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The article considers the problem for an elastic infinite plate (sheet), which
along of two parallel lines of its upper surface is strengthened by systems of finite
number finite-length stringers having different elastic properties. The interaction
between infinite sheet and stringers take place through thin, uniform, elastic
adhesive layers having other physical-mechanical properties and geometric
configuration. The stringers are deformed under the action of horizontal con-
centrated forces, which are applied at one end points of stringers. The problem
of determining unknown contact forces acting between infinite sheet and stringers
is reduced to the system of Fredholm integral equations of second kind with re-
spect to arbitrary finite number of unknown functions, which are specified along
of two parallel lines on different finite intervals. Further, are determined of the
change regions of the problem characteristic parameters, for which this system
of integral equations allows the exact solution and which can be solved by the
method of successive approximations. Some particular cases are considered and
the character and behavior of unknown shear contact forces near the end points
of the stringers are investigated. For these cases numerical results depanding
on the multiparameters of the problem are investigated in the previous article
(A.V. Kerobyan, K.P. Sahakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023),
86-100).
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Introduction. Investigation of problems which arise during load transfer from
stringer to an elastic sheet through adhesive layer and the construction of exact and
effective solutions for them have important meaning from both theoretical and applied
aspects. Not stopping at the numerous studies devoted to this field, we note that
some of them, which is closely associated with the considered problem. In article [1]
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considers the problem for an elastic infinite sheet, which is strengthened by three
parallel finite stringers two of which are located on the same line, through adhesive
layers. The problem of loads transfer from two parallel elastic stringers with finite
lengths to an infinite sheet through adhesive layers is considered in [2]. In [3, 4]
considers the problems of loads transfer from two finite stringers (overlays) to an
infinite sheet (or half-plane) and infinite strip through adhesive layers when two finite
stringers are arranged on the same line, with different approach to the solutions. The
paper [5] considers the problem for an infinite sheet with two finite stringers when
only one of the stringers is connected through an adhesive layer. In [6-9], using
various approaches, problems are investigated for different elastic bodies, which are
strengthened by finite-length stringer through adhesive layer. In [10, 1 1] transfer of
loads from finite number of finite-length elastic stringers to an elastic half-plane and
to an infinite strip through an adhesive layers are considered. Some problems for an
elastic infinite sheet strengthened by parallel finite stringers without presence adhesive
layer are considered in [12]. In this article, the problem is considered for an elastic
infinite sheet, which on its finite parts along two parallel lines on its upper surface,
is strengthened by systems of finite number finite-length stringers having different
elastic properties. The interaction between sheet and stringers is assumed to be carried
out through thin adhesive layers with different physical-mechanical properties and
geometric configuration.

Main Results.

Statement of the Problem and Obtaining the System of Integral Equations.
Let an elastic infinite plate (sheet) of small constant thickness %, the Young’s modulus
E and the Poisson’s ratio v, which is in a generalized plane stress state (xQOy is its
middle plane) on its upper surface along y = b and y = —d parallel lines being
I =b+d (b,d > 0) distance from each other on the [a;,b;], b; > aj, j = 1,n;
bj < ajy1, j=1n—1, and [Ck,dk} (dy > ¢, k=1,m; d, < Clk+1> k=1m—1)
n+m, (where n, m are arbitrary finite numbers), finite number finite intervals, re-
spectively, is strengthened by systems of finite number finite stringers, modulus
of elasticity equal to E; for x € [a;,b;], j = 1,n, and equal to E} for x € [c,d],
k = 1,m, respectively. It is supposed that the stringers have a rectangular cross-
sections with small constant areas F; = bih for x € [a;,b;], j = 1,n, and F» = b3h,
for x € [cy,di], k = 1,m, respectively, where b} (b} < b; — aj), b (b5 < di — cx) are
the widths of the stringers, and /; and h; are their small constant thicknesses, respec-
tively. The interaction between infinite sheet and stringers take place through thin,
uniform, elastic adhesive layers with Young’s modulus E,, Poisson’s ratio Vg,
and small constant thickness i,. The problem is to specify the law of distribution
of unknown contact forces acting between sheet and stringers when concentrated
forces P; and Qy are applied at one end points of stringers x = b;, j = 1,n, and
x = di, k = 1,m, respectively, and are directed to parallel along the Ox-axis
(see Figure).

It is assumed that during the deformation for the stringers the model of uniaxial
strain state in combination with the model of contact along the line is realized [13],
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Fig. 1.
and for the adhesive layers there are the pure shear conditions [0], i.e. as [0, 12, 13]

bending is neglected and the interaction between sheet and stringers is idealized as a
line loading of the sheet [1,2,5-7].

Taking into account the above assumptions, according to the equilibrium condi-
tions of an elements of finite-length stringers, which are defined on the [a;,b;] and
[ck, dy] finite intervals, respectively, and Hooke’s law, the differential equations for the
equilibrium of the stringers on finite intervals [a;,b;] j = 1,n, and [ck,di], k = 1,m,
respectively, will be written in the following form:

d*ulh) pi(x)

dxz = EjFl’ ajéxgbjajzlﬂ/la (1)
d*a® gy (x)
o2 T ER cx < x < d, ,m, (2)
with the following boundary conditions:
-0 - ) i—1 3
dx ) d_x EjFl ) J 7n? ( )
x=a; x=bj
dii® dia®
L P P T ST @)
dx dx E R
xX=cy x=dy
and where we have also of the stringers equilibrium conditions in the form:
bj dy
/pj(s)ds =P;, j=1,n, /qk(v)dv =0 k=1,m. 5)
aj Ck

Here u/) (x) = u) (x,b) and a® (x) = a® (x, —d) are the horizontal displace-
ments of the points of the stringers at y = b and y = —d parallel lines on the [a;,b;],
j=1,n, and [ct,d], k = 1,m, finite intervals, respectively, p;(x) = b’l"c(.l)(x,b),

J
‘L'](.l)(x,b) are the shear stresses, acting under of the stringers on the [a;,b;] finite
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parts, respectively, gx(x) = b;rlgz) (x,—d), T/Ez) (x,—d) are the shear stresses, acting
under of the stringers on the [cy, dy] finite parts, respectively.
Now, assuming that each differential element of the adhesive layers is in a

condition of pure shear [1, 2, 5-7], the following adhesive contact conditions are
obtained:
M(j)(X)—M](x7b): ij(-x)7 aijSbjaj:lana (6)
@M (x) —ur(x,—d) = K3qu(x), e <x<di, k=T,m, (7)

where u; (x,b) and u;(x, —d) are the horizontal displacements of the points of the elas-
tic infinite sheet at y = b and y = —d parallel lines, respectively, ki = hy/bjG,,

he/b3G,, Gy = Eo/2(1 +V,), G, is the shear modulus of adhesive layers,
hg is the thickness of the adhesive layers, p;(x) = b’{f](.l)(x, b) = b’l‘Gg}/](.l)(x,b),
ai(x) = b5 (x,~d) = b3Goy” (x,~d) and " (x,b), ") (x,~d) are the shear
deformations of the adhesive layers, on the [a;,b;], j = 1,n, and [ct,d], k = 1,m,
finite intervals, respectively.

On the other hand, in view of above assumptions, let write the horizontal dis-
placements u; (x,b) and uy(x, —d) of the points of the elastic infinite sheet, when tan-
gential (shear) forces with intensities p;(x), j = l,n, and gx(x), k = 1,m,
respectively, act on the [a;,b;], j = 1,n, and [c,dk], k = 1,m, finite intervals
respectively, of its upper surface along y = b and y = —d parallel lines, respectively,
as in [1], in the following form:

n l

Y (m ; >p, )ds+ A*Z/ (=) +C)gp(v)dv,

8)
m dp n bi
up(x,—d) Z/( —|—C> gp(v)dv+ *Z/ x—58)+C)pi(s)ds,
o p:1 |x —v| TA
©)
where
1 I 4Eh 1
N(x) =1In LLSE k=Y I=btd, (10)

Jere 2+ TGy T3y
C is arbitrary constant.

Note that, the horizontal displacements u(x,y) of the points of an infinite
sheet, when shear forces act on its surface along the line y = —d with intensity g(x)
(—eo < x < oo) is given by the formula:

1 _ k(y+a)
V(x—5)2+ (y+d)? (x—s)2+(y+d)?

—co < x <o, 0<y <oo.

oo

e ]

—o0

In q(s)ds+const,
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Further, by virtue of (6) and (7), equations (1) and (2) can be written in the
following form:

d2ulh)

7—y}u<f)(x):—yjul(x,b), aj<x<bj, j=1,n, (11
X
2 = (k)
%_agﬁ(k)(x):—aguz(x,—d), o <x<dy, k=1,m, (12)

with the boundary conditions (3) and (4), respectively.
Here y7 = 1 /K{EjF1, j=1,n, and of = 1/K;E{Fy, k= 1,m.

The solutions to the boundary value problems (11) and (3), (12) and (4),
respectively, we obtain in the form:

bj
uU)(x):ugf')(x)+y§/Gj(x,s)u1(s,b)ds, aj<x<b;, j=Tn,  (I3)
aj

dj
i) (x) = L_t(()k) (x)+ Ockz/Kk(x, Viup(v,—d)dv, cx <x<dy, k=1,m, (14)

Ck

where u(()j ) (x) and ﬁ(()k) (x) are the general solutions of the homogenous equations

corresponding to equations (11) and (12), respectively, with the boundary conditions
(3) and (4), respectively, and have the following form:

() Pjcoshlyj(x—a;)]
frd = 1
o () VEFisinhlyb;—ap] 1T 0"
_(()k)( ) QkCOSh[OCk(x—Ck)] k— l,m.

- OC/{EZFQ sinh[ock(dk — Ck)] ’

b.l
In equations (13) and (14), uﬁj) (x) = y}/Gj(x,s)ul(s,b) ds, j = 1,n,
aj
dy
and @' (x) =of /Kk (x,v)uz(v,—d)dv, k = 1,m, are the particular solutions of (11)
and (12), respectic\];ely, with zero boundary conditions corresponding to conditions (3)
and (4), respectively, Gj(x,s), j = I,n, and Ki(x,v), k = 1,m, are Green’s
functions [14], and

Gj(x,s) = : cosh[y;(x—by)] coshly;(s —aj)l, x>,
A%S yisinlyj(bj —a;)] | coshlyj(x—a;)] cosh[y;(s—b;)], x<s,

Ki(x,v) = ! cosh[oy(x —di)] cosh[a(v —ci)], x>,
& (X5 ogsinh[og(dy —ci)] | coshlog(x —ci)] coshlog(v—di)], x<v.

It is obvious, that the functions G;(x,s) and K (x,v) are continuous functions
and G(x,s) = Gj(s,x) and Ki(x,v) = Ki(v,x).
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Further, by virtue of (13) and (14), according to (6) and (7), we obtain the
following equations:

kipj(x)+ui(x,b) = }/]2/Gj()c,s)ul(s,b)ds_{_u(()f)(x)7 aj<x<bj;, j=T,n, (15
aj
dy.
Kaux) + 1, —d) = 0 [ Kidw vy (v, —d) dv i (2),
Cr
cx <x<di, k=1,m. (16)

Now, by virtue of (8) and (9), from (15) and (16), we obtain the following
system of integral equations:

T A k*2/<ln +C) pi(s)ds+ ——— A = Z/ x—v)+C)gp(v)dv

1 p= L
b; bi
1
G In—— 1C) pit)did 17
nA*lel/ “/<n|s—z|Jr >”() ’ a7
3/]2 m b d u(()j)(x)
+nA*kTZ’]/G‘,-(x,s)/(N(s—’C)+C)qp(r)d1ds+ g wSxsh =T
P X
‘p
dp i
1 m n n
— I c — ) +C) pils)d
x)+nA*k§le/<n ) a0 kll 5)+C)pils)ds

1
= K C dtd
nAkzN/"”K e )""“)”

by ﬁ(k) (x)
Z/Kk X,V / (v—1)4C) pi(t)dtdv + Ok* . <x<d, k=1,m.
2
It should be noted that the spectrum of the symmetric second-order differential
operator D = —d?/dx* + y*I with the domain of definition being twice continuous
differentiating functions, satisfying the boundary conditions (du'!) /dx) _ =0and
(du(l)/dx)x:h = 0, are eigenvalues A, = ¥> + p*n?/(b—a)* (p = 0,1,2,...), with
corresponding eigenfunctions cos [pr(x —a)/(b—a)] (p=0,1,2,...).
It is known [14], that symmetric quite continuous integral operator B:

nA*k*

Bop = /G(x,s)(p(s)ds,

which acts in the space L(a,b) is an inverse of the operator D.
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Hence, we have:

/G £,5) cos [Pﬂ(s—aj)} ds— : (bj—a))* cos [Pﬂ(x—aij)}’ (18)

b —a; bj—aj)z’}’%—i—pzﬂ?z bj—
p=0,1,2,
— dr — c1)? —
/kav cos[ (v ck)} dv = (k2 Czk) 5 zcos[qﬂ(x Ck)]7 (19)
di — ¢y (dk—Ck) o +q°m di — ¢k
q=0,1,2,...,
n(x—a; _
where the functions cos [p(xa,)] (p =0,1,2,...) and cos {qﬂ(xck)
bj—aj dk—Ck

(¢ =0,1,2,...), form full orthogonal systems in the spaces L,(a;,b;), j = 1,n, and
Ly(ck,dy), k = 1,m, respectively.

Further, after replacing the variables x, s, v, f, and T by ax, as, av, at, and ar,
respectively, where a > 0 is the coordinate of one of the end points of stringers, we
get the system (17) in the following form:

x) + &2 /ln (p, dt—ay25ZZ/G ax,as /ln t)dtds
i= 1

Np
+ 82 /le T)Yp(1)dT— aYZSZZ/G ax,as /Nl s—1T)Yp(T)dtds
p= l
S S

—P(()j)(ax)zo’ o <x<pBj, j=1Ln, (20)

Tp
L 1
+5ZZ/IH|TW 7)dT— aOCkSZZ/Kk ax,av /ln T)dtdv
p=p M

+522/N1 x—1)@;(t)dt — aa25ZZ/Kk ax,av /N1 v—1)@;(t)dtdv

%%

_q(())(ax):07 -Xik S-XSnka =1,m,

since according to (18) and (19) we have also the following equalities:

1 1
/Gj(ax,as)ds: —, /Kk(ax,av)dv: —, Jj=Ln, k=1,m. 2D
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Here
¢i(x) = pj(ax), y(x) = gi(ax), 8% =a/nAk}, 8* = a/nA*KS, I, =1/a,
oj=aj/a, Bj=bj/a, & = cr/a, Nk =di/a, j=1,n, k=1,m, b.=b/a, d. =d/a,
Py (ax) = uf (@) /K, Gy (ax) = g’ (@) /K5,
N(ax) = lnl—l—Nl(x) Ni(x) =1n : — Ky .
a ’ V22 X+
One can represent the system of integral equations (20) in the following form:

" Bi m e .
0;(x) +52;/Mj(x,r) o;(t)dt + 5* Zl/Hj(x, 1), (1)dt = £ (x),
i=lg. p=1g)

a] Sx§ﬁ17]:17n7 (22)

m Mp n Bi
W)+ 8 Y, [Rlw ) yp(0d+ 8 Y [Tinnen)di =g ()
z':lai

leép
ékﬁxﬁnl@ k= L,m,
were
1 7 I
M(x,t) = lnm —ay]z/Gj(ax,as) In 51l ds,
&
Bi
Hi(x,7) =N (x—1) —a}/]g/Gj(axjas)Nl(s— T)ds, j=1,n,
&
Nk 1
Ri(x,7) =1n 1] —aakz/Kk(ax,av) lnmdv7 k=1,m,
k
Mk
Ti(x,t) = Ni(x—1) —aa,g/Kk(ax,av)Nl(v—t)dv, k=1,m,
&

()
D ) U (ax) B Pjyjcosh|ay;(x — ;)]
Jo ) = pi (@) = ki sinklayi(Bj—oy)]
(k)
W\ ), U (ax)  Orogcoshlaoy(x— &)l
G0 (¥) =do (@) = ky  sinhaog(ne — &)

It is easy to see that the functions féj ) (x) and q(()k) (x) are the adhesive contact
forces in the case of a rigid sheet (i.e. when E — o) and integrable functions on the
segments x € [}, B;] and x € [&, M|, respectively.

Note that the system of integral equations (22) is obtained by the changing the
order of integration, the validity of which follows from the Fubini’s theorem [14].
This theorem will often be used below without special mention.
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Further, note that also, which the system of integral equations (22) was obtained
without using the stringers equilibrium conditions (5) in the form:

B; Nk
/pj(as)ds:Pj/a, j=1,n, /qk(av)dv: Or/a, k=1,m. (23)
Qj S

In the system (22), the conditions (23) are satisfied automatically, since the
following equalities take place:

/fo x)dx=Pj/a, j=1,n, /q(()k)(x)dx:Qk/a, k=1,m.

These can be easily verified by integrating the first n equations of (22) from
@; to Bj, j = 1,n, respectively, and the second m equations of (22) from & to 1,
k = 1,m, respectively, then changing the order of integration in the resulting double
integrals and taking into account the equalities, which follow from (21):

j j
/Mj(x,t)dx:0, /Hj(x,‘c)dxzo, j=1,n,

Nk Nk
/Rk(x,’l:)dx:o, /Tk(x,t)dx:O,k: 1,m.
& &k

Some Particular Cases. Now let us consider several particular cases that are
directly obtained from the system of integral equations (22). In the case 8% = §% =
from the system (22) we obtain the solution of the corresponding problem for the case
of arigid sheet (i.e. when E — o0) in the form @;(x) = féj)( ), x € [0, Bj], j=1,n,
and yi(x) = q(()k) (x), x € [€, M), k = 1,m, respectively. From these solutions, it is
easy to see that the functions @;(x) and y;(x) are bounded when x — «;, x — B;, and
x — &, x — M, respectively.

In the case of finite number finite stringers arranged on the finite intervals
laj,b;], j=1,n, or on the finite intervals [ck,di], k = 1,m, instead of the system (22),
we obtain the system of Fredholm integral equations of the second kind with respect to
an unknown functions @;(x) defined on the segments [}, B;], j = 1,n, in the following
form:

(p,-(x)—i—SZZ/Mj(x,t)goi(t)dt:féj)(x), a<x<PBj=Tm (4

or with respect to an unknown function Y (x) defined on the segments [&, Mx],
k =1,m, in the form:

l//k(x)+32Z/Rk(x,f)l//p(r)d’v: W), &<x<muk=Tm (25



LOADS TRANSFER FROM THE SYSTEMS OF FINITE NUMBER FINITE-LENGTH STRINGERS. .. 55

Comparing the systems of integral equations (24) and (25), it is shown that,
they have the same form.

Further, according to the system (24), in the case of one finite stringer arranged
on the finite interval [a;,b;] (i.e. when n = 1 in the system (24) and we have j, i = 1),
instead of the system (24), we obtain the Fredholm integral equation of the second
kind with respect to unknown function ¢ (x), defined on the segment [, 3], in the
following form:

Bi

o1 (x) +82/M1 e de =), oy <x<By. (24%)
o

On the other hand, according to (22), in the case of two parallel finite stringers
arranged on the finite intervals [a;,b;] and [c1,d;] (i.e. when in the system (22) we
have n,m = 1, and also we have j,k =1, and i,p = 1), instead of the system (22),
we obtain the system of Fredholm integral equations of the second kind with respect
to unknown functions @ (x) and y; (x) defined on the segments [0, 1] and [£1,11],

respectively, in the following form:

Bi m
o (x)+62/M1 (5,1) @1 (t)dt+52/H1 D (t)dr = £V (), o <x < By,

a &i
m B

v (%) + 82/R1 (D) () dT+ 8% [ Ti(x,0) @1 () dt = g (x), & <x<mi. (22%)
&i o

In the case of three finite stringers, two of which are located on the same line,
and defined on three finite intervals [a;,b1], [a2,b;] and [c1,d)] (i.e. when in the system
(22) we have n =2, m = 1 and also we have j,i = 1,2, and k,p = 1) respectively,
instead of the system (22), we obtain the system of Fredholm integral equations of the
second kind with respect to three unknown functions @; (x), ¢,(x) and y;(x) defined
on the segments [o, B1], [, B2] and [&1, 1], respectively, in the following form:

Bi B2
o1 (x) + 82 / My (x,1)u (1) di + 82 / My (x,1) (1) dr
o o
m
+52/H1(x,r)y/1(f)dr = D), a<x<pi,
3

B ﬁg
0 (x) + 52 / Ma(x,6) o1 (1) di + 52 / M (x,1) o (1) dt

(241 o

m
+ 82 / H(x, )it dr = £ (x), a<x<B, (227)
&
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m Bi
l//l(x)—l—Sz/Rl(x, T)l//l(r)dr+SZ/Tl(x,t)(pl(t)dt
& o
5
+52/T1(x,t)(p2(t)dt:q(()l)(x), £ <x<m.

[2%]

Thus, solving the problem is reduced to solving the system (22) of Fredholm
integral equations of the second kind with squarely integrable kernels in two variables
and with right-hand sides, which are the solutions of the problem in the case of rigid
sheet. From the system (22), it is easy to see that at the end points of stringers x = ¢,
x = B and x = &, x = 1y, the values of unknown shear contact forces @;(x), j = 1,n,
and Y (x), k = 1,m, respectively, are finite.

Also note that, which without presence of adhesive layer (i.e. in the case of
ideal mechanical contact between sheet and stringer) in the same end points of the
stringer the intensities of unknown contact shear forces (or stresses) have singularity
of the square root power of integrable order [5, 12, 13, 15-17].

Investigation Solvability of the System of Integral Equations (22). Now write
the system (22) in the following form:

¢+To = fo, (26)
where
¢1 f(gl) 52]{11 52]{1” 62511 6251m
B 0, oz fé”) - 5_2]{,1] 5_2knn §23n1 §2snm
o= wi y JO= q(()l) ) = 52t11 52t1n 52,,“ 52’"1m
v e St o St B B
Bi np
kji(Pi:/Mj<x7t)(pi(t)d[7 j,izl,l’l, Sjp‘l/p:/I'I]'()C,'L’)l[/p('l:)d"L'7
[0 4] ép
j=Ln, p=1m, (27)
o B
rkpll/p = /Rk(x?T)WP(T)dT> kap = 1>m7 i Qi = Tk(x;t)(pi(t>dl,
& o

k=T,m, i=1,n.

Further, consider operator equation (26) in Banach space with elements
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Y1

y= Z’ , where y;(x) € Ly(otj, B;) (j = 1,n), z(x) € Lo(&, M) (k = 1,m),

m
and with norm:

|y[| = max { [[y1 ||L2(txl Bu)o H)’2||L2(a2,ﬁz) T Hyn||L2(a,,,ﬁ,,) [z ||L2(§1,m) ) HZz||L2(§2,n2) )

,||zm||L2(§m,nm>}'

Ly (e, Bj) and Ly (&, M) are spaces of square integrable functions, specified
on the intervals (a;,f;), j = 1,n, and (&, Nk), k = 1,m, respectively.

Operators kj; and ry, act in the following form: kj;: Lo(a, B;) — La(c;, )
(j,i=1,n),and rep: Lo(Ep,Mp) — La(&k, Mi) (k, p = 1,m), respectively, and operators
sjp and fy; act in the following form: s;,: Ly(&p,Mmp) — La(atj, Bj) (j = 1,n, p = 1,m),
ti: Lo(0g, Bi) — Lo(&, i) (k= 1,m, i = 1,n), respectively.

Obviously, the operator T acts in the Banach space and is a Fredholm opera-
tor. A sufficient condition for inversion of operator I + T is the condition ||T|| < 1.
Then operator equation (26) can be solved by the method of successive approximations,
if ||T|| < 1, where

17| =maX{52 (ZHkuH +) anH) 87 (Z k2]l + ) Hssz> ,
i=1 p=1 i=1 p=1
SRS (ZHka + ) Hsan) 67 (Z lnill+ 1 HrlpH) :
i=1 p=1 i=1 p=1
5 (Z leill + 3 HmH) e 62 (Z ltmill + 1 HwH) }
i=1 p=1 i=1 p=1

Therefore, the condition ||T|| < 1 will be satisfied, if

> (Z NS> stl!) o (z ol + 3. Hs2p||) 1
i=1 p=1 i=1 p=1
.82 <Z||kni|!+ Y ||s,1pH> <1, 82< el + Y HrlpH) <1, (28)
i=1 p=1 i=1 p=1
52 (Zth,-\ + Z Hrsz> <1,..., & (ZHMH + Z HrmpH> <1.
i=1 p=1 i=1 p=1

In this case, the solution of operator equation (26) is written in the form

o=+ o= Y (“1)ST .

k=0
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Now let’s determine the values of 8% and 8% parameters of the problem,
for which the conditions (28) will be satisfied. From (27), by virtue of Cauchy-
Bunyakovski inequality, we get:

Bi B 2
ji = //sz(x,t)dxdt

a; aj

o

by
I
—_

=

[&jil| < ey

=

Mo Bj

Hsijgejp, ejp = //H}(x,r)dxdr , j=1n p=1,m,
& @
Bi m« 2
ltall < ¢y cri= //Tkz(x,t)dxdt , k=1m,i=1,n,
& &
Tp Mk
Hrka < ey, erp = //R,%(x,r)dxdr , k,p=1,m.
& &
Obviously, the expressions for cj;, e, ¢;; and ezp are difficult to calculate, but

they can be estimated. Further, it was found out in [ 1], that the following estimates
take place:

(29)

Nl—=

=

Bi B.i
cji < //1n2|x—t|dxdt (joi=T.n),
a; O
1
Mo Bj 2
ep< | [ [Ma-mawac|  (G=Tn p=Tom)
% | (30)
Bi Mk 2
i < //le(x—t)dxdt (k=1,m, i=1,n),
% & 1
Mp Mk 2
ety < //1n2|x—r\dxdr (k,p = T,m).
& &
The estimates (30) for e, and c}; can be obtained also in the form:
1 1
| Np B; 2 Mp Bj 2
¢jp <3 //ln2 [(x—1)*+ 1] dxdt | +xl} // [(x—1)*+1] “dxdt

Ep O & O
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8=

Bi M % Bi M
¢ < / / I [(x— )2+ 2] dudr |+l / / x—1)?+ 2] dxdt
o & o &

Then the conditions (28) will be realized, if

) n m -1
< chi+zefp =cj, jzl,l’l,
i=1 p=1

I
3

5 n m -1
S <|Ya+) e =er, k
i=1 p=1

where ¢; and e, are positive numbers less than unity.

We also note that, from the condition of solvability of the system of Fredholm
integral equations (24) and (25), we obtain the conditions of its solvability in the form:

p=1

-1 -1
n m

2< (ch,) =cj, j=1L,n, and 8% < (Z e,tp> =er, k=1,m,
i=1

respectively, where ¢, j = 1,n, and e, k= 1,m, are positive numbers less than unity.

The values of unknown shear forces @;(x) and y(x) at the end points x = ¢,
x=P;, j=1,n,and x = &, x = Mg, k = 1, m, of stringers, respectively, can be obtained
from the system (22).

Conclusion. For investigation the changes in the law of distribution and beha-
vior of unknown shear contact forces in this article an effective solution of considered
problem is presented. The problem is reduced to solving arbitrary finite number
system of Fredholm integral equations of the second kind with respect to unknown
shear forces which are specified along two parallel lines on the finite number finite
intervals and with right-hand sides which are the solutions of the considered problem
in the case of rigid sheet. Further, are determined of the change regions of the
problem characteristic parameters for which this system of integral equations allows
the exact solutions. For some particular cases considered problem presented above, i.e.
for the systems of Fredholm integral equations (22%), (22**) and as well as integral
equation (24*) the multiple numerical results and its analysis are presented in [1],
in the Supplementary Material.
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U Jd. L6LNASUTL

Jerudnr GJdNd JerudNr 604GUrNFHe-8UUR USCFLAENUEE
SUUTHUCS6rhS ABALUINCAFULELE PNUTLBNFUL WLUENQ UULPL
UMNFL SELSELE UFRNSNY

Whiwypwbpnid nhypuplyywd E utinhp wowaqujub wigting uwih (phptinh)
hwdwnp, npb hp yaphtt Jwytiplinyph ypw Gpynt gniquhtin gotiph Gpupnipjudip
ytipowynnp phinudwutipnud mdtinugqud £ yipowynp pyny Ytipowynp Gpljupni-
pJwdp wypphlgtipitiph hwdwluwpgtpny qwupptin wpwadquub pbnyppwugpbpny:
Onhiwqntignpymbp widtipe vwih b upphbgbpbtiph dholt pninp yphnudwutipnid
hpwgnpdymd £ pwpwy, dhugpbuwy b wyp Phghudthpwbhuyubt b Gplypw-
swhwiuwh phmpwgptp mbtgnn Yugmb tpgptiph dhongny:  Ugpphbgtipbtipp
nipnpiwghuyh G Ghpwupyymd hptitg dSuypbpmd jhpunwd hnphgniwui
ytyppniwgwd mdbph wqnbtgnipjwd puly: Wohwpyp Gnbypulppuihtt mdtiph
npnouwl pulinhpp hwigkgywd L pYynt gniquihtin gdtiph Gplupnipjwdp puppbp
huypuotbpmd npnpqwd Ytpowdnp pyny wbhwyp $mbyghwbdtiph tGlugpdunip
dptinhnpdh tpypnpn utinh hinpgpuy hwjwuwpmubtiph hwdwwpgh dvwbn:
Wanthtiype npnoymud GG fuinphtt pinpng ptimpwigphs yuwpwdbypptinh thnthnpudw
wyl phpnyphbpp, npnbg nhiypmyd wyn hwjuwuwpmitbph hwiwlupgp pnyp L
pwihu Sogppgp mond b np wy Jupbh £ oymodt] hwonpnuijub dnpunpni-
pybbtph dbpnnny: Yhpwpiyud G dwubwynp nhiyptip b munmibwuhpud
Gl wihwyyp pnpwithynn Ynbpuljpuygh mdbph Juppp b pnypp upphiighpbbph
odwijpnwytiptipnwi: Wy nbwpbph  hwdwp pYughtt wpynuoptipn upjud
huinph puquwphy wwpwdtipptiphg nuunudbwuhpgwd G twpunpn hnpudnd
(A.V. Kerobyan, K.P. Sahakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023),
86-100):
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A. B. KEPOIIAH

INEPEJAYA HATPY30OK OT CUCTEM KOHEYHOI'O YHCJIA
CTPUHT'EPOB KOHEYHBIX /IJINH K BECKOHEYHO! IIJIACTUHE
IIOCPEACTBOM JIMIIKNX CJIOEB

B pabore paccmaTpuBaercs 3a1a4a I yIPYToi 66CKOHEYHO IJIaCTHHEI,
KOTOpasi Ha KOHEYHBIX yqaCTKaX BJ10OJIb ABYX ITapaJijIeJIbHbBIX JINHNII CBOEN
BEpXHEl IOBEPXHOCTH yCHJIEHA CHCTEMON M3 KOHEYHOI'O YHCJa CTPUHIEPOB
KOHEYHOI JJIMHBI C PA3JIMYHBIMU MOI[‘yJIﬂMI/I pryI‘OCTI/I. KOHTaKTHbIe CBA3KU
MEzK/Ly IJIACTUHOM U CTPUHIEPAME BO BCEX YUACTKAX OCYILECTBJISIOTCS IOCPE-
CTBOM OJAMHAKOBBIX TOHKHUX JIMIIKHUX CJIOEB C APYTI'UMHAU CbI/ISI/IKO—lVleXaHI/ILIeCKI/IMI/I
U TeOMETPUIEeCKMMHU Xapakrepuctukamu. CTpuHrepbl 1eOpMUPYIOTCA IO
HeficTBHEM TIOPU30HTAJIBHBIX COCPEIOTOYEHHBIX CHJI, [PUIOXKEHHBIX Ha, HX
KoHIIaX. B pabore 3aja4a olpeeeHus 3aKOHa PACIPEIe/ICHIs HEM3BECTHLIX
KOHTAKTHBIX CHJI, JEACTBYIOIIMX MEXKIY OCCKOHEYHON ILJIACTUHON H CTpPHUHIE-
paMu, CBejleHa K PEIIeHUI0 CUCTeMbl MHTErpaJibHBIX ypaBHeHuit ®Openrosbma
BTOPOT'O POJia ¢ KOHEYHBIM YHCJIOM HEM3BECTHBIX (DYHKIIUN, OIpEIeIeHHbIX
BI0OJIb ABYX ImapaJijIeJIbHbIX JINHUI Ha Pa3/IMYIHbIX KOHEYHLIX HWHTEepBaJlaX.
3aTeM OIpeIesaInch 006/IaCTH N3MEHEHHSI XapaKTEPHBIX IapaMeTpoB 3aJadl,
IIpU KOTOPBIX IIOJIyUeHHasI CHUCTEMa WHTEI'PaJIbHBIX YPaBHEHHI JIOIyCKaeT
TOYHOE PEIlleHre U MOXKET ObITh PElIeHa METOIOM II0C/IeN0BaATEIbHBIX IIPUOIU-
SKEHUIA. PaCCMOTpeHbI HEKOTOPbIC YaCTHbIC C.Hy‘{al/l 1 UCCJICJOBAaHbBI XapaKTep 1
[TOBEJIEHNE HEN3BECTHBIX KacaTeIbHBIX KOHTAKTHBIX CUJI Ha KOHIIAX CTPUHIEPOB.
LII/IC.HeHHI)Ie pacYdeTsl JJId 3TUX CJIydaeB B 3aBUCUMOCTHU OT PAa3/IMYHbIX ITapaMeT-
POB 3aJavdu uccjaenoBanbl B npeabptyieii cratbe (A.V. Kerobyan, K.P. Sa-
hakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023), 86-100).



