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A strong edge-coloring of a graph G is a mapping ¢ : E(G) — N such that
the edges at distance 0 or 1 receive distinct colors. The minimum number of
colors required for such a coloring is called the strong chromatic index of G and
is denoted by x/(G). In this paper, we investigate the strong chromatic index of
the Mycielskian p(G) of graphs G and corona products G® H of graphs G and
H. In particular, we give tight lower and upper bounds on x/(G ® H). Moreover,
we provide specific structural criteria, under which the upper bound is sharp.
We also derive tight lower and upper bounds on y,(1(G)) for Mycielskian of
graphs.
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Introduction. In this paper, we consider only simple and finite graphs.
We use West’s book [ 1] for terminologies and notations not defined here. We denote
by V(G) and E(G) the sets of vertices and edges of a graph G, respectively.
The degree of a vertex v € V(G) is denoted by d(v), the maximum degree of the
vertices in G by A(G), and the chromatic number of G by x(G). For an edge
e € E(G), the edge degree d(e) is the number of other edges that share a vertex with e.
The maximum edge degree among the edges of G is denoted by A'(G). For a vertex
v € G, the set of adjacent vertices is denoted by Ng(v). We use standard notations P,
Cy, Ky, and K, ,,, for the path, cycle, complete graph on n vertices and the complete
bipartite graph, one part of which has n vertices and other part has m vertices,
respectively. A strong edge-coloring of a graph G is a mapping ¢ : E(G) — N such
that the edges at distance O or 1 receive distinct colors. The strong chromatic index
of a graph G is the minimum number of colors required for a strong edge-coloring
of the graph and is denoted by y,(G). Clearly, for any graph G, x/(G) > A'(G) + 1.
The concept of strong edge-coloring was first introduced by Fouquet and Jolivet in
1983 [2]. In 1895, during a seminar in Prague, Erd6s, and NesSetfil proposed the
following conjecture:
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Conjecture. Forevery graph G with maximum degree A(G),
5

4A(G)2, if A(G) is even,
%(G) <

1

4

This Conjecture is still open, but it was proved for graphs G with A(G) =3
[3,4]. For graphs G with A(G) = 4, the first result was proved by Cranston [5], who
showed that for such graphs G, x/(G) < 22. In 2018, this result was improved to
%.(G) <21 [6]. For graphs G with significantly large maximum degree A(G), in 1990
Chung, Gyérfas, Trotter, and Tuza [7] showed that the strong chromatic index is at
most 1.998A(G)?. In 2018, the upper bound was improved to 1.93A(G)? [¢] and later
to 1.772A(G)? in 2021 [9].

The corona product of graphs was introduced by Frucht and Harary in 1970
as an operation on graphs, where the group of the new graph is isomorphic to the
wreath product of the groups of two graphs [10]. Different properties and various
graph coloring parameters of corona products of graphs have been actively studied
later (see, for example, [11], [12]).

The Mycielski graph p(G) of a graph G was introduced by Mycielski [13]
in 1955 to construct triangle-free graphs with arbitrarily high chromatic numbers.
The Mycielskian transformation of a graph is a well-studied graph operation, and it
was considered in the context of various colorings of graphs (see, for example, [14,15]).

Strong edge-colorings of various products of graphs were first studied by
Togni [16]. In particular, Togni obtained some bounds for the strong chromatic index
of Cartesian, direct and strong products of graphs. Recently, Thiru, and Balaji [17]
studied strong edge-colorings of corona products of graphs. In particular, they obtained
some lower and upper bounds for the strong chromatic index of graphs corona products.
In this paper, we improve these bounds and show that our lower and upper bounds for
the strong chromatic index of corona products of graphs are sharp. We also provide
tight lower and upper bounds for the strong chromatic index of Mycielskian graphs.

Main Result. We begin our considerations with strong edge-colorings of
corona products of graphs.

(5A(G)* —=2A(G)+1), if A(G) is odd.

Definition 1. The corona product of graphs G and H is a graph G © H,
obtained from one copy of the graph G and |V (G)| copies of the graph H, by joining
i-th vertex of the graph G to all vertices in the i-th copy of the graph H.

Fig. 1 illustrates the corona product of Cg and K3. In 2024, Thiru and Balaji [17]
obtained the following result on the strong chromatic index of corona products of
graphs.

Theorem 1. Forany graphs G (|V(G)| >2) and H ([V(H)| > 2), we have

%:(G) +x(H) + |[V(H)| < x(GOH) < 2,(G) + % (H) + |V (G)||V (H)].

Our first main result is the following theorem.



ON STRONG CHROMATIC INDEX OF SOME OPERATIONS ON GRAPHS. 3

Fig. 1. The corona product of Cg and K3.

Theorem 2. For any graphs G (|V(G)|>2) and H (|V(H)| > 2), we have
N(GOH)+1 < 2(GoH) < x{(G)+max{0, {(H) — (x;(G) —A(G)) } + 2 (G) |V (H)|.
Moreover, these bounds are sharp.

Proof. Firstof all, let us note that x,(GOH) > A'(G®H)+ 1 for any graphs
G ([V(G)| >2)and H (|[V(H)| > 2). Moreover, if G is a path, cycle, or a tree and H
is K>, then this lower bound is sharp.

Let us now prove the upper bound on x,(G©® H).

Clearly, for the proof of Theorem 2, it is sufficient to construct a strong edge-
coloring o of G ® H that uses at most y,(G) + max{0, x.(H) — (x}(G) — A(G))} +
x(G)|V(H)| colors.

Let V(G) = {vi,v2,...,v,} and f be a proper vertex coloring of G with colors
1,2,...,x(G). For the copy of H, that is connected to v;, we use the notation H,,
and we use the notation (v;, H,,) for the sets of edges that connect v; to vertices of
H, (1 <i<n). Clearly, the subgraph G of the graph G © H can be colored using
%5(G) colors. Since for any 1 <i < j <n, the edges of the subgraphs H,, and H,, of
the graph G © H are at least 2 distance apart. These subgraphs H,, and H,; can be
colored independently from each other. Moreover, for the coloring of the subgraph
H, (1 <i<n), we can use those colors from the coloring of the subgraph G that are
not assigned to edges adjacent with v;. Thus, for the coloring of the subgraphs H,,
(1 <i<n)of the graph G® H we can use max{0, x/(H) — (x.(G) —A(G))} additional
colors. Each edge set (v;,H,,) (1 <i < n) requires |V (H)| colors, and the same set
of colors can be used for the edges (v, H,,) and (v;,H,,) if and only if f(v;) = f(v;)
(1<i<j<n).

Now we are able to define an edge-coloring o as follows: first we color the
edges of G with colors 1,2...,x./(G); then for each i (1 <i < n), we color the
edges of (v;, H,,) with colors x/(G)+ (f(vi) — D)|V(H)|+1,...,x/(G)+ f(vi)[V(H)|;
finally, for each i (1 < i < n) we color the edges of each H, using new
max{0, x/(H) — (x.(G) — A(G))} additional colors.
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Clearly, « is a strong edge-coloring of G © H with at most
%:(G) +max{0, x;(H) — (2,(G) = A(G))} + x (G) |V (H))]

colors. Let us now describe a structural criteria, under which the upper bound becomes
sharp.

Let G be a complete graph and H be a graph such that x/(H) — (x/(G) —
—A(G)) <0. Let us consider a strong edge-coloring 8 of G® H with x/(G® H)
colors. Clearly, subgraph G requires at least x,(G) colors and the same colors can be
used for subgraphs H,, (1 <i <n). Since G is a complete graph, for eachi (1 <i <n),
the edges from (v;,H,,) are at distance 0 or 1 from the edges in subgraph G. This
implies that the coloring f8 of the edge sets (v;,H,,) (1 <i < n) requires at least
x(G)|V(H)| colors that are distinct from x(G) colors, which are used for the coloring
of the subgraph G. In total, the strong edge-coloring 8 of G® H, where G is a complete
graph and x!(H) — (x.(G) — A(G)) < 0, requires at least x.(G) + x(G)|V (H)| colors,
which coincides with the upper bound on x;(G® H). O

Fig. 2 shows the strong-edge coloring o of Cs © K3 described in the Proof of

Theorem 2.
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Fig. 2. The strong edge-coloring of Cg ® K3 with 11 colors.
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We continue our considerations with the Mycielskian strong edge-colorings
of graphs.

Definition 2. The Mycielskian U (G) of a graph G is a graph with vertex set
V(u(G)) =V(G)UV'(G)U{u}, where V!(G) ={V' : v € V(G)} is a copy of V(G),
and edge set E(U(G)) = {(vi,v;) : (vi,v;) € E(G)}U{(vi,V) : (vi,v;) € E(G)} U
{(u,v}) :v; e V'(G)}.

Fig. 3 demonstrates the Micielskian of P;.
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Fig. 3. Mycielskian of P;.

Lemma 1. Forany graph G (|V(G)| > 2), we have
3
LR(G) = [38(6) |+ VG +2.

Proof. Let V(G) = {v1,...,v,} and a be a strong edge-coloring of u(G)
with /(1 (G)) colors.

Consider two adjacent vertices v; and v; of the subgraph G such that
d(vi) +d(v;) = A'(G) +2, where d(v;) > d(v;). Clearly, the edge set {(v;,v,) :
vp € Na(vi) FU{(vj,vy) 1vg € No(v;)FU{(V,vs) 1vs € N(vi) FU{(u,v) 1 1 <t < n}

3
contains at least {2A’ (G)—‘ +n+2 edges that are at distance 0 or 1 from each other.

Since all these edges should receive different colors, it follows that

x(1(G)) > BA’(G)W Fn+2.

Lemma 2. Foranyn > 5, we have

Z(R(B)) =n+s.

Proof. LetV(P,) ={vi,...,va} and E(B,) = {(vi,viz1): 1 <i<n—1}.
By Lemma 1, we have x,(i(P,)) > n+ 5. For the Proof of the Lemma, it is
necessary to construct a strong edge-coloring of (B,) with n+ 5 colors. Since each

edge (vi,vi+1)(1 <i<n—1)isatadistance at least 2 from an edge (u, v/((i+2)mod n)+1> .
The same set of colors can be used for the edges (u,V';)(1 < j < n) and the edges of the
subgraph P,. Each edge (v;,v_;)(4 <i<n) is at distance 2 from an edge (v;_3,V._,),
and each edge (v;,V},1)(4 < j <n—1)is at distance 2 from an edge (v;—2,_3).

Now we define an edge-coloring o of u(P,) as follows: first, we color the
edge (u,v}) (1 < i< n) with color i; for each i (1 <i<n— 1), we color the edge
(vi,vip1) with color ((i+2) mod n)+ 1; next, the edges (v3,v5), (v3,V}), (vi,V}),
(v2,v}), (v2,v}) receive colors from n+ 1 to n+ 5, respectively; finally, for each i
(4 <i<n),the edge (v;,v}_,) is assigned the color of an edge (v;_3,V!_,) and for each
j (4 <j<n-—1),theedge (v;,v} ) is assigned the color of an edge (v;—2,V}_3).
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It is easy to verify that o is a strong edge-coloring of w(P,) with colors
1,2,...,n+5. O

Fig. 4 shows the strong edge-coloring o of p(P;) described in the Proof of
Lemma 2.
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Fig. 4. The strong edge-coloring of p(Py) with 12 colors.

Theorem 3. For any graph G, we have

BA’(G)} LIV(G) 2 < 2(1(G)) < 37(G) + V(G

Moreover, these bounds are sharp.

Proof. First of all let us note that the lower bound in Theorem 3 and its
sharpness follow from Lemma 1 and Lemma 2.

For the proof of the Theorem, it is necessary to construct a strong edge-coloring
of u(G) with at most 3x/(G) + |V (G)| colors.

Let V(G) = {v1,v2,...,v,} and o be a strong edge-coloring of G with x!(G)
colors. By the definition of (1(G), the edges (v;,V;) € E(1(G)) are copies of the edges
(vi,vj) € E(G) of G, where each edge of G is copied exactly twice. We divide these
edges into sets:

St ={Wi,V)) : vi,vj) €E(G),i < j}, Sa={(i,V}): (vi,v)) € E(G),i > j}.

Clearly, each set contains |E(G)| edges and defines a subgraph with at least the same
distance properties as the graph G.

Now we define an edge-coloring 8 of u(G) as follows: first, using the coloring
a, we color the edges of the subgraph G with colors 1,2, ..., x!(G), the corresponding
edges from S; with colors x/(G) + 1, x.(G) +2,...,2x.(G), and the corresponding
edges from S, with colors 2x.(G) + 1,2x.(G) +2,...,3x.(G); then, using additional
|V(G)]| colors, we color the edges (u,v;) (1 <i<n).

It is straightforward that B is a strong edge-coloring of u(G) that uses
3x:(G) +|V(G)| colors. Clearly, if G is a complete or complete bipartite graph,
then x/(1(G)) coincides with the upper bound in Theorem 3, since all edges of u(G)
should receive distinct colors. O
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Conclusion. Our study began with an analysis of the strong edge-colorings
of the corona products of graphs. Theorem 2 gave tight lower and upper bounds
for the strong chromatic index of corona products of graphs, and provide a specific
structural criteria under which the upper bound is sharp. Next, for the Mycielskian
1 (G) of graphs G, Lemma 1 gives a lower bound the strong chromatic index of u(G).
Lemma 2 provide the sharpness of the bound, establishing the exact value of the strong
chromatic index of the Mycielskian of paths. Finally, Theorem 3 completed our study
of the Mycielskian of graphs, by deriving a tight upper bound for the strong chromatic
index of the Mycielskian of graphs.
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W 4. 2 UURSUL

nens ArUHUSrL aNroNINFE3NFLLELE NFFEN. LLNUUSHY
PUYGLRUP UUWUPL

G gnwdh ¢ : E(G) — N ynnuyht thpynuip Yngynud £ mdtin Ynnuyht dbpymy,

tipt G gqnwdph 0 Jud 1 hbpwynpmpyjub Yypw qupiynn Ynntipp dpyymd to
upptin gnybtipny: Wnuwhuh tbpdwd hwdwp wthpudbogm tjuqugnyt gnybtiph
pwlwlp Yngdmu £ G gpudbh nidtin ppndwphy hontipu b tpwbwyymd £ x/(G)-ny:
Wu woluunpuiipmy htipugnypyty b Uhgbpuyne 1(G) gpudliiph b gpudtiiph
GO H Ynpniw wppunpyubtipnh mdbn ppndunphy hogtipubtipn: Uwubwynpuybu,
Yty GO hwuwbbh uwpnphtt b ytphtt gbwhwpuyubdtp x, (G @ H)-h hwdwp:
WYtiiht, Owpwgpdty G0 npnp Juoniguwopwihtt uvwhdwbwthwynuittip, npnibg
ntiypnid uypugywd Yytphtt gbwhwpuyjuitp hwuwdth £ Wuwpubpnid quping by
th Owh Uhgtpuym p(G) gqpudlbtph mdbtn ppndunphy hintipuh x (1 (G))
hwuwOtiih uipnphtt b Yytiphtt gwhwpujubbp:
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A. K. IPAMBAH

O CUJIbHOM XPOMATUYECKOM MH/IEKCE HEKOTOPBIX OITEPAIIIT
HAJ TPAOAMU

Cunbnas pebeprast packpacka rpada G— sro otobpaxkenne ¢ : E(G) — N
Takoe, 9To pebpa rpada G, Haxozsmuecs Ha paccrosiuuu 0 uau 1, okpamuBa-
IOTCST B pas3jndHble IBeTa. MUHUMAJIBHOE UHUCIO IIBETOB, HEOOXOIMMOE JIJIst
TAKOI0 PACKPAIIMBAHMS, HA3LIBAETCS CIJILHLIM XPOMATHYECKUM HHICKCOM
rpada G n oboznauaercs gepes ¥i(G). B nannoil pabore nccaeayeTcs CuIbHbIIR
XpoMaTuieckuii nHaekce rpados Mpireabekoro [ (G) 1 KOPOHHOTO TPOU3BEICHHsT
rpadoB GO H. B gvacTHOCTH HaliIeHBI JOCTUXKUMbIE HU>KHUE U BEPXHNE OIEHKN
cubHOrO Xpomarmueckoro usuekca X.(G @ H). Kpome Toro, onucanb
HEKOTOpblE CTPYKTYpPHBble OI'DAaHMYEHHsl, HPU KOTOPBIX BEPXHAS OIEHKA
%.(G©® H) nocrmxkuma. B pabore Tak:ke HaiiJleHbl JOCTIZKUMbIE HUXKHUE W
BepXHHUE OIEHKHN CUJIBHOI'O XPOMATHUYECKOTO WHJEKca TpadoB MbIIEIbCKOTO

%5 (1(G))-



