generate historical documents
in order to solve the task of counting records. The study showed that the well-designed
synthetic data set can significantly boost the performance of the machine learning
model. The idea of synthetic document generation is also discussed in [9] for the
layout recognition task.

In this paper, we propose a programmatic method for synthetically generating
complex documents with random layouts and texts. Furthermore, cover the implemen-
tation of text generation strategies that use large language models (LLMs) and random
text generators [10] to create specific types of text data.

In the next sections, we will discuss the process of layout generation, text
generation, implementation details, and baseline results on the generated data.

Synthetic Document Generation. In the following section, we will provide a
comprehensive explanation of the synthetic document generation process.

From this moment, for simplicity, all the examples will be provided in the
context of synthetic invoice generation (Fig. 1).

The primary objective of the synthetic data generation process outlined in this
research is to facilitate customization. The intention is to provide users with the ability
to generate content tailored to their specific needs and requirements and to provide
them with full control over the generation process.

SYNTHETIC DOCUMENT GENERATION FOR THE TASK OF VISUAL DOCUMENT. . . 81

Fig. 1. An example of a synthetic invoice (left), and the ground truth information (right).
Bounding boxes for words are not illustrated for simplicity.

Algorithm 1 Recursive Layout Generation
1: procedure GENERATELAYOUT(element)
2: if ISLEAF(element) then
3: exit
4: else
5: children← SPLITELEMENT(element)
6: for child in children do
7: GENERATELAYOUT(child)
8: end for
9: end if

10: end procedure
11: procedure SPLITELEMENT(element)
12: layoutCon f ig← GETLAYOUTCONFIG(element)
13: children← DIVIDEELEMENT(element, layoutCon f ig)
14: return children
15: end procedure
16: function ISLEAF(element)
17: return CHECKIFLEAF(element) . User-defined logic to check if element is a

leaf
18: end function
19: document← new DocumentElement
20: GENERATELAYOUT(document)

Document Layout Generation. In this section, we discuss the layout sampling
process in detail.

The layout is defined as a collection of the spatial positions of various elements
in a given space. To construct a layout, we first need to define the elements that can
occur in a layout. In the case of invoices, these elements could include a company
logo, address, invoice number, list of items, etc. To construct a meaningful document,

82 KHECHOYAN Kh. S.

we need to be able to group some elements in a logical and visually appealing manner,
which brings us to the method of layout generation. For example, some information
needs to always be at the top of the document such as an invoice number, invoice date,
company name, etc.

To implement this idea, we have adapted a recursive layout generation technique.
The core concept is as follows. The process starts with a single “Document” element.
Then, this element is split between several other elements defined by the configuration
of the user. This process repeats for each new element until the leaf element is
reached. The process can be described using a pseudocode 1. In the configuration,
the occurrence of each element is modeled with the Bernoulli distribution. The split
direction of the element also needs to be determined. Each element is split horizontally
or vertically. After sampling the occurrence, the size of the element is modeled by
sampling the ratio of the element from a Uniform distribution. This ratio is then used
to calculate the exact size of the element. This process is highly configurable, and
by varying the sizes and elements a very diverse set of documents can be generated.
The sampling parameters are configured manually. In the Fig. 2, you can see the
configuration for generating a commercial invoice layout.

Fig. 2. Illustration of the layout configuration tree. Only a small portion is illustrated.
All the elements have the parameters p, s and d.

Generic Text Data Generation. To generate textual data for simple cases, we
utilized the Faker library [10]. Faker is a Python library that creates a large amount
of high-quality synthetic data. It is intended to produce credible data in a variety of
formats, including names, addresses, phone numbers, dates, and others.

Key-Value Data Generation. To generate diverse and realistic key-value pairs,
simple techniques are not enough. First, the keys should be diverse and relevant at
the same time. Moreover, the generated values should be correct and semantically
consistent with the key. Recent advances in LLMs make this kind of data generation
possible.

We introduced a setup, where the LLM of choice first generates examples of
keys and then generates respective values. Using prompt engineering techniques, we
achieved good performance and diversity of key-value pairs. Tab. 1 illustrates some
of the generated key-value pairs.

SYNTHETIC DOCUMENT GENERATION FOR THE TASK OF VISUAL DOCUMENT. . . 83

T a b l e 1

Some key-value pairs generated by LLM

Key Value
Payment method Credit card

Salesperson Name Kelly Carter
Purchase order number P031256

Payment due date June 26th, 2021
Currency EUR

Tabular Data Generation For tabular data, we can use any kind of dataframe,
to fill the Table. The rendered Table will then be used in the line item detection task.
If the user is also interested in the classification of columns into predefined classes,
they can achieve it by defining the class of each column.

Text Rendering. To render the text in the given element, we use the Pillow
package. Pillow is a Python package that allows one to manipulate images, and
provides a rich functionality of text rendering. To diversify the rendered text, we
randomly select a font from a collection of fonts found online. Then, it is necessary
to fit the sampled text into the element region. To achieve this, we render the text
using different font sizes. When the horizontal space ends, we try to start a new line
and write from there. If there is a font size that can be used to fit the whole text in
the region, without the text being too small, we choose it as the font size. If there
are multiple such font sizes, we choose one randomly. If such a font size cannot be
found, we cut the sampled text and use increasingly smaller portions until fitting the
whole text. We have also implemented text alignment functionality to further diversify
the rendered image. The vertical alignment is randomly sampled to be one of the
“left”, “center”, and “right”. Using the same logic, we sample the horizontal alignment.
An example of a generated invoice and its corresponding ground truth can be found
in Fig. 1.

Implementation Details. This section describes the specific software tools,
hardware configurations, and parameter settings employed in the development and
execution of the synthetic document generation framework.

Software and Libraries. The framework was primarily implemented using
the Python programming language due to its ease of use and extensive ecosystem
of libraries relevant to image processing and natural language processing tasks.
The Faker [10] library was utilized to generate realistic placeholder text for common
data types such as names, addresses, and dates. For rendering text onto the generated
document images, the Pillow library was employed, providing control over different
rendering parameters. To facilitate the creation of diverse and contextually relevant
text elements, such as product descriptions and key-value pairs, a LLMs was integrated
into the framework. To make the data more realistic, a private set of line items was
used to fill the generated tables.

84 KHECHOYAN Kh. S.

Hardware and Computational Resources. Experiments and evaluations were
conducted on a single Nvidia A100 40GB GPU. Generation of 100 000 documents
takes approximately 1hr, using multiprocessing with 50 processes.

Parameter Settings and Configurations. The framework provides extensive
customization options to suit different types of documents and user preferences.
For layout generation, users can specify the probability of occurrence for each
document element and define the splitting behavior and spatial arrangement of these
elements within the document layout. The text generation parameters allow users to
select the appropriate generation methods for different text element types.

The flexible and user-centric design of the implementation allows users to adapt
the system to generate a wide variety of synthetic documents customized to their
specific requirements and use cases.

Fig. 3. Tokengrid representations of a synthetic document (left) and a real document (right).

Baseline Model for KIE Task. To assess the quality and complexity of the
generated synthetic data, we employed a KIE model trained on a subset of the data and
evaluated its performance on a separate held-out subset. For this purpose, we utilized
the Tokengrid model [11], specifically designed to extract line items and entity values
from a predefined set. In particular, Tokengrid leverages an intermediate document
representation that preserves both textual and spatial information while remaining
agnostic to the visual characteristics of the document image.

Fig. 3 illustrates the Tokengrid representation for both a synthetic and a real
document.

This approach allows us to focus on the realism of the underlying layout and
textual content rather than the visual fidelity of the generated document images.

SYNTHETIC DOCUMENT GENERATION FOR THE TASK OF VISUAL DOCUMENT. . . 85

We evaluated the performance of the model, using the token error rate (TER) metric,
as presented in the Tokengrid paper [11].

T a b l e 2

1-Token Error Rate (TER) of the predictions
on some item-level fields

Field name 1-TER (%)
HS CODE 99.037
TOTAL ITEM 97.412
UNIT PRICE 98.018
ITEM QUANTITY 95.502
ORIGIN COUNTRY 98.084
ITEM NET WEIGHT 64.968
ITEM GROSS WEIGHT 81.007
PRODUCT DESCRIPTION 99.153

The results, displayed in Tab. 2, serve as baseline performance indicators for this
dataset. The scores indicate that the dataset presents a sufficient level of complexity,
suggesting the validity and quality of the generated data. More research is required
to quantify the performance gains achieved by incorporating synthetic data into the
training process of various KIE models.

Received 22.05.2024
Reviewed 03.01.2025
Accepted 17.01.2025

R E F E R E N C E S

1. Kardas M., Czapla P., et al. AxCell: Automatic Extraction of Results from Machine
Learning Papers. Proc. of the 2020 Conf. on Empirical Methods in Natural Language
Processing (EMNLP) (2020), 8580–8594.
https://doi.org/10.18653/v1/2020.emnlp-main.692

2. Park S., Shin S., et al. CORD: A Consolidated Receipt Dataset for Post-OCR Parsing
(2022).

3. Jaume G., Ekenel H.K., Thiran J.-P. FUNSD: A Dataset for Form Understanding in Noisy
Scanned Documents (2019).
https://doi.org/10.1109/ICDARW.2019.10029

4. Huang Z., Chen K., et al. ICDAR2019 Competition on Scanned Receipt OCR and
Information Extraction. 2019 Int. Conf. on Document Analysis and Recognition (ICDAR)
(2021), 8580–8594.
https://doi.org/10.1109/ICDAR.2019.00244

https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.1109/ICDARW.2019.10029
http://dx.doi.org/10.1109/ICDAR.2019.00244

86 KHECHOYAN Kh. S.

5. Stanisławek T., Graliński F., et al. Kleister: Key Information Extraction Datasets Involving
Long Documents with Complex Layouts. Lecture Notes in Computer Science 12856
(2021), 428–444.
https://doi.org/10.1007/978-3-030-86549-8_36

6. Smock B., Pesala R., Abraham R. PubTables-1M: Towards Comprehensive Table
Extraction from Unstructured Documents (2021).
http://dx.doi.org/10.1109/CVPR52688.2022.00459

7. Wang Z., Zhou Y., et al. VRDU: A Benchmark for Visually-rich Document Understanding.
Proc. of the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (2023),
5184–5193.
https://doi.org/10.1145/3580305.3599929

8. Capobianco S., Marinai S. DocEmul: A Toolkit to Generate Structured Historical
Documents (2017).
http://dx.doi.org/10.1109/ICDAR.2017.196

9. Raman N., Shah S., Veloso M. Synthetic Document Generator for Annotation-free Layout
Recognition. Pattern Recognition 120 (2021), 108660.
https://doi.org/10.1016/j.patcog.2022.108660

10. Faraglia D., et al. Faker. [Software]. Retrieved from
https://github.com/joke2k/faker

11. Yeghiazaryan A., Khechoyan K., et al. Tokengrid: Toward More Efficient Data Extraction
from Unstructured Documents. IEEE Access 10 (2022), 39261–39268.
https://doi.org/10.1109/ACCESS.2022.3164674

X. S. XE�OYAN

SIN�ETIK �ASTA���ERI STE�
OWM VIZOWAL �ASTA���ERI

�NKALMAN XNDRI HAMAR

�asta���eri verlow�ow�yan xndir� meqenayakan owsowcman

me�odnerov low�elow hamar anhra�e�t en me� qanaki pitakavorva�

tvyalner: Aydpisi tvyalner o� mi�t en hasaneli, hasaneli linelow

depqowm �ngrkowm en miayn hatowk tipi �asta���er:

Ays a�xatanqowm nerkayacva� � sin�etik tvyalneri ste��man

me�od, ori �norhiv hnaravor � ste��el cankaca� tipi �asta�ow��`

naxapes sahmanelov �asta���i ba�adri�ner�: Konfigowracianeri

mijocov �o�oxelov �asta���eri ba�adri�neri dasavorow�yown�,

teqstayin bovandakow�yown� vizowal tarrer�, menq ste��owm enq

bazmazan iratesakan tvyalneri havaqa�owner, oronq nmanakowm en

irakan �asta���er�: Ays me�od� low�owm � pitakavorva� tvyalneri

havaqa�owneri sakavow�yan xndir� a�ajarkowm � �kown low�owm`

barelavelow meqenayakan owsowcman modeli ardyownqner�:

http://dx.doi.org/10.1007/978-3-030-86549-8_36
http://dx.doi.org/10.1109/CVPR52688.2022.00459
https://doi.org/10.1145/3580305.3599929
http://dx.doi.org/10.1109/ICDAR.2017.196
http://dx.doi.org/10.1016/j.patcog.2022.108660
https://github.com/joke2k/faker
https://doi.org/10.1109/ACCESS.2022.3164674

SYNTHETIC DOCUMENT GENERATION FOR THE TASK OF VISUAL DOCUMENT. . . 87

Х. С. ХЕЧОЯН

ГЕНЕРАЦИЯ СИНТЕТИЧЕСКИХ ДОКУМЕНТОВ ДЛЯ ЗАДАЧИ
ВИЗУАЛЬНОГО ПОНИМАНИЯ ДОКУМЕНТОВ

Для решения задачи анализа документов методами машинного
обучения необходимо большое количество размеченных данных. Такие
данные не всегда доступны, а если и доступны, то охватывают только
определенные типы документов.

В этой работе нами представлен метод создания синтетических дан-
ных, позволяющий создавать документы любого типа, предварительно
определив компоненты документа. Изменяя расположение компонентов
документов, текстовое содержание и визуальные элементы с помощью
конфигураций, мы создаем разнообразные и реалистичные наборы данных,
имитирующие реальные документы. Этот метод решает проблему нехватки
размеченных наборов данных и предлагает гибкое решение для улучшения
результатов модели машинного обучения.

