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M a t h e m a t i c s

VERTEX DISTINGUISHING PROPER EDGE COLORINGS
OF THE JOIN GRAPHS

T. K. PETROSYAN ∗

Russian-Armenian University (RAU), Armenia

A proper edge coloring of a graph G is a mapping f : E(G)−→ Z≥0 such
that f (e) 6= f (e′) for every pair of adjacent edges e and e′ in G. A proper edge
coloring f of a graph G is called vertex distinguishing if for any different vertices
u,v ∈ V (G), S(u, f ) 6= S(v, f ), where S(v, f ) = { f (e) | e = wv ∈ E(G)}. The
minimum number of colors required for a vertex distinguishing proper coloring
of a graph G is denoted by χ ′vd(G) and called vertex distinguishing chromatic
index of G. In this paper we provide lower and upper bounds on the vertex
distinguishing chromatic index of the join graphs.
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Introduction. All graphs discussed in this paper are finite, undirected, and
contain neither loops nor multiple edges. For terminologies and notations not defined
here, we primarily refer to West’s book [1]. Let V (G) and E(G) denote the sets of
vertices and edges of a graph G, respectively. The degree of a vertex v ∈ V (G) is
denoted by dG(v) and the maximum degree of G by ∆(G). A proper edge coloring
of a graph G is a mapping f : E(G)→ Z≥0 such that f (e) 6= f (e′) for every pair of
adjacent edges e and e′ in G. If f is a proper edge coloring of a graph G and v ∈V (G),
then the spectrum of a vertex v, denoted by S (v, f ), is the set of all colors appearing on
edges incident to v. We use the standard notations Pn, Kn and Km,n for the simple path,
the complete graph on n vertices and the complete bipartite graph with m vertices in
one part and n vertices in the other part of the bipartition, respectively.

The proper edge coloring f of a graph G is a vertex distinguishing proper
coloring (abbreviated V DP-coloring) of G if S(u, f ) 6= S(v, f ) for any two distinct
vertices u and v in G. The minimum number of colors required for a VDP-coloring
of a graph G without isolated edges and with at most one isolated vertex is called
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the vertex distinguishing chromatic index (abbreviated V DP-chromatic index) and
denoted by χ ′vd(G). The concept of vertex distinguishing proper edge colorings of
graphs was introduced by Burris and Schelp in [2] and, independently, as observability
of a graph, by Cerný, Hornák and Soták [3]. In [2–6], the vertex distinguishing proper
edge colorings of paths, cycles, complete, complete bipartite and multipartite graphs
were investigated. In partitcular, the authors determined the vertex distinguishing
chromatic index of some families of graphs. The following results have been proved
by Burris and Schelp [2].

T h e o r e m 1. If n≥ 3, then

χ
′
vd(Kn) =

{
n, if n is odd;
n+1, if n is even.

T h e o r e m 2. Let m and n be any natural numbers. Then

χ
′
vd(Km,n) =

{
n+1, if n > m≥ 2;
n+2, if n = m≥ 2.

The classical theorem by Vizing [7] on proper edge colorings of graphs states
the following.

T h e o r e m 3. For any graph G,

∆(G)≤ χ
′(G)≤ ∆(G)+1.

For any two graphs G and H, let G+H be the join of two graphs G and H,
which is a graph constructed from disjoint copies of G and H by connecting each
vertex of G to each vertex of H. The join graph was introduced by Zykov [8] in 1949.

In [9], Baril, Kheddouci and Togni investigated vertex distinguishing proper
edge colorings of Cartesian, direct, strong and lexicographic products of graphs. In
particular, they derived upper bounds on the vertex distinguishing chromatic index of
these products of graphs in terms of the vertex distinguishing chromatic indices of the
factors. In this paper we consider vertex distinguishing proper edge colorings of the
join graphs. In particuar, we give lower and upper bounds for VDP-chromatic index
of the join graphs.

Main Result. We begin our considerations with the following result about
lower and upper bounds on the vertex distinguishing chromatic index for the join of
graphs.

T h e o r e m 4. Let G and H be graphs with n vertices (n≥ 3) and m vertices
(m≥ 3), respectively. If these graphs don’t have isolated edges and have at most one
isolated vertex, then

(1) if m 6= n, then

max{∆(G)+m,∆(H)+n}≤ χ ′vd(G+H)≤max{χ ′vd(G),χ ′vd(H)}+max(m,n);

(2) if m = n, then

max{∆(G),∆(H)}+n≤ χ ′vd(G+H)≤max{χ ′vd(G),χ ′vd(H)}+n+1.
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P ro o f. First we show that χ ′vd(G+H)≥max{∆(G)+m,∆(H)+n}.
Since, by the definition of the join graph, each vertex of the graph G is connected

to all m vertices of the graph H, we have χ ′vd(G+H) ≥ ∆(G)+m. On the other
hand, each vertex of H is connected to all the n vertices of the graph G, hence
χ ′vd(G+H)≥ ∆(H)+n.

Let us now prove the upper bound on χ ′vd(G+H).
We set M = max

{
χ ′vd(G),χ ′vd(H)

}
. Let fG be the VDP-coloring of the graph

G with colors 0,1, . . . ,χ ′vd(G)−1 and fH be the VDP-coloring of the graph H with
colors 0,1, . . . ,χ ′vd(H)−1, respectively. We have two cases to consider.

Case 1. m 6= n.
Let V (G) = {v0,v1, . . . ,vn−1} and V (H) = {u0,u1, . . . ,um−1} be the vertex sets

of graphs G and H, respectively. Without loss of generality, we may assume that
m > n.

Let us set Mi = M+(i mod m) and define an edge-coloring fG+H of G+H as
follows: for each edge e ∈ E(G+H), let

fG+H(e) =


fG(e), if e ∈ E(G);
fH(e), if e ∈ E(H);
Mi+ j, if e = viu j (0≤ i≤ n−1, 0≤ j ≤ m−1).

We must prove that fG+H is a VDP-coloring of G + H with colors
0,1, . . . ,M+m−1.

By the definition of fG+H , we have:

(1) for each i (0≤ i≤ n−1), S(vi, fG+H) = S(vi, fG)∪{M,M+1, . . . ,M+m−1};

(2) for each i (0≤ i≤ m−1), S(ui, fG+H) = S(ui, fH)∪{Mi,Mi+1, . . . ,Mi+n−1}.

Let us now show that for each pair of vertices w,z ∈V (G+H),

S(w, fG+H) 6= S(z, fG+H).

Subcase 1.1. w = vi, z = v j (0≤ i < j ≤ m−1).
By the definition of fG+H , we have

S(w, fG+H) = S(vi, fG)∪{M,M+1, . . . ,M+m−1}

and
S(z, fG+H) = S(v j, fG)∪{M,M+1, . . . ,M+m−1}.

Since fG is a VDP-coloring, we have S(vi, fG) 6= S(v j, fG), hence
S(w, fG+H) 6= S(z, fG+H).

Subcase 1.2. w = ui, z = u j (0≤ i < j ≤ m−1).
By the definition of fG+H , we have

S(w, fG+H) = S(ui, fH)∪{Mi,Mi+1, . . . ,Mi+n−1}

and
S(z, fG+H) = S(u j, fH)∪{M j,M j+1, . . . ,M j+n−1}.
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Since fH is a VDP-coloring, we have S(w, fG+H) 6= S(z, fG+H).
Subcase 1.3. w ∈V (G), z = ui (0≤ i≤ m−1).
By the definition of fG+H , we have

S(w, fG+H) = S(w, fG)∪{M,M+1, . . . ,M+m−1}
and

S(z, fG+H) = S(ui, fH)∪{Mi,Mi+1, . . . ,Mi+n−1}.

Since m > n, we have {Mi,Mi+1, . . . ,Mi+n−1} ⊂ {M,M + 1, . . . ,M +m− 1},
hence S(w, fG+H) 6= S(z, fG+H).

Case 2. m = n.
Let V (G) = {v0,v1, . . . ,vn−1} be the vertex set of graphs G and

V (H) = {u0,u1, . . . ,un−1} be the vertex set of H. Let us use colorings fG and fH

of graphs G and H, respectively.
Now we describe the procedure, which renumerates the vertices of the graph

H. Consider any vertex vi ∈V (G), where 0≤ i≤ n−1. Since fH is a VDP-coloring,
H may have at most one vertex with the same spectrum as vi. If such a vertex exists
in H, then we denote it by u(i+1) mod n. Let U = {ui1 ,ui2 , . . . ,uik} be the vertices of
H, whose spectrums coincide with a spectrum of the vertices of V (G). Also, let
U ′ = {u(i1+1) mod n,u(i2+1) mod n, . . . ,u(ik+1) mod n}. Since U and U ′ contain the same
number of vertices, there is a bijection between the sets V (H) \U and V (H) \U ′,
therefore, using this bijection we can use the vertex set V (H)\U ′ for the remaining
vertices of H. Note that after the renumeration of V (H), for each i, 0≤ i≤ n−1, we
have S(vi, fG) 6= S(ui, fH).

We set M′i = M +(i mod [n+1]). Define an edge-coloring fG+H of G+H
as follows: for each edge e ∈ E(G+H), let

fG+H(e) =


fG(e), if e ∈ E(G);
fH(e), if e ∈ E(H);
M′i+ j, if e = viu j (0≤ i, j ≤ n−1).

Let us show that fG+H is a VDP-coloring of G+H with colors 0,1, . . . ,M+n.
By the definition of fG+H , we have:

(1) for each vi ∈V (G) (0≤ i≤ n−1),

S(vi, fG+H) = S(vi, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1};

(2) for each u j ∈V (H) (0≤ j ≤ n−1),

S(u j, fG+H) = S(u j, fH)∪{M′j,M′j+1, . . . ,M
′
j+n−1}.

We must prove that for each pair of vertices w,z ∈V (G+H),

S(w, fG+H) 6= S(z, fG+H).

Subcase 2.1. w = vi, z = v j (0≤ i, j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(vi, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1}
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and
S(z, fG+H) = S(v j, fG)∪{M′j,M′j+1, . . . ,M

′
j+n−1}.

Since fG is a VDP-coloring, we have S(vi, fG) 6= S(v j, fG), hence
S(w, fG+H) 6= S(z, fG+H).

Subcase 2.2. w = ui, z = u j (0≤ i < j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(ui, fH)∪{M′i ,M′i+1, . . . ,M
′
i+n−1}

and
S(z, fG+H) = S(u j, fH)∪{M′j,M′j+1, . . . ,M

′
j+n−1}.

Since fH is a vertex distinguishing proper coloring, we have
S(ui, fH) 6= S(u j, fH), so S(w, fG+H) 6= S(z, fG+H).

Subcase 2.3. w = vi, z = u j (0≤ i, j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(vi, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1}

and
S(z, fG+H) = S(v j, fH)∪{M′j,M′j+1, . . . ,M

′
j+n−1}.

We should consider the following subcases:
Subcase 2.3.1. i = j.
By the enumeration with respect to coloring fH of graph H, we have

S(vi, fG) 6= S(ui, fH), hence the inequality holds.
Subcase 2.3.2. i 6= j.
The following equalities are satisfied.

{M′i ,M′i+1, . . . ,M
′
i+n−1}= {M,M+1, . . . ,M+n}\{M′i+n},

{M′j,M′j+1, . . . ,M
′
j+n−1}= {M,M+1, . . . ,M+n}\{M′j+n}.

Since 0 < | j− i| < n+ 1, we have i 6≡ j mod (n+ 1), hence M′i+n 6= M′j+n.
Therefore, the sets {M′i ,M′i+1, . . . ,M

′
i+n−1} and {M′j,M′j+1, . . . ,M

′
j+n−1} do not

coincide with each other, implying that S(vi, fG+H) 6= S(u j, fG+H).

T h e o r e m 5. Let G and H be graphs with n vertices (n≥ 2) and m vertices
(m≥ 2), respectively.

(1) If m 6= n, then

max{∆(G)+m,∆(H)+n}≤ χ
′
vd(G+H)≤max{∆(G),∆(H)}+max(m,n)+2;

(2) if m = n, then

max{∆(G),∆(H)}+n≤ χ ′vd(G+H)≤max{∆(G),∆(H)}+n+3.
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P ro o f. First we show that χ ′vd(G+H)≥max{∆(G)+m,∆(H)+n}.
Since each vertex of the graph G is connected to all m vertices of the graph H,

we have χ ′vd(G+H)≥ ∆(G)+m. On the other hand, each vertex of H is connected
to all the n vertices of the graph G, hence χ ′vd(G+H)≥ ∆(H)+n.

Let us now prove the upper bound on χ ′vd(G+H).
Let V (G) = {v0,v1, . . . ,vn−1} and V (H) = {u0,u1, . . . ,um−1} be the vertex sets

of graphs G and H, respectively. Also let fG be a proper edge coloring of the graph
G with colors 0,1, . . . ,χ ′(G)−1, and fH be the proper coloring of the graph H with
colors 0,1, . . . ,χ ′(H)−1. We set M = max{χ ′(G),χ ′(H)}. We distinguish our Proof
into two cases.

Case 1. m 6= n.
Without loss of generality, we may assume that m > n. Let Mi = M+(i mod

[m+ 1]). Define an edge-coloring fG+H of G+H as follows: for each edge e ∈
E(G+H), let

fG+H(e) =


fG(e), if e ∈ E(G);
fH(e), if e ∈ E(H);
Mi+ j, if e = viu j (0≤ i≤ n−1, 0≤ j ≤ m−1).

Let us now show that for each pair of vertices w,z ∈V (G+H),
S(w, fG+H) 6= S(z, fG+H).

We should consider the following subcases.
Subcase 1.1. w = vi, z = v j (0≤ i < j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(vi, fG)∪{Mi,Mi+1, . . . ,Mi+m−1}
and

S(z, fG+H) = S(v j, fH)∪{M j,M j+1, . . . ,M j+m−1}.

Note that {Mi,Mi+1, . . . ,Mi+m−1} = {M,M + 1, . . . ,M + m} \ {Mi+m} and
{M j,M j+1, ...,M j+m−1}= {M, M+1, ...,M+m}\{M j+m}. Since 0 < j− i < n < m,
we have Mi+m 6= M j+m, therefore S(w, fG+H) 6= S(z, fG+H).

Subcase 1.2. w = ui, z = u j (0≤ i < j ≤ m−1).
By the definition of fG+H , we have

S(w, fG+H) = S(w, fG)∪{Mi;Mi+1, . . . ,Mi+n−1}
and

S(z, fG+H) = S(z, fH)∪{M j;M j+1, . . . ,M j+n−1}.

Since 0 < |i− j| < m, we have {Mi; Mi+1, . . . , Mi+n−1} 6= {M j;M j+1, . . . ,
M j+n−1}, hence S(w, fG+H) 6= S(z, fG+H).

Subcase 1.3. w = vi,z = u j (0≤ i≤ n−1, 0≤ j ≤ m−1).
By the definition of fG+H , we have

S(w, fG+H) = S(w, fG)∪{Mi;Mi+1, . . . ,Mi+n−1}
and

S(z, fG+H) = S(z, fH)∪{M j;M j+1, . . . ,M j+m−1}.
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Since m 6= n, {Mi;Mi+1, . . . , Mi+n−1} 6= {M j;M j+1, . . . ,M j+m−1}, therefore
S(w, fG+H) 6= S(z, fG+H).

Note that fG+H is a VDP-coloring with 0,1, . . . ,max{χ ′(G),χ ′(H)}+m colors.
By Theorem 3, we have χ ′(G)≤ ∆(G)+1 and χ ′(H)≤ ∆(H)+1. Thus, the coloring
fG+H uses no more than max{∆(G),∆(H)}+m+2 colors.

Case 2. m = n.
Let M′i = M + (i mod [n+ 2]). Define an edge-coloring fG+H of G+H as

follows: for each edge e ∈ E(G+H), let

fG+H(e) =


fG(e), if e ∈ E(G);
fH(e), if e ∈ E(H);
M′i+ j, if e = viu j (0≤ i≤ n−2, 0≤ j ≤ n−1);
M′n+ j, if e = vn−1u j (0≤ j ≤ n−1).

By the definition of fG+H , we have:

(1) for each vi ∈V (G), where 0≤ i≤ n−2,

(vi, fG+H) = S(vi, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1};

(2) for the vertex vn−1 ∈V (G),

(vn−1, fG+H) = S(vn−1, fG)∪{M′n,M′n, . . . ,M′2n−1};

(3) for each u j ∈V (H), where 0≤ j ≤ n−1,

(u j, fG+H) = S(u j, fH)∪{M′j,M′j+1, . . . ,M
′
j+n−2,M

′
j+n}.

Let us now show that for each pair of vertices w,z ∈V (G+H),
S(w, fG+H) 6= S(z, fG+H).

We should consider the following subcases.
Subcase 2.1. w = vi, z = v j (0≤ i < j ≤ n−2).
By the definition of fG+H , we have

S(w, fG+H) = S(vi, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1}

and
S(z, fG+H) = S(v j, fH)∪{M′j,M′j+1, . . . ,M

′
j+n−1}.

Since 0 < j− i < n+ 2, we have {M′i , M′i+1, . . . , M′i+n−1} 6= {M′j,M′j+1, . . . ,
M′j+n−1}, therefore S(w, fG+H) 6= S(z, fG+H).

Subcase 2.2. w = vi, z = vn (0≤ i≤ n−2).
By the definition of fG+H , we have

S(w, fG+H) = S(w, fG)∪{M′i ;M′i+1, . . . ,M
′
i+n−1}

and
S(z, fG+H) = S(z, fH)∪{M′n;M′n+1, . . . ,M

′
2n−1}.

Since 0 < n− i < n + 2, we have {M′i ; M′i+1, . . . , M′i+n} 6= {M′n;M′n+1, . . . ,
M′2n−1}, hence S(w, fG+H) 6= S(z, fG+H).
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Subcase 2.3. w = ui, z = u j (0≤ i < j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(ui, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−2,M

′
i+n}

and
S(z, fG+H) = S(u j, fH)∪{M′j,M′j+1, . . . ,M

′
j+n−2,M

′
j+n}.

Since 0< j−i< n+2, we have {M′i ,M′i+1, . . . , M′i+n−2,M
′
i+n} 6= {M′j,M′j+1, . . . ,

M′j+n−2, M′j+n}, therefore S(w, fG+H) 6= S(z, fG+H).
Subcase 2.4. w = vi, z = u j (0≤ i, j ≤ n−1).
By the definition of fG+H , we have

S(w, fG+H) = S(w, fG)∪{M′i ,M′i+1, . . . ,M
′
i+n−1}, when i≤ n−2,

and
S(w, fG+H) = S(w, fG)∪{M′n,M′n+1, . . . ,M

′
2n−1}, when i = n−1.

On the other hand, we have S(z, fG+H) = S(z, fH)∪{M′j,M′j+1, . . . ,M
′
j+n−2,

M′j+n}. Numbers in the set S(w, fG+H)\S(w, fG) form a consecutive sequence modulo
n+2, whereas numbers in the set S(z, fG+H)\S(z, fH) do not. Hence, the inequality
S(w, fG+H) 6= S(z, fG+H) holds.

Note that fG+H is a VDP-coloring with 0,1, . . . ,max{χ ′(G),χ ′(H)}+ n+ 1
colors. By Theorem 3, we have χ ′(G) ≤ ∆(G)+ 1 and χ ′(H) ≤ ∆(H)+ 1. Thus,
the coloring uses no more than max{∆(G),∆(H)}+n+3 colors.

Depending on the graphs G and H, the coloring from the proof of Theorem 3
may require fewer colors, while in other cases, the coloring from the proof of Theorem
4 may require fewer colors.

Let m and n be any natural numbers such that n < m. For any graph G with m
vertices such that χ ′vd(G)≤ 2n+1, the coloring described in the proof of Theorem 3
uses 2n+1+m colors for the VDP-coloring of the join graph K2n+1 +G while the
coloring described in the proof of Theorem 3 uses 2n+2+m colors for VDP-coloring
of the same graph. Moreover, the number 2n+ 1+m is the vertex distinguishing
chromatic index of graph K2n+1 +G. On the other hand, for any paths Pn and Pm

(m > n ≥ 5), the algorithm described in the proof of Theorem 4 uses m+ 3 colors,
while the coloring described in the proof of Theorem 3 uses more than m+4 colors.

Conclusion. In this paper, we investigated vertex distinguishing proper edge
colorings (VDP-colorings) of the join graph, focusing on determining lower and
upper bounds for the vertex distinguishing chromatic index. We also presented two
algorithms for the coloring of the join graph and demonstrated that, in certain cases,
the coloring uses the minimum possible number of colors for the VDP-coloring.

I am deeply grateful to P. Petrosyan for his continuous support and guidance
throughout the research.
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T. K. PETROSYAN

GRAFNERI GOWMARNERI GAGA�NER TARBERAKO�

KO�AYIN NERKOWMNER

G grafi �i�t ko�ayin nerkowm kanvanenq f : E(G) −→ Z≥0
artapatkerowm�, orte� grafin patkano� e  e′ har an ko�eri hamar
f (e) 6= f (e′): G grafi f �i�t nerkowm� ko�vowm � gaga�ner tarberako�, e�e

tarber u,v∈V (G) gaga�neri hamar S(u, f ) 6= S(v, f ), orte� S(v, f ) = { f (e)
| e = wv ∈ E(G)}. Gowyneri nvazagowyn qanak�, orn anhra�e�t � G grafi

gaga�ner tarberako� ko�ayin nerkman hamar, n�anakvowm � χ ′vd(G)-ov
 ko�vowm � G-i gaga�ner tarberako� qromatik �iv: Sowyn hodva�owm

nerkayacva� en grafneri gowmari gaga�ner tarberako� ko�ayin

nerkowmneri qromatik �vi verin  storin gnahatakanner�:

Т. К. ПЕТРОСЯН

ВЕРШИННО-РАЗЛИЧАЮЩИЕ ПРАВИЛЬНЫЕ РЕБЕРНЫЕ РАСКРАСКИ
СОЕДИНЕНИЯ ГРАФОВ

Функция f : E(G)−→ Z≥0 называется реберной раскраской графа G.
Реберная раскраска f графа G называется правильной, если для любых
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смежных ребер e и e′ из графа G f (e) 6= f (e′). Правильная реберная рас-
краска называется вершинно-различающей, если для любых двух различ-
ных вершин u,v ∈V (G), S(u, f ) 6= S(v, f ), где S(v, f ) = { f (e) | e = wv ∈ E(G)}.
Наименьшее количество цветов, необходимое для вершинно-различающей
реберной раскраски графа G называется вершинно-различающим хромати-
ческим индексом и обозначается через χ ′vd(G). В этой статье представлены
верхние и нижние оценки вершинно-различающего хроматического индекса
соединения двух графов.


