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A matching M of a graph G is called semistrong, if every edge of M has a
vertex of degree one in the induced subgraph by the vertices of M. A semistrong
edge-coloring of a graph G is a proper edge-coloring in which every color
class induces a semistrong matching. The minimum number of colors required
for a semistrong edge-coloring is called the semistrong chromatic index of
G and denoted by x/,(G). In this paper, we propose a new approach for
constructing semistrong edge-colorings and provide an upper bound on the
semistrong chromatic index of outerplanar graphs.
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Introduction. In this paper, we consider only simple and finite graphs. We use
West’s book [ 1] for terminologies and notations not defined here. We denote by V(G)
and E(G) the sets of vertices and edges of a graph G, respectively. The degree of a
vertex v € V(G) is denoted by dg(v) and the maximum degree of the vertices in G by
A(G). We say that vertex v € V(G) is k-vertex if dg(v) = k. For vertices v,u € V(G),
we denote by dg(v,u) the distance between v and u.

A graph G is biconnected, if it is connected and, for every vertex v € V(G),
the graph obtained by removing v remains connected. A graph G has a graph H as a
minor, if H can be obtained from G by deleting vertices, edges and contracting edges,
and G is called H-minor free, if G does not have H as a minor. A graph G is planar,
if it can be drawn on the plane without edge crossings. A graph G is outerplanar,
if it has a planar drawing for which all vertices belong to the unbounded face of the
drawing. It is shown in [2] that a graph is outerplanar if and only if it is K4-minor free
and K> 3-minor free.
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For a graph G and a subset of vertices V' C V(G), we denote by G[V'] the
subgraph of G induced by the vertices of V. A matching in a graph G is a set of edges
M C E(G) such that no two edges in M share a common vertex. For a graph G and a
matching M C E(G), we denote by V(M) the set of vertices that are incident to edges
of M. In a graph G, a matching M is called strong if A(G[V(M)]) = 1 and semistrong
if every edge of M has a vertex of degree one in G[V (M)].

A strong (semistrong) edge-coloring of a graph G is a mapping ¢ : E(G) — N
such that each color class induces a strong (semistrong) matching. The minimum
number of colors required for a strong (semistrong) edge-coloring is called the strong
(semistrong) chromatic index of G and denoted by x!(G) (x.,(G)). Clearly, for any
graph G, 15,(G) < x(G).

The concept of strong edge-coloring was first introduced by Fouquet and Jolivet
in 1983 [3]. In 1985, during a seminar in Prague, Erdds and NeSetfil conjectured
that x!(G) < %AZ(G) for any graph G. The conjecture was proved for graphs G with
A(G) =3 [4,5]. For graphs G with A(G) = 4, the best known result is x/(G) < 21
[6]. In 1990 Chung, Gyarfas, Trotter, and Tuza [7] showed that for graphs G with
significantly large A(G), x.(G) < 1.998A(G)? for graphs, which was improved to
1.93A(G)? in 2018 [8], and later to 1.772A(G)? in 2021 [9].

In 2005, the concept of semistrong edge coloring was introduced by Gyérfas
and Hubenko [10]. The authors showed that if G is a Kneser graph or a subset graph,
then x/,(G) = x.(G). In 2024, Luzar, Mockov¢iakova and Sotdk [ 1] showed that
24(G) < A(G)? for any graph G. Moreover, for the case A(G) = 3, the authors proved
that the upper bound is 8 instead of 9 for every connected graph, different from K3 3.
At the end of their paper, they proposed the following conjecture.

Conjecture. (Luzar, Mockovciakova, Sotak). There is a (small) constant
C such that for any planar graph G, it holds the bound

%:5(G) <2A(G) +C.

Strong edge-coloring of outerplanar graphs was studied by Hocquard, Ochem,
and Valicov [12], where the others obtained the following result:

Theorem 1. (Hocquard, Ochem, Valicov). For any outerplanar graph G
with A(G) > 3, it holds the bound

%55(G) < 3A(G) —3.
Moreover, the upper bound is tight.

In this paper, we propose a new approach for constructing semistrong edge-
coloring of graphs and derive an upper bound on the semistrong chromatic index of
outerplanar graphs. Additionally, we show that if Conjecture holds, then the upper
bound on semistrong chromatic index of planar graphs may only be improved by a
small constant for outerplanar graphs.
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Main Result. For a plane-embedded outerplanar graph G, denote by G, its
weak dual [13], defined as follows: each vertex of G,,; corresponds to an internal
face of G, and two vertices of G, are adjacent, if the corresponding faces of G
share a common edge. It is known that G, is a forest, and a tree if and only if G is
biconnected [13]. Moreover, the subgraph of G induced by all vertices that do not lie
on any internal face is also a forest.

Directed graph G is an orientation of G if V(ﬁ) = V(G) and for every (v,u) €
E(G), either (v,u) € E(G) or (u,v) € E(G).

Let G be a graph, 8 be an orientation of G, and ¢ be a proper edge-coloring
of G with colors 1,2,... k. Denote by M, (1 < ¢ < k) the matching of G induced by
the color class c¢. We say that coloring ¢ is G -following, if for every edge (v,u) €
E(B), AG{V My ()] (u) = 1. Clearly, if ¢ is G-following, then ¢ is a semistrong
edge-coloring of G. Also, any strong edge-coloring of G is B—following. For edge
(v,u) € E(G), denote by C%((v, u)) C{1,2,...,k} the set of colors that will violate
the 8—following condition if used for edge (v,u).

_>
For oriented graph G and vertex v € V(G), d%(v) ={u:(vu) € E(B)}

is the out-degree of v, d%;) v) =A{u: (u,v) € E(ﬁ)} is the in-degree of v, and
ba(v) = d(if(v) — dé(v) is the balance of v.

For an outerplanar graph G, we say that orientation 8 is in-degree minimized,
if:

1. For each internal face of G, the balance of every vertex in the corresponding
subgraph of 8 is 0.

2. For each biconnected component of G, the absolute value of the balance of
every vertex in the corresponding subgraph of 8 is at most 1.

4. Every vertex of G not belonging to any internal face has at most one incoming
edge in 8, except for edges connecting it to leaves.

5. The balance of every vertex in 8 is at most 1.

First, we show that every biconnected outerplanar graph has an in-degree
minimized orientation.

Lemma 1. For any biconnected outerplanar graph, there exists an in-degree
minimized orientation.

Proof. 1. For a graph G, we say that edge e € E(G) is augmenting, if it is
possible to add a new face to G that will contain e and the graph will stay outerplanar.
It is easy to verify that every vertex of a biconnected outerplanar graph is incident to
exactly 2 augmenting edges.

Now, we prove the following by induction on the number of simple cycles of
G: for every biconnected outerplanar graph G, there exists an in-degree minimized
orientation G, where for each vertex v € V(G) :
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(a) if bz (v) = 0, then v has one incoming augmented edge and one outgoing
augmented edge;

(b) if bz (v) = 1, then both augmented edges of v are incoming;

(c) if bz(v) = —1, then both augmented edges of v are outgoing.

Step 1. G is a simple cycle. Let V(G) = {vy,v2,...,v,} and EéG) ={(vi,»),
(v2,v3), --.s (Vu—1,vn), (vu,v1)}. For orientation of G, we take V(G) = V(G) and
E(g) = {(v1,v2), (v2,v3), -, (Vn_1,vn), (v, v1)}.  Clearly, for every v € V(G),
bg(v) = 0 and v has one augmented incoming edge and one augmented outgoing
edge.

Step 2. Let G be a biconnected outerplanar graph, different from a simple cycle.
G can be constructed by consecutively gluing cycles C!,C?,...,C* [14]. Consider
the graph G’ that is obtained from G by deleting the cycle C_”: By the induction

hypothesis, there exists an in-degree minimized orientation G’ of G’ that satisfies
requirements (a), (b), and (c). Suppose during the construction of G, cycle C¥ is

glued to the edge (u,v) € E(G’) and (u,v; € E(ﬁ) For orien_tiltion G of G, we take

_>
G’ and the orientation of C* from Step 1, where (u,v) € E(C*). It is easy to see that
the requirements (a), (b), and (c) are satisfied for G. O

We denote the transpose graph of an oriented graph ¢ by 87, where V(aT) =
V(g) and E(@T) ={(u, v): (v,u) € E(a)} Clearly, if Gisan in-degree minimized

orientation of a biconnected outerplanar graph G, then BT
minimized orientation of G.
Next, we prove that any outerplanar graph has an in-degree minimized

orientation.

is also an in-degree

Lemma 2. For any outerplanar graph, there exists an in-degree minimized
orientation.

Proof. 2. Without loss of generality, we can assume that G is connected.
Let us note that for any tree 7, there exists an in-degree minimized orientation
. We can select one of the vertices as a root and orient the edges from the parent
vertex to the child vertex.

Let G,4 be the weak dual of G and T7,73,...,T; be the connected compo-
nents of G,,,. Consider tree 7%, where V(T*) = {v,v2,..., v} corresponds to con-
nected components of G4 and (v;,v;) € E(T*) (1 <i# j < k) if corresponding
subgraphs for 7; and 7} in G share a common vertex or are connected with simple path,
edges of which does not belong to internal faces of G. Select vertex v; € V(T¥)
as a root in T*, and without loss of generality, we can assume that for any pair
1 <i< j<k, dg(vi,vi) <dg(vi,vj). Let us also denote by G; the corresponding
subgraph for 7; in G.

Now we can construct an orientation 8 of G as follows:

1. We start with V(é) =V(G) and E(g) =g.

2. Consecutively, for each 1 <i < k we add edges of a to E (3), constructed



36 DRAMBYAN A. K., MIKAELYAN H. V.

by steps described in the proof of Lemma 1; if subgraph G; shares a common vertex
v € V(G) with already oriented subgraphs G; (1 < j <i—1) and bz(v) > 1, then we
add edges of (?,-T instead.

3. For each subtree T of G, whose edges do not belong to internal faces and
T has a common vertex v with G; and common vertex # with G; (1 <i < j <k), we
add the edges of E (?) to E (8), where T is an in-degree minimized orientation
of T with v vertex selected as a root; if condition 4 of in-degree minimizigion is
violated for the vertex u, then we replace the edges of G; with the edges of G, and
repeat the same for other subgraphs G; (j </ < k) until there is a vertex violating
condition 4.

4. For each subtree T of G, whose edges do not belong to internal faces and T
has a common vertex v only with G; (1 <i < k), we add the edges of E(?) to E(g)
where ? is an in-degree minimized orientation of T with v vertex selected as a root.

It is easy to check that 8 is an in-degree minimized orientation for G. O

For a graph G and a vertex v € V(G), we define Dg(v) = {u: dg(u) > 3 such that
(v,u) € E(G) or there exists vertex w such that dg(w) =2 and (v,w), (w,u) € E(G)},
nk.(v) = [{u € Ng(v) : dg(v) = k}|, " (v) = |{u € Ng(v) : dg(v) > k}|. For the next
theorem, we need the following structural lemma for K4-minor free graphs, which
appeared in [15].

Lemma 3. (Wang, Wang, Wang). Let G be an outerplanar graph with
A(G) > 3. Then G contains one of the following configurations (Al),(A2), and
(A3).

(A1) Two adjacent 2-vertices.

(A2) a vertex v with dg(v) > 3 and |Dg(v)| < 2.

(A3) a vertex v with nL,(v) > 1 and %' (v) < 2.

Finally, we obtain an upper bound on the semistrong chromatic index of
outerplanar graphs.

Theorem 2. For any outerplanar graph G, it holds that
A(G)+1
40 <2800+ | NG 12

Moreover, for any k € N, there exists an outerplanar graph G such that
A(G) =k and x,(G) =2k — 1.

Proof. 3. Since each connected component of G can be colored independently
of the others, we may assume that G is connected.
To prove the upper bound, we show that for a graph G and any in-degree

minimized orientation 8 of G, there exists 3—following coloring ¢ that uses

A(G)+1
2A(G) + {(;LJ -+ 2 colors. We construct the coloring by induction on the

number of edges of G.
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Step 1. The claim is trivial for |E(G)| < 3.

Step 2. Suppose that |E(G)| > 3 and the claim is true for all outerplanar graphs
G', where |E(G')| < |E(G)|. Let G be any in-degree minimized orientation of G.

If G is a tree or a simple cycle, then there exists a strong edge-coloring ¢ of G

AG)+1
with 2A(G) + {(;—i_J +2 colors [7]. Thus, ¢ is a B—following coloring of G.

Now we may assume that A(G) > 3. Since G satisfies the conditions of
Lemma 3, we construct an edge-coloring of G by the following cases:

Case 1. G contains (A1): two adjacent 2-vertices v and u.

Let x denote the neighbor of v other than u, and y denote the neighbor of u
other than v. Without loss of generality, assume that m, (\/7; € B The following
subcases are possible:

4 @
a) u y
b *
c)

Fig. 1. Structure of G (Cases 1.1, 1.2, and 1.3).

Case 1.1. y is a leaf (Fig. 1, case a).
- = —
Consider G’ = G—yand G = G —y. Clearly, G is an in-degree minimized
orientation of G’ and |E(G')| < |E(G)|. By induction hypothesis, there exits a

- AG)+1
G'-following coloring ¢ of G’ with 2A(G) + L(Z)—F

Now we are able to define the coloring ¢ of G as follows: each edge
e € E(G)\{(u,y)} is colored with ¢'(e) and for edge (u,y) we use any color,
different from ¢’((x,v)) and ¢'((v,u)). It is easy to see that ¢ is B—following coloring

A(G)+1
of G with 2A(G) + L(zH

Case 1.2. y is not a leaf and x # ygig. 1, case b).

+ 2 colors.

J + 2 colors.

Consider G’ and its orientation G’, which are constructed from G and 8,
accordingly, by contracting edges (v,u) and (v, u ) into new vertex v'. Clearly, |[E(G")| <

|[E(G)| and G’ is an in-degree minimized orientation of G’. By induction hypothesis,
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— A(G)+1
there exists a G'-following coloring ¢’ of G' with 2A(G) + {(;_J +2
colors.

Now we define an edge-coloring ¢ of a graph G as follows: for every edge
e € E(G) that exists in G’ we use color ¢’(e); we color edges (x,v) and (u,y) using
colors @'((x,v")) and ¢@’((v',y)), respectively; finally, we color (v,u) with a color not
in the set C%((u,v)).

A(G)+1

Since |C%((u7v))| <dg(y) —i—dé(x)—{—l <A(G)+ { >

MEGH

J+1<2A(G)+

2
Qisa 8—following coloring of G and uses 2A(G) + {

J + 2, there always exists an available color for edge (v,u). Thus,

A(G) +1
(;_J + 2 colors.

Case 1.3. x =y (Fig.1, case ¢).

%
Consider graphs G’ and its in-degree minimized orientation G’, obtained from
Gand G by deleting edges (v,u) and (v,u;, respectively. Since |E(G)| < |E(G)|,
A(G)+1

_>
there exists a G’-following coloring Y’ of G’ with 2A(G) + {2J +2 colors.

Now we are able to define a 8—f0110wing coloring y of graph G as follows:
each edge e € E(G), different from (v,u), is colored with y’'(e), and for edge (v, u)
we use any color, different from colors assigned to incident edges of x.

Case 2. G contains (A2): a vertex v € V(G) with dg(v) > 3 and |Dg(v)| < 2.

According to the proof of Case 1, we may assume that |[Dg(v)| > 1 and each
neighbor of v is one of the following:

(A) a 2-vertex that connects v with a leaf;

(B) a leaf;

(C) avertex in Dg(v);

(D) a 2-vertex that connects v with a vertex in Dg(v).

Let x € Dg(v). Since G is K, 3-minor free, it follows that v has at most 2
neighbors of type (D) that connect v with x. Thus, the number of neighbors of v that
are not of type (A) or (B) is at most 6. There are three possible subcases to be handled
below:

Case 2.1. v has a neighbor u of type (A) (Fig. 2, case a).

Let w denote the neighbor of u other than v. Consider G’ = G —w and its

in-degree minimized orientation 3 = 8 —w. By induction hypothesis, there exists a
= . . , ;o A(G)+1
G'-following coloring A’ of G’ with 2A(G) + {2

Now we define the edge-coloring A of G as follows: each edge e € E(G),
different from (u,w), is colored with A’(e), and for edge (u,w) we use any color,
different from the colors assigned to incident edges of v.

J + 2 colors.
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It is easy to confirm that A is 8—following coloring of G and uses

2A(G) + {A(ZG)

J + 2 colors.

a)
c)
Fig. 2. Structure of G (Cases 2.1 and 2.2).
Case 2.2. v does not have a neighbor of type (A), but has a neighbor of type
(B)-
Let vi,va,..., v € V(G) _d>enote the leaves adjacent to v. Consider graphs
G=G—vi—vy—---—vrand G = 8—\/1 — vy — -+ — v Since G’ is an in-degree

minimized orientation of G and |E(G')| < |E(G)|, there exists a G -following

AG)+1
coloring @’ of G’ with 2A(G) + {()—F

> + 2 colors. The following subcases

are possible:

Case 2.2.1. Dg(v) = {x} (Fig. 2, case b).

We can define edge-coloring o of G as follows: for each edge e € E(G), that
exists in G/, we use color o/(e); for edges (v,v;) (1 <i < k) we use colors, different
from the colors assigned to the incident edges of v and x.

AG 1
Since do(x) +dor (v) < A(G) +3 < 2A(G) + {(;*J 2. coloring &
A(G)+1
JGETR

_>
always exists. Clearly, a; is a G -following coloring of G with 2A(G) + { 5

2 colors.

Case 2.2.2. Dg(v) = {x,y} and (v,x), (v,y) € E(G) (Fig. 2, case ¢).

Let dg'(v) =1 < 6. Without loss of generality, we may assume that o’ uses
colors from {1,2,...,2A(G) +1 — 2} for the incident edges of v,x,y € V(G’).

Consider the coloring of (v,v) € E(G). If m € 8, then the color of (vi,v)
should be different from the colors of edges, incident to v, x, and y. If (v,v;) € G,
then the color of (v, v) should be different from the colors of:

e the edges incident to v;



40 DRAMBYAN A. K., MIKAELYAN H. V.

e the edges (x,u) € E(G) ((y,u) € E(G)) such that m G ((”75 € 8)
and (u,v) ¢ E(G);

o the edges (x,u) € E(G) ((y,u) € E(G)) such that (x,u; eC ((y,u; € 8)
and (u,v) € E(G).
The number of such edges is at most dé (x)+1 +dé (y)+1+de(v) <AG)+

I+ 3. Thus, there are at least A(G) — 5 colors from {1,2,...,2A(G) +1 — 2}, that we
can use for (vq,v).

Now we are allowed to define a B—following coloring o of G as follows:
for each edge e € E(G), that exists in G’, we use the color o/(e); for each edge

(vi,v) € E(ﬁ) (1 <i<k), we use an available color from the set < 2A(G) +1 —

A 1
(G)jLJ +2}; for each edge (v, v; EE(B) (1<i<k),

2
A(G)+1
we use a color from the set {1,2, .. 2A(G) + {(Z)—i_J +2}\C%2((v,v,~)).

It is easy to verify that the number of leaves, oriented towards v, is at most

(1295 1) ok a0) 14 o 9 (|41 1),
2

1,2A(G) +1,...,2A(G) + {

Thus, the coloring o always exists and uses 2A(G) J +2 colors.

Case 2.2.3. Dg(v) = {x,y} and (v,x) ¢ E(G) or (v,y) ¢ E(G) (Fig. 2, case d).
Without loss of generality, we may assume that (v,y) ¢ E(G).

We define 8—following coloring o of G as follows: for each edge e € E(G),
that exists in G, we use the color o/ (e); for edges (v,v;) (1 <i < k) we use colors,
different from the color assigned to the incident edges of v, x, and 2-vertices that
connect v with y.

Since dg(x) +dg(v) +2 < 2A(G) +2 < 2A(G) + {

o3 always exists.

A(G)+1
(;—FJ + 2, the coloring

a)

c)

Fig. 3. Structure of G (Case 2.3).
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Case 2.3. v does not have neighbors of type (A) or (B).

The following subcases are possible:

Case 2.3.1. Dg(v) = {x} (Fig. 3, case a).

Since dg(v) > 3, it follows that (v,x) € E(G) and there exist 2-vertices
W € V(G) such that (v,w), (w,x), (v,u),(u,x) € E(G). Consider graphs G’ and
G', which are obtained from G and 8 by deleting edge (v,u) and the corresponding
oriented edge. It is easy to verify that 3 is an in-degree minimized orientation of G'.
By the induction hypothesis, there exists a G'-following coloring 8’ of the graph G’

with 2A(G) + {A(Gz)“

We define the edge-coloring f3 of G as follows: for each edge e € E(G), different
from (u,v), we use the color B’(e) and we color (v,u) with a color not in the set

CL((u,)).
Let us note that it is always possible to select such a color for (u,v):
A(G)+1
oif (u,v) € E(B) then C%((u,v)) < dé(x) +14+dg(v)—1< L(Z)—FJ +3
A 1
AG)+1 J +2;

J + 2 colors.

2
oif (vu) e E(a) then C%((u,v)) <dg(x)+dg(v)—1 <A(G)+2 < 2A(G)+

2941

<2A(G) + {

A(G)+1
2
Case 2.3.2. Dg(v) = {x,y} and v is a cut-vertex (Fig. 3, case b).
Let V, = {u € V(G) : path from x to u does not contain y} and V, = {u € V(G) :
path from y to u does not contain x}. Clearly, V,NV, = {v} and V, UV, = V(G).
Consider subgraphs G, = G[V,], G, = G[V,] and their in-degree minimized orientations
— =
G..G,C G.
By the induction hypothesis, there exist a ax-following coloring ¥, of G, and
A(G)+ IJ oy
2
Since dg, (x) +dg, (v) < A(G)+2,dg, (v) <3, dg,(v) <3, we may assume that
the colors used by 7 for the edges incident to v are different from colors used by Y«
for the edges incident to v and x, and the colors used by ¥, for the edges incident to y
are different from colors used by ¥ for the edges incident to v.

Thus, B is a—following coloring of G an uses 2A(G) + { J +2 colors.

a E;—following coloring ¥, of Gy, which use colors 1,2,...,2A(G) + {

Now we are allowed to define a G -following coloring Y of G as follows: for
each edge e € E, we use color ¥(e), and for each edge e € E, we use color ¥,(e).

Case 2.3.3. Dg(v) = {x,y} and v is not a cut-vertex.

Since v is not a cut-vertex, there exists an internal face that contains vertices
v, x, and y. Additionally, according to the proof of Case 1, we may assume that
(x,v) € E(G) or (v,y) € E(G). The following subcases are possible:
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Case 2.3.3.1. (x,v) € E(G) and (v,y) ¢ E(G) (Fig. 3, case c).
Let u € V(G) denote the 2-vertex such th3t> (v,u),(u,y) € E(G). Consider
graphs G’ and its in-degree minimized orientation G’, which are obtained from G and

G by contracting edge (v,u) into vertex v'. By the induction hypothesis, there exists a

- A(G)+1
G'-following coloring 1’ of graph G’ with 2A(G) + {(2)%_

Now we define a 5)—following coloring 1 of the graph G as follows: for each
edge e € E(G), that exists in G, we use color n)’(e), for edge (u,y) we use color
n’((v',y)) and we color (v,u) with a color not in the set C%((u,v)).

J + 2 colors.

Let us note that it is always possible to select such a color for (v,u):

oif () € G, then C'L((v.1)) < da(y) +d5(x) +2.< A(G) + AG)+1]
<an(e)+ | 29 1o ' :

oif (u.v) € G then C'L ((v.)) < do(x) +d () +2 SA(G) + A(G2)+1 )
<@+ |28+ 1

Case 2.3.3.2. (x,v),(v,y) € E(G) (Fig. 3, case d).

Since dg(v) > 3, there exists 2-vertex u, which connects v with x or v with y.
Without loss of generality, we may assume that (x, u), (u,v) _e> E(G). Considei> graph G/
obtained from G by deleting edge (v,u) and its orientation G’ C G, Clearly, G’ is an in-
degree minimized orientation of G’ and |E(G’)| < |E(G)|. By the induction hypothesis,
A(G)+1

2

Now we define edge-coloring § of graph G as follows: for each edge e € E(G),

different from (v,u), we use color {’(e) and we color (v,u) with a color not in the set

¢
Ca ((l/t, V) ) .
Let us note that it is always possible to select such a color for (v,u):
A(G)+1 J

%
there exists G'-following coloring §’ of graph G’ with 2A(G) + { J +2 colors.

o if (vou) € G. then C4((v.u)) < d(x) +d5(y) +2 < A(G) + {
< 2A(G) + {A(Gz)HJ +2;

oif (i,v) € G, then C,((v,0)) <d(y) +d5(x)+2 < AG) + {

A(62)+IJ 49

<2A(G)+ { +2.

_)
It is easy to observe that { is a G-following coloring of G with

2500+ |41 2ot
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Case 3. G Contains (A3): vertex v with n5(v) > 1 and n%" (v) < 2.
According to the proof of Cases 1 and 2, we may assume that nlc(v) =1and

nZGJr = 1. Let u and w denote neighbors of v where dg(w) = 1. Consider the graph

_)
G' = G —w and its in-degree minimized orientation G’ = 8 —w. By the induction
hypothesis, there exists a B—following coloring k' of graph G with

250+ | 40

Now we define a 8—following coloring x of the graph G as follows: for each
edge e € E(G), different from (v,w), we use color k’(e) and for (v,w) we use any
color, different from the colors assigned to the incident edges of u.

Let us now prove that for any k € N, there exists an outerplanar graph G such
that A(G) = k and x;(G) = 2k — 1. For m,n € N, fan graph F, , defines as graph
join K, + P,. F1 x (k € N) is an outerplanar graph with A(F} ) =k, |[E(F )| = 2k—1
and all edges should be assigned pairwise distinct colors for semistrong edge-coloring
of Fy . Thus, x}(Fi x) = 2k — 1 for any k € N. O

Conclusion. We began our investigations from the relation between semistrong
edge-coloring of graphs and graph orientations. Then, in Lemma 1 and Lemma 2 we
proved that each outerplanar graph has a special orientation. Finally, in Theorem 2,
using the special orientation of outerplanar graphs, we obtained an upper bound for
the semistrong chromatic index of outerplanar graphs. Moreover, we showed that
if Conjecture holds, then the upper bound on semistrong chromatic index of planar
graphs may only be improved by a small constant for outerplanar graphs.

J + 2 colors.
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U G YL UULASUL, N J. UbLUEBL3UL

UrSUWehL NUME GLUSLEBELD SHUUNMSUE NFSBN. GNOUWBHhUL
LvEPuNFULEMLEh UWUBL

G gqpudbh M qniquijgnuip Yngynd £ hwddwpyw nidhn, tigh M-h ququpit-
nny dtjwod khpwgnudpmu M-h jnipupwibs jnip Ynn nibh vkl wuphdwing ququipe:
G gnwdh Shoy Ynnuyhtt bhpynudp Yngymu £ hwdwpyw nidbn, bpb tnyb gnybng
oipywd Ynntipp Juqind G0 hwdwpjuw ndbn gniqujgnud: Swdwpyu ndbin
Ynnuyht ttipyuwd hwdwp wthpwdboyn tJuqugnyb gnybtiph pwbwyp Ynggmd k
G qpudh hwdwpyw midhn ppnduaphl plnbpu b bpwhwyymy k x) (G)-ny: Wu
wphuwpuwipnid wowewpyyty  hwdwpyw nidtin Ynnuyhtt bipynudttin junmgbne
Onp tnwbwl, nph dhongny yipyt £ wpypuphtt hwpp gpnudbtinph hwdwpyu nidtin
ppndunphl hoinkipup Ytiphtt gbwhwpujub:
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A. K. IPAMB4H, I B. MUKAEJIAH

O IIOYTU CUJIbHBIX PEBEPHBIX PACKPACKAX
BHEIIHEIIJTAHAPHBIX T'PA®OB

[Tapocoueranne M rpacda G Ha3bIBAETCS NOUMYU CUALHBLM, €CITH KAXKI0€
pebpo u3 M UHIMJIEHTHO BEPIIWHE CTEIEeHU OIUH B Ipade, HOPOXKIEHHOM
pepmmmHamu M. IlpapunbHas pebepras packpacka rpada G Ha3bIBAETCST NoYmi
cunvHotl, ecyin pebpa, OKpallleHHbIe B OJUH U TOT K€ I[BET, COCTABJISIIOT MTOYTH
CUJIbHOE MapocodeTanne. MuHHMAaIbHOE KOJIMYECTBO IIBETOB, HEOOXOINMOE
JIJIsI IIOYTH CHJIBHOI pebepHOil pacKpacKu, HA3BIBAETCA TNOYMU CUADHDIM
xpomamuneckum undexcom rpada G u obosHavaercs depes Y. (G). B sroii
paboTe IpeIoXKEeH HOBBII IOIXOI JIjIsI IIOCTPOEHUsT IIOYTH CUJIbHBIX PEOEPHBIX
pacKkpacok rpadoB, a TakKe ITOJIyUeHa BepXHasl OIEHKa JJIsl MOYTH CHUJIBHOTO
XPOMATHIECKOI0 MHIEKCA BHEIIHEIIAHAPHBIX IPadoB.



