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A matching M of a graph G is called semistrong, if every edge of M has a
vertex of degree one in the induced subgraph by the vertices of M. A semistrong
edge-coloring of a graph G is a proper edge-coloring in which every color
class induces a semistrong matching. The minimum number of colors required
for a semistrong edge-coloring is called the semistrong chromatic index of
G and denoted by χ ′ss(G). In this paper, we propose a new approach for
constructing semistrong edge-colorings and provide an upper bound on the
semistrong chromatic index of outerplanar graphs.
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Introduction. In this paper, we consider only simple and finite graphs. We use
West’s book [1] for terminologies and notations not defined here. We denote by V (G)
and E(G) the sets of vertices and edges of a graph G, respectively. The degree of a
vertex v ∈V (G) is denoted by dG(v) and the maximum degree of the vertices in G by
∆(G). We say that vertex v ∈V (G) is k-vertex if dG(v) = k. For vertices v,u ∈V (G),
we denote by dG(v,u) the distance between v and u.

A graph G is biconnected, if it is connected and, for every vertex v ∈ V (G),
the graph obtained by removing v remains connected. A graph G has a graph H as a
minor, if H can be obtained from G by deleting vertices, edges and contracting edges,
and G is called H-minor free, if G does not have H as a minor. A graph G is planar,
if it can be drawn on the plane without edge crossings. A graph G is outerplanar,
if it has a planar drawing for which all vertices belong to the unbounded face of the
drawing. It is shown in [2] that a graph is outerplanar if and only if it is K4-minor free
and K2,3-minor free.
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For a graph G and a subset of vertices V ′ ⊆ V (G), we denote by G[V ′] the
subgraph of G induced by the vertices of V ′. A matching in a graph G is a set of edges
M ⊆ E(G) such that no two edges in M share a common vertex. For a graph G and a
matching M ⊆ E(G), we denote by V (M) the set of vertices that are incident to edges
of M. In a graph G, a matching M is called strong if ∆(G[V (M)]) = 1 and semistrong
if every edge of M has a vertex of degree one in G[V (M)].

A strong (semistrong) edge-coloring of a graph G is a mapping φ : E(G)→ N
such that each color class induces a strong (semistrong) matching. The minimum
number of colors required for a strong (semistrong) edge-coloring is called the strong
(semistrong) chromatic index of G and denoted by χ ′s(G) (χ ′ss(G)). Clearly, for any
graph G, χ ′ss(G)≤ χ ′s(G).

The concept of strong edge-coloring was first introduced by Fouquet and Jolivet
in 1983 [3]. In 1985, during a seminar in Prague, Erdős and Nešetřil conjectured
that χ ′s(G)≤ 5

4 ∆2(G) for any graph G. The conjecture was proved for graphs G with
∆(G) = 3 [4, 5]. For graphs G with ∆(G) = 4, the best known result is χ ′s(G) ≤ 21
[6]. In 1990 Chung, Gyárfás, Trotter, and Tuza [7] showed that for graphs G with
significantly large ∆(G), χ ′s(G) ≤ 1.998∆(G)2 for graphs, which was improved to
1.93∆(G)2 in 2018 [8], and later to 1.772∆(G)2 in 2021 [9].

In 2005, the concept of semistrong edge coloring was introduced by Gyárfás
and Hubenko [10]. The authors showed that if G is a Kneser graph or a subset graph,
then χ ′ss(G) = χ ′s(G). In 2024, Lužar, Mockovčiaková and Soták [11] showed that
χ ′ss(G)≤ ∆(G)2 for any graph G. Moreover, for the case ∆(G) = 3, the authors proved
that the upper bound is 8 instead of 9 for every connected graph, different from K3,3.
At the end of their paper, they proposed the following conjecture.

C o n j e c t u r e. (Lužar, Mockovčiaková, Soták). There is a (small) constant
C such that for any planar graph G, it holds the bound

χ
′
ss(G)≤ 2∆(G)+C.

Strong edge-coloring of outerplanar graphs was studied by Hocquard, Ochem,
and Valicov [12], where the others obtained the following result:

T h e o r e m 1. (Hocquard, Ochem, Valicov). For any outerplanar graph G
with ∆(G)≥ 3, it holds the bound

χ
′
ss(G)≤ 3∆(G)−3.

Moreover, the upper bound is tight.

In this paper, we propose a new approach for constructing semistrong edge-
coloring of graphs and derive an upper bound on the semistrong chromatic index of
outerplanar graphs. Additionally, we show that if Conjecture holds, then the upper
bound on semistrong chromatic index of planar graphs may only be improved by a
small constant for outerplanar graphs.
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Main Result. For a plane-embedded outerplanar graph G, denote by Gwd its
weak dual [13], defined as follows: each vertex of Gwd corresponds to an internal
face of G, and two vertices of Gwd are adjacent, if the corresponding faces of G
share a common edge. It is known that Gwd is a forest, and a tree if and only if G is
biconnected [13]. Moreover, the subgraph of G induced by all vertices that do not lie
on any internal face is also a forest.

Directed graph
−→
G is an orientation of G if V (

−→
G ) =V (G) and for every (v,u) ∈

E(G), either
−−→
(v,u) ∈ E(

−→
G ) or

−−→
(u,v) ∈ E(

−→
G ).

Let G be a graph,
−→
G be an orientation of G, and φ be a proper edge-coloring

of G with colors 1,2, . . . ,k. Denote by Mc (1≤ c≤ k) the matching of G induced by
the color class c. We say that coloring φ is

−→
G -following, if for every edge

−−→
(v,u) ∈

E(
−→
G ), dG[V (Mφ((v,u)))](u) = 1. Clearly, if φ is

−→
G -following, then φ is a semistrong

edge-coloring of G. Also, any strong edge-coloring of G is
−→
G -following. For edge

(v,u) ∈ E(G), denote by Cφ
−→
G
((v,u))⊆ {1,2, . . . ,k} the set of colors that will violate

the
−→
G -following condition if used for edge (v,u).

For oriented graph
−→
G and vertex v ∈ V (

−→
G ), d+−→

G
(v) = {u :

−−→
(v,u) ∈ E(

−→
G )}

is the out-degree of v, d−−→
G
(v) = {u :

−−→
(u,v) ∈ E(

−→
G )} is the in-degree of v, and

b−→G (v) = d−−→
G
(v)−d+−→

G
(v) is the balance of v.

For an outerplanar graph G, we say that orientation
−→
G is in-degree minimized,

if:
1. For each internal face of G, the balance of every vertex in the corresponding

subgraph of
−→
G is 0.

2. For each biconnected component of G, the absolute value of the balance of
every vertex in the corresponding subgraph of

−→
G is at most 1.

4. Every vertex of G not belonging to any internal face has at most one incoming
edge in

−→
G , except for edges connecting it to leaves.

5. The balance of every vertex in
−→
G is at most 1.

First, we show that every biconnected outerplanar graph has an in-degree
minimized orientation.

L e m m a 1. For any biconnected outerplanar graph, there exists an in-degree
minimized orientation.

P ro o f. 1. For a graph G, we say that edge e ∈ E(G) is augmenting, if it is
possible to add a new face to G that will contain e and the graph will stay outerplanar.
It is easy to verify that every vertex of a biconnected outerplanar graph is incident to
exactly 2 augmenting edges.

Now, we prove the following by induction on the number of simple cycles of
G: for every biconnected outerplanar graph G, there exists an in-degree minimized
orientation

−→
G , where for each vertex v ∈V (G) :



ON SEMISTRONG EDGE-COLORINGS OF OUTERPLANAR GRAPHS. 35

(a) if b−→G (v) = 0, then v has one incoming augmented edge and one outgoing
augmented edge;

(b) if b−→G (v) = 1, then both augmented edges of v are incoming;
(c) if b−→G (v) =−1, then both augmented edges of v are outgoing.
Step 1. G is a simple cycle. Let V (G) = {v1,v2, . . . ,vn} and E(G) = {(v1,v2),

(v2,v3), . . . , (vn−1,vn), (vn,v1)}. For orientation of G, we take V (
−→
G ) = V (G) and

E(
−→
G ) = {

−−−−→
(v1,v2),

−−−−→
(v2,v3), . . . ,

−−−−−−→
(vn−1,vn),

−−−−→
(vn,v1)}. Clearly, for every v ∈ V (G),

b−→G (v) = 0 and v has one augmented incoming edge and one augmented outgoing
edge.

Step 2. Let G be a biconnected outerplanar graph, different from a simple cycle.
G can be constructed by consecutively gluing cycles C1,C2, . . . ,Ck [14]. Consider
the graph G′ that is obtained from G by deleting the cycle Ck. By the induction
hypothesis, there exists an in-degree minimized orientation

−→
G′ of G′ that satisfies

requirements (a), (b), and (c). Suppose during the construction of G, cycle Ck is
glued to the edge (u,v) ∈ E(G′) and

−−→
(u,v) ∈ E(

−→
G ). For orientation

−→
G of G, we take

−→
G′ and the orientation of Ck from Step 1, where

−−→
(u,v) ∈ E(

−→
Ck). It is easy to see that

the requirements (a), (b), and (c) are satisfied for
−→
G .

We denote the transpose graph of an oriented graph
−→
G by

−→
G T , where V (

−→
G T ) =

V (
−→
G ) and E(

−→
G T ) = {

−−→
(u,v) :

−−→
(v,u)∈ E(

−→
G )}. Clearly, if

−→
G is an in-degree minimized

orientation of a biconnected outerplanar graph G, then
−→
G T is also an in-degree

minimized orientation of G.
Next, we prove that any outerplanar graph has an in-degree minimized

orientation.

L e m m a 2. For any outerplanar graph, there exists an in-degree minimized
orientation.

P ro o f. 2. Without loss of generality, we can assume that G is connected.
Let us note that for any tree T , there exists an in-degree minimized orientation−→

T . We can select one of the vertices as a root and orient the edges from the parent
vertex to the child vertex.

Let Gwd be the weak dual of G and T1,T2, . . . ,Tk be the connected compo-
nents of Gwd . Consider tree T ∗, where V (T ∗) = {v1,v2, . . . ,vk} corresponds to con-
nected components of Gwd and (vi,v j) ∈ E(T ∗) (1 ≤ i 6= j ≤ k) if corresponding
subgraphs for Ti and Tj in G share a common vertex or are connected with simple path,
edges of which does not belong to internal faces of G. Select vertex v1 ∈ V (T ∗)
as a root in T ∗, and without loss of generality, we can assume that for any pair
1 < i < j ≤ k, dG(v1,vi) ≤ dG(v1,v j). Let us also denote by Gi the corresponding
subgraph for Ti in G.

Now we can construct an orientation
−→
G of G as follows:

1. We start with V (
−→
G ) =V (G) and E(

−→
G ) =∅.

2. Consecutively, for each 1≤ i≤ k we add edges of
−→
Gi to E(

−→
G ), constructed
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by steps described in the proof of Lemma 1; if subgraph Gi shares a common vertex
v ∈V (G) with already oriented subgraphs G j (1≤ j ≤ i−1) and b−→G (v)> 1, then we

add edges of
−→
Gi

T instead.
3. For each subtree T of G, whose edges do not belong to internal faces and

T has a common vertex v with Gi and common vertex u with G j (1≤ i < j ≤ k), we
add the edges of E(

−→
T ) to E(

−→
G ), where

−→
T is an in-degree minimized orientation

of T with v vertex selected as a root; if condition 4 of in-degree minimization is
violated for the vertex u, then we replace the edges of

−→
G j with the edges of

−→
G j

T and
repeat the same for other subgraphs Gl ( j < l ≤ k) until there is a vertex violating
condition 4.

4. For each subtree T of G, whose edges do not belong to internal faces and T
has a common vertex v only with Gi (1≤ i≤ k), we add the edges of E(

−→
T ) to E(

−→
G ),

where
−→
T is an in-degree minimized orientation of T with v vertex selected as a root.
It is easy to check that

−→
G is an in-degree minimized orientation for G.

For a graph G and a vertex v∈V (G), we define DG(v)= {u : dG(u)≥ 3 such that
(v,u) ∈ E(G) or there exists vertex w such that dG(w) = 2 and (v,w),(w,u) ∈ E(G)},
nk

G(v) = |{u ∈ NG(v) : dG(v) = k}|, nk+
G (v) = |{u ∈ NG(v) : dG(v)≥ k}|. For the next

theorem, we need the following structural lemma for K4-minor free graphs, which
appeared in [15].

L e m m a 3. (Wang, Wang, Wang). Let G be an outerplanar graph with
∆(G) ≥ 3. Then G contains one of the following configurations (A1),(A2), and
(A3).

(A1) Two adjacent 2-vertices.
(A2) a vertex v with dG(v)≥ 3 and |DG(v)| ≤ 2.
(A3) a vertex v with n1

G(v)≥ 1 and n2+
G (v)≤ 2.

Finally, we obtain an upper bound on the semistrong chromatic index of
outerplanar graphs.

T h e o r e m 2. For any outerplanar graph G, it holds that

χ
′
ss(G)≤ 2∆(G)+

⌊
∆(G)+1

2

⌋
+2.

Moreover, for any k ∈ N, there exists an outerplanar graph G such that
∆(G) = k and χ ′ss(G) = 2k−1.

P ro o f. 3. Since each connected component of G can be colored independently
of the others, we may assume that G is connected.

To prove the upper bound, we show that for a graph G and any in-degree
minimized orientation

−→
G of G, there exists

−→
G -following coloring φ that uses

2∆(G) +

⌊
∆(G)+1

2

⌋
+ 2 colors. We construct the coloring by induction on the

number of edges of G.
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Step 1. The claim is trivial for |E(G)| ≤ 3.
Step 2. Suppose that |E(G)|> 3 and the claim is true for all outerplanar graphs

G′, where |E(G′)|< |E(G)|. Let
−→
G be any in-degree minimized orientation of G.

If G is a tree or a simple cycle, then there exists a strong edge-coloring φ of G

with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors [7]. Thus, φ is a

−→
G -following coloring of G.

Now we may assume that ∆(G) ≥ 3. Since G satisfies the conditions of
Lemma 3, we construct an edge-coloring of G by the following cases:

Case 1. G contains (A1): two adjacent 2-vertices v and u.
Let x denote the neighbor of v other than u, and y denote the neighbor of u

other than v. Without loss of generality, assume that
−−→
(x,v),

−−→
(v,u) ∈ −→G . The following

subcases are possible:

Fig. 1. Structure of G (Cases 1.1, 1.2, and 1.3).

Case 1.1. y is a leaf (Fig. 1, case a).
Consider G′ = G− y and

−→
G′ =

−→
G − y. Clearly,

−→
G′ is an in-degree minimized

orientation of G′ and |E(G′)| < |E(G)|. By induction hypothesis, there exits a
−→
G′-following coloring φ ′ of G′ with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we are able to define the coloring φ of G as follows: each edge
e ∈ E(G)\{(u,y)} is colored with φ ′(e) and for edge (u,y) we use any color,
different from φ ′((x,v)) and φ ′((v,u)). It is easy to see that φ is

−→
G -following coloring

of G with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Case 1.2. y is not a leaf and x 6= y (Fig. 1, case b).
Consider G′ and its orientation

−→
G′, which are constructed from G and

−→
G ,

accordingly, by contracting edges (v,u) and
−−→
(v,u) into new vertex v′. Clearly, |E(G′)|<

|E(G)| and
−→
G′ is an in-degree minimized orientation of G′. By induction hypothesis,
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there exists a
−→
G′-following coloring ϕ ′ of G′ with 2∆(G) +

⌊
∆(G)+1

2

⌋
+ 2

colors.

Now we define an edge-coloring ϕ of a graph G as follows: for every edge
e ∈ E(G) that exists in G′ we use color ϕ ′(e); we color edges (x,v) and (u,y) using
colors ϕ ′((x,v′)) and ϕ ′((v′,y)), respectively; finally, we color (v,u) with a color not
in the set Cϕ

−→
G
((u,v)).

Since |Cϕ
−→
G
((u,v))| ≤ dG(y)+d−−→

G
(x)+1≤ ∆(G)+

⌊
∆(G)+1

2

⌋
+1 < 2∆(G)+

+

⌊
∆(G)+1

2

⌋
+ 2, there always exists an available color for edge (v,u). Thus,

ϕ is a
−→
G -following coloring of G and uses 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Case 1.3. x = y (Fig.1, case c).

Consider graphs G′ and its in-degree minimized orientation
−→
G′, obtained from

G and
−→
G by deleting edges (v,u) and

−−→
(v,u), respectively. Since |E(G′)| < |E(G)|,

there exists a
−→
G′-following coloring ψ ′ of G′ with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we are able to define a
−→
G -following coloring ψ of graph G as follows:

each edge e ∈ E(G), different from (v,u), is colored with ψ ′(e), and for edge (v,u)
we use any color, different from colors assigned to incident edges of x.

Case 2. G contains (A2): a vertex v ∈V (G) with dG(v)≥ 3 and |DG(v)| ≤ 2.

According to the proof of Case 1, we may assume that |DG(v)| ≥ 1 and each
neighbor of v is one of the following:

(A) a 2-vertex that connects v with a leaf;

(B) a leaf;

(C) a vertex in DG(v);

(D) a 2-vertex that connects v with a vertex in DG(v).

Let x ∈ DG(v). Since G is K2,3-minor free, it follows that v has at most 2
neighbors of type (D) that connect v with x. Thus, the number of neighbors of v that
are not of type (A) or (B) is at most 6. There are three possible subcases to be handled
below:

Case 2.1. v has a neighbor u of type (A) (Fig. 2, case a).

Let w denote the neighbor of u other than v. Consider G′ = G−w and its
in-degree minimized orientation

−→
G′ =

−→
G −w. By induction hypothesis, there exists a

−→
G′-following coloring λ ′ of G′ with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we define the edge-coloring λ of G as follows: each edge e ∈ E(G),
different from (u,w), is colored with λ ′(e), and for edge (u,w) we use any color,
different from the colors assigned to incident edges of v.
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It is easy to confirm that λ is
−→
G -following coloring of G and uses

2∆(G)+

⌊
∆(G)

2

⌋
+2 colors.

Fig. 2. Structure of G (Cases 2.1 and 2.2).

Case 2.2. v does not have a neighbor of type (A), but has a neighbor of type
(B).

Let v1,v2, . . . ,vk ∈ V (G) denote the leaves adjacent to v. Consider graphs
G′ = G− v1− v2−·· ·− vk and

−→
G′ =

−→
G − v1− v2−·· ·− vk. Since

−→
G′ is an in-degree

minimized orientation of G and |E(G′)| < |E(G)|, there exists a
−→
G -following

coloring α ′ of G′ with 2∆(G) +

⌊
∆(G)+1

2

⌋
+ 2 colors. The following subcases

are possible:
Case 2.2.1. DG(v) = {x} (Fig. 2, case b).
We can define edge-coloring α1 of G as follows: for each edge e ∈ E(G), that

exists in G′, we use color α ′(e); for edges (v,vi) (1≤ i≤ k) we use colors, different
from the colors assigned to the incident edges of v and x.

Since dG(x) + dG′(v) ≤ ∆(G) + 3 < 2∆(G) +

⌊
∆(G)+1

2

⌋
+ 2, coloring α1

always exists. Clearly, α1 is a
−→
G -following coloring of G with 2∆(G)+

⌊
∆(G)+1

2

⌋
+

2 colors.
Case 2.2.2. DG(v) = {x,y} and (v,x),(v,y) ∈ E(G) (Fig. 2, case c).
Let dG′(v) = l ≤ 6. Without loss of generality, we may assume that α ′ uses

colors from {1,2, . . . ,2∆(G)+ l−2} for the incident edges of v,x,y ∈V (G′).

Consider the coloring of (v1,v) ∈ E(G). If
−−−→
(v1,v) ∈

−→
G , then the color of (v1,v)

should be different from the colors of edges, incident to v, x, and y. If
−−−→
(v,v1) ∈

−→
G ,

then the color of (v1,v) should be different from the colors of:
• the edges incident to v;
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• the edges (x,u) ∈ E(G) ((y,u) ∈ E(G)) such that
−−−→
(u,x) ∈ −→G (

−−→
(u,y) ∈ −→G )

and (u,v) /∈ E(G);

• the edges (x,u) ∈ E(G) ((y,u) ∈ E(G)) such that
−−−→
(x,u) ∈ −→G (

−−→
(y,u) ∈ −→G )

and (u,v) ∈ E(G).
The number of such edges is at most d−−→

G′
(x)+1+d−−→

G′
(y)+1+dG′(v)≤ ∆(G)+

l +3. Thus, there are at least ∆(G)−5 colors from {1,2, . . . ,2∆(G)+ l−2}, that we
can use for (v1,v).

Now we are allowed to define a
−→
G -following coloring α2 of G as follows:

for each edge e ∈ E(G), that exists in G′, we use the color α ′(e); for each edge
−−−→
(vi,v) ∈ E(

−→
G ) (1 ≤ i ≤ k), we use an available color from the set

{
2∆(G)+ l−

1,2∆(G)+ l, . . . ,2∆(G)+

⌊
∆(G)+1

2

⌋
+2

}
; for each edge

−−−→
(v,vi)∈E(

−→
G ) (1≤ i≤ k),

we use a color from the set
{

1,2, . . . ,2∆(G)+

⌊
∆(G)+1

2

⌋
+2

}
\Cα2−→

G
((v,vi)).

It is easy to verify that the number of leaves, oriented towards v, is at most(⌊
∆(G)+1

2

⌋
− l +4

)
and k ≤ ∆(G)− l ≤ (∆(G)− 5) +

(⌊
∆(G)+1

2

⌋
− l +4

)
.

Thus, the coloring α2 always exists and uses 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Case 2.2.3. DG(v) = {x,y} and (v,x) /∈ E(G) or (v,y) /∈ E(G) (Fig. 2, case d).
Without loss of generality, we may assume that (v,y) /∈ E(G).

We define
−→
G -following coloring α3 of G as follows: for each edge e ∈ E(G),

that exists in G′, we use the color α ′(e); for edges (v,vi) (1 ≤ i ≤ k) we use colors,
different from the color assigned to the incident edges of v, x, and 2-vertices that
connect v with y.

Since dG(x)+dG(v)+2≤ 2∆(G)+2 < 2∆(G)+

⌊
∆(G)+1

2

⌋
+2, the coloring

α3 always exists.

Fig. 3. Structure of G (Case 2.3).
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Case 2.3. v does not have neighbors of type (A) or (B).
The following subcases are possible:
Case 2.3.1. DG(v) = {x} (Fig. 3, case a).
Since dG(v) ≥ 3, it follows that (v,x) ∈ E(G) and there exist 2-vertices

u,w ∈ V (G) such that (v,w),(w,x),(v,u),(u,x) ∈ E(G). Consider graphs G′ and
−→
G′, which are obtained from G and

−→
G by deleting edge (v,u) and the corresponding

oriented edge. It is easy to verify that
−→
G′ is an in-degree minimized orientation of G′.

By the induction hypothesis, there exists a
−→
G′-following coloring β ′ of the graph G′

with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

We define the edge-coloring β of G as follows: for each edge e∈E(G), different
from (u,v), we use the color β ′(e) and we color (v,u) with a color not in the set
Cβ
−→
G
((u,v)).

Let us note that it is always possible to select such a color for (u,v):

• if
−−→
(u,v)∈E(

−→
G ), then Cβ

−→
G
((u,v))≤ d−−→

G
(x)+1+dG(v)−1≤

⌊
∆(G)+1

2

⌋
+3

< 2∆(G)+

⌊
∆(G)+1

2

⌋
+2;

• if
−−→
(v,u)∈ E(

−→
G ), then Cβ

−→
G
((u,v))≤ dG(x)+dG(v)−1≤ ∆(G)+2 < 2∆(G)+⌊

∆(G)+1
2

⌋
+2.

Thus, β is
−→
G -following coloring of G an uses 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Case 2.3.2. DG(v) = {x,y} and v is a cut-vertex (Fig. 3, case b).
Let Vx = {u ∈V (G) : path from x to u does not contain y} and Vy = {u ∈V (G) :

path from y to u does not contain x}. Clearly, Vx ∩Vy = {v} and Vx ∪Vy = V (G).
Consider subgraphs Gx =G[Vx], Gy =G[Vy] and their in-degree minimized orientations
−→
Gx,
−→
Gy ⊂

−→
G .

By the induction hypothesis, there exist a
−→
Gx-following coloring γx of Gx and

a
−→
Gy-following coloring γy of Gy, which use colors 1,2, . . . ,2∆(G)+

⌊
∆(G)+1

2

⌋
+2.

Since dGx(x)+dGx(v)≤ ∆(G)+2, dGx(v)≤ 3, dGy(v)≤ 3, we may assume that
the colors used by γy for the edges incident to v are different from colors used by γx

for the edges incident to v and x, and the colors used by γy for the edges incident to y
are different from colors used by γx for the edges incident to v.

Now we are allowed to define a
−→
G -following coloring γ of G as follows: for

each edge e ∈ Ex we use color γx(e), and for each edge e ∈ Ey we use color γy(e).
Case 2.3.3. DG(v) = {x,y} and v is not a cut-vertex.
Since v is not a cut-vertex, there exists an internal face that contains vertices

v, x, and y. Additionally, according to the proof of Case 1, we may assume that
(x,v) ∈ E(G) or (v,y) ∈ E(G). The following subcases are possible:
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Case 2.3.3.1. (x,v) ∈ E(G) and (v,y) /∈ E(G) (Fig. 3, case c).

Let u ∈ V (G) denote the 2-vertex such that (v,u),(u,y) ∈ E(G). Consider
graphs G′ and its in-degree minimized orientation

−→
G′, which are obtained from G and−→

G by contracting edge (v,u) into vertex v′. By the induction hypothesis, there exists a
−→
G′-following coloring η ′ of graph G′ with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we define a
−→
G -following coloring η of the graph G as follows: for each

edge e ∈ E(G), that exists in G′, we use color η ′(e), for edge (u,y) we use color
η ′((v′,y)) and we color (v,u) with a color not in the set Cη

−→
G
((u,v)).

Let us note that it is always possible to select such a color for (v,u):

• if
−−→
(v,u)∈−→G , then Cη

−→
G
((v,u))≤ dG(y)+d−−→

G
(x)+2≤∆(G)+

⌊
∆(G)+1

2

⌋
+2

< 2∆(G)+

⌊
∆(G)+1

2

⌋
+2;

• if
−−→
(u,v)∈−→G , then Cη

−→
G
((v,u))≤ dG(x)+d−−→

G
(y)+2≤∆(G)+

⌊
∆(G)+1

2

⌋
+2

< 2∆(G)+

⌊
∆(G)+1

2

⌋
+2.

Case 2.3.3.2. (x,v),(v,y) ∈ E(G) (Fig. 3, case d).

Since dG(v)≥ 3, there exists 2-vertex u, which connects v with x or v with y.
Without loss of generality, we may assume that (x,u),(u,v)∈E(G). Consider graph G′

obtained from G by deleting edge (v,u) and its orientation
−→
G′ ⊂−→G . Clearly,

−→
G′ is an in-

degree minimized orientation of G′ and |E(G′)|< |E(G)|. By the induction hypothesis,

there exists
−→
G′-following coloring ζ ′ of graph G′ with 2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we define edge-coloring ζ of graph G as follows: for each edge e ∈ E(G),
different from (v,u), we use color ζ ′(e) and we color (v,u) with a color not in the set
Cζ
−→
G
((u,v)).

Let us note that it is always possible to select such a color for (v,u):

• if
−−→
(v,u) ∈−→G , then Cζ

−→
G
((v,u))≤ d(x)+d−−→

G
(y)+2≤ ∆(G)+

⌊
∆(G)+1

2

⌋
+2

< 2∆(G)+

⌊
∆(G)+1

2

⌋
+2;

• if
−−→
(u,v) ∈−→G , then Cζ

−→
G
((v,u))≤ d(y)+d−−→

G
(x)+2≤ ∆(G)+

⌊
∆(G)+1

2

⌋
+2

< 2∆(G)+

⌊
∆(G)+1

2

⌋
+2.

It is easy to observe that ζ is a
−→
G -following coloring of G with

2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.
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Case 3. G Contains (A3): vertex v with n1
G(v)≥ 1 and n2+

G (v)≤ 2.
According to the proof of Cases 1 and 2, we may assume that n1

G(v) = 1 and
n2+

G = 1. Let u and w denote neighbors of v where dG(w) = 1. Consider the graph

G′ = G−w and its in-degree minimized orientation
−→
G′ =

−→
G −w. By the induction

hypothesis, there exists a
−→
G -following coloring κ ′ of graph G′ with

2∆(G)+

⌊
∆(G)+1

2

⌋
+2 colors.

Now we define a
−→
G -following coloring κ of the graph G as follows: for each

edge e ∈ E(G), different from (v,w), we use color κ ′(e) and for (v,w) we use any
color, different from the colors assigned to the incident edges of u.

Let us now prove that for any k ∈ N, there exists an outerplanar graph G such
that ∆(G) = k and χ ′ss(G) = 2k− 1. For m,n ∈ N, fan graph Fm,n defines as graph
join Km +Pn. F1,k (k ∈N) is an outerplanar graph with ∆(F1,k) = k, |E(F1,k)|= 2k−1
and all edges should be assigned pairwise distinct colors for semistrong edge-coloring
of F1,k. Thus, χ ′ss(F1,k) = 2k−1 for any k ∈ N.

Conclusion. We began our investigations from the relation between semistrong
edge-coloring of graphs and graph orientations. Then, in Lemma 1 and Lemma 2 we
proved that each outerplanar graph has a special orientation. Finally, in Theorem 2,
using the special orientation of outerplanar graphs, we obtained an upper bound for
the semistrong chromatic index of outerplanar graphs. Moreover, we showed that
if Conjecture holds, then the upper bound on semistrong chromatic index of planar
graphs may only be improved by a small constant for outerplanar graphs.
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A. K. DRAMBYAN, H. V. MIQAELYAN

ARTAQIN HAR� GRAFNERI HAMARYA OW	E� KO�AYIN

NERKOWMNERNERI MASIN

G grafi M zowgakcowm� ko�vowm � hamarya ow�e�, e�e M-i gaga�ne-

rov �nva� en�agrafowm M-i yowraqan�yowr ko� owni mek asti�anov gaga�:

G grafi �i�t ko�ayin nerkowm� ko�vowm � hamarya ow�e�, e�e nowyn gowynov

nerkva� ko�er� kazmowm en hamarya ow�e� zowgakcowm: Hamarya ow�e�

ko�ayin nerkman hamar anhra�e�t nvazagowyn gowyneri qanak� ko�vowm �

G grafi hamarya ow�e� qromatik indeqs  n�anakvowm � χ ′ss(G)-ov: Ays
a�xatanqowm a�ajarkvel � hamarya ow�e� ko�ayin nerkowmner ka�owcelow

nor e�anak, ori mijocov trvel � artaqin har� grafneri hamarya ow�e�

qromatik indeqsi verin gnahatakan:
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А. К. ДРАМБЯН, Г. В. МИКАЕЛЯН

О ПОЧТИ СИЛЬНЫХ РЕБЕРНЫХ РАСКРАСКАХ
ВНЕШНЕПЛАНАРНЫХ ГРАФОВ

Паросочетание M графа G называется почти сильным, если каждое
ребро из M инцидентно вершине степени один в графе, порожденном
вершинами M. Правильная реберная раскраска графа G называется почти
сильной, если ребра, окрашенные в один и тот же цвет, составляют почти
сильное паросочетание. Минимальное количество цветов, необходимое
для почти сильной реберной раскраски, называется почти сильным
хроматическим индексом графа G и обозначается через χ ′ss(G). В этой
работе предложен новый подход для построения почти сильных реберных
раскрасок графов, а также получена верхная оценка для почти сильного
хроматического индекса внешнепланарных графов.


