
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2025, 59(2), p. 46–62

M e c h a n i c s

LOADS TRANSFER FROM THE SYSTEMS OF FINITE NUMBER
FINITE-LENGTH STRINGERS TO AN INFINITE SHEET THROUGH

ADHESIVE LAYERS

A. V. KEROBYAN ∗

Chair of Mechanics, YSU, Armenia

The article considers the problem for an elastic infinite plate (sheet), which
along of two parallel lines of its upper surface is strengthened by systems of finite
number finite-length stringers having different elastic properties. The interaction
between infinite sheet and stringers take place through thin, uniform, elastic
adhesive layers having other physical-mechanical properties and geometric
configuration. The stringers are deformed under the action of horizontal con-
centrated forces, which are applied at one end points of stringers. The problem
of determining unknown contact forces acting between infinite sheet and stringers
is reduced to the system of Fredholm integral equations of second kind with re-
spect to arbitrary finite number of unknown functions, which are specified along
of two parallel lines on different finite intervals. Further, are determined of the
change regions of the problem characteristic parameters, for which this system
of integral equations allows the exact solution and which can be solved by the
method of successive approximations. Some particular cases are considered and
the character and behavior of unknown shear contact forces near the end points
of the stringers are investigated. For these cases numerical results depanding
on the multiparameters of the problem are investigated in the previous article
(A.V. Kerobyan, K.P. Sahakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023),
86–100).
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Introduction. Investigation of problems which arise during load transfer from
stringer to an elastic sheet through adhesive layer and the construction of exact and
effective solutions for them have important meaning from both theoretical and applied
aspects. Not stopping at the numerous studies devoted to this field, we note that
some of them, which is closely associated with the considered problem. In article [1]
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considers the problem for an elastic infinite sheet, which is strengthened by three
parallel finite stringers two of which are located on the same line, through adhesive
layers. The problem of loads transfer from two parallel elastic stringers with finite
lengths to an infinite sheet through adhesive layers is considered in [2]. In [3, 4]
considers the problems of loads transfer from two finite stringers (overlays) to an
infinite sheet (or half-plane) and infinite strip through adhesive layers when two finite
stringers are arranged on the same line, with different approach to the solutions. The
paper [5] considers the problem for an infinite sheet with two finite stringers when
only one of the stringers is connected through an adhesive layer. In [6–9], using
various approaches, problems are investigated for different elastic bodies, which are
strengthened by finite-length stringer through adhesive layer. In [10, 11] transfer of
loads from finite number of finite-length elastic stringers to an elastic half-plane and
to an infinite strip through an adhesive layers are considered. Some problems for an
elastic infinite sheet strengthened by parallel finite stringers without presence adhesive
layer are considered in [12]. In this article, the problem is considered for an elastic
infinite sheet, which on its finite parts along two parallel lines on its upper surface,
is strengthened by systems of finite number finite-length stringers having different
elastic properties. The interaction between sheet and stringers is assumed to be carried
out through thin adhesive layers with different physical-mechanical properties and
geometric configuration.

Main Results.
Statement of the Problem and Obtaining the System of Integral Equations.

Let an elastic infinite plate (sheet) of small constant thickness h, the Young’s modulus
E and the Poisson’s ratio ν , which is in a generalized plane stress state (xOy is its
middle plane) on its upper surface along y = b and y = −d parallel lines being
l = b + d (b,d > 0) distance from each other on the [a j,b j], b j > a j, j = 1,n;
b j < a j+1, j = 1,n−1, and [ck,dk] (dk > ck, k = 1,m; dk < ck+1, k = 1,m−1)
n+m, (where n, m are arbitrary finite numbers), finite number finite intervals, re-
spectively, is strengthened by systems of finite number finite stringers, modulus
of elasticity equal to E j for x ∈ [a j,b j], j = 1,n, and equal to E∗k for x ∈ [ck,dk],
k = 1,m, respectively. It is supposed that the stringers have a rectangular cross-
sections with small constant areas F1 = b∗1h1 for x ∈ [a j,b j], j = 1,n, and F2 = b∗2h2
for x ∈ [ck,dk], k = 1,m, respectively, where b∗1 (b∗1� b j−a j), b∗2 (b∗2� dk− ck) are
the widths of the stringers, and h1 and h2 are their small constant thicknesses, respec-
tively. The interaction between infinite sheet and stringers take place through thin,
uniform, elastic adhesive layers with Young’s modulus Eg, Poisson’s ratio νg,
and small constant thickness hg. The problem is to specify the law of distribution
of unknown contact forces acting between sheet and stringers when concentrated
forces Pj and Qk are applied at one end points of stringers x = b j, j = 1,n, and
x = dk, k = 1,m, respectively, and are directed to parallel along the Ox-axis
(see Figure).

It is assumed that during the deformation for the stringers the model of uniaxial
strain state in combination with the model of contact along the line is realized [13],
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Fig. 1.

and for the adhesive layers there are the pure shear conditions [6], i.e. as [6, 12, 13]
bending is neglected and the interaction between sheet and stringers is idealized as a
line loading of the sheet [1, 2, 5–7].

Taking into account the above assumptions, according to the equilibrium condi-
tions of an elements of finite-length stringers, which are defined on the [a j,b j] and
[ck,dk] finite intervals, respectively, and Hooke’s law, the differential equations for the
equilibrium of the stringers on finite intervals [a j,b j] j = 1,n, and [ck,dk], k = 1,m,
respectively, will be written in the following form:

d2u( j)

dx2 =
p j(x)
E jF1

, a j ≤ x≤ b j, j = 1,n, (1)

d2ū(k)

dx2 =
qk(x)
E∗k F2

, ck ≤ x≤ dk, k = 1,m, (2)

with the following boundary conditions:

du( j)

dx

∣∣∣∣∣
x=a j

= 0,
du( j)

dx

∣∣∣∣∣
x=b j

=
Pj

E jF1
, j = 1,n, (3)

dū(k)

dx

∣∣∣∣∣
x=ck

= 0,
dū(k)

dx

∣∣∣∣∣
x=dk

=
Qk

E∗k F2
, k = 1,m, (4)

and where we have also of the stringers equilibrium conditions in the form:
b j∫

a j

p j(s)ds = Pj, j = 1,n,
dk∫

ck

qk(v)dv = Qk, k = 1,m. (5)

Here u( j)(x) = u( j)(x,b) and ū(k)(x) = ū(k)(x,−d) are the horizontal displace-
ments of the points of the stringers at y = b and y =−d parallel lines on the [a j,b j],
j = 1,n, and [ck,dk], k = 1,m, finite intervals, respectively, p j(x) = b∗1τ

(1)
j (x,b),

τ
(1)
j (x,b) are the shear stresses, acting under of the stringers on the [a j,b j] finite
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parts, respectively, qk(x) = b∗2τ
(2)
k (x,−d), τ

(2)
k (x,−d) are the shear stresses, acting

under of the stringers on the [ck,dk] finite parts, respectively.
Now, assuming that each differential element of the adhesive layers is in a

condition of pure shear [1, 2, 5–7], the following adhesive contact conditions are
obtained:

u( j)(x)−u1(x,b) = k∗1 p j(x), a j ≤ x≤ b j, j = 1,n, (6)

ū(k)(x)−u2(x,−d) = k∗2qk(x), ck ≤ x≤ dk, k = 1,m, (7)

where u1(x,b) and u2(x,−d) are the horizontal displacements of the points of the elas-
tic infinite sheet at y = b and y = −d parallel lines, respectively, k∗1 = hg/b∗1Gg,
k∗2 = hg/b∗2Gg, Gg = Eg/2(1 + νg), Gg is the shear modulus of adhesive layers,
hg is the thickness of the adhesive layers, p j(x) = b∗1τ

(1)
j (x,b) = b∗1Ggγ

(1)
j (x,b),

qk(x) = b∗2τ
(2)
k (x,−d) = b∗2Ggγ

(2)
k (x,−d) and γ

(1)
j (x,b), γ

(2)
k (x,−d) are the shear

deformations of the adhesive layers, on the [a j,b j], j = 1,n, and [ck,dk], k = 1,m,
finite intervals, respectively.

On the other hand, in view of above assumptions, let write the horizontal dis-
placements u1(x,b) and u2(x,−d) of the points of the elastic infinite sheet, when tan-
gential (shear) forces with intensities p j(x), j = 1,n, and qk(x), k = 1,m,
respectively, act on the [a j,b j], j = 1,n, and [ck,dk], k = 1,m, finite intervals
respectively, of its upper surface along y = b and y =−d parallel lines, respectively,
as in [1], in the following form:

u1(x,b) =
1

πA∗
n

∑
i=1

bi∫
ai

(
ln

1
|x− s|

+C
)

pi(s)ds+
1

πA∗
m

∑
ρ=1

dρ∫
cρ

(N(x− v)+C)qρ(v)dv,

(8)

u2(x,−d) =
1

πA∗
m

∑
ρ=1

dρ∫
cρ

(
ln

1
|x− v|

+C
)

qρ(v)dv+
1

πA∗
n

∑
i=1

bi∫
ai

(N(x− s)+C) pi(s)ds,

(9)

where

N(x) = ln
1√

x2 + l2
− κl2

x2 + l2 , A∗ =
4Eh

(1+ν)(3−ν)
, κ =

1+ν

3−ν
, l = b+d, (10)

C is arbitrary constant.
Note that, the horizontal displacements u(x,y) of the points of an infinite

sheet, when shear forces act on its surface along the line y =−d with intensity q(x)
(−∞ < x < ∞) is given by the formula:

u(x,y) =
1

πA∗

∞∫
−∞

[
ln

1√
(x− s)2 +(y+d)2

− κ(y+d)2

(x− s)2 +(y+d)2

]
q(s)ds+ const,

−∞ < x < ∞, 0 < y < ∞.
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Further, by virtue of (6) and (7), equations (1) and (2) can be written in the
following form:

d2u( j)

dx2 − γ
2
j u( j)(x) =−γ

2
j u1(x,b), a j ≤ x≤ b j, j = 1,n, (11)

d2ū(k)

dx2 −α
2
k ū(k)(x) =−α

2
k u2(x,−d), ck ≤ x≤ dk, k = 1,m, (12)

with the boundary conditions (3) and (4), respectively.
Here γ2

j = 1/k∗1E jF1, j = 1,n, and α2
k = 1/k∗2E∗k F2, k = 1,m.

The solutions to the boundary value problems (11) and (3), (12) and (4),
respectively, we obtain in the form:

u( j)(x) = u( j)
0 (x)+ γ

2
j

b j∫
a j

G j(x,s)u1(s,b)ds, a j ≤ x≤ b j, j = 1,n, (13)

ū(k)(x) = ū(k)0 (x)+α
2
k

dk∫
ck

Kk(x,v)u2(v,−d)dv, ck ≤ x≤ dk, k = 1,m, (14)

where u( j)
0 (x) and ū(k)0 (x) are the general solutions of the homogenous equations

corresponding to equations (11) and (12), respectively, with the boundary conditions
(3) and (4), respectively, and have the following form:

u( j)
0 (x) =

Pj cosh[γ j(x−a j)]

γ jE jF1 sinh[γ j(b j−a j)]
, j = 1,n,

ū(k)0 (x) =
Qk cosh[αk(x− ck)]

αkE∗k F2 sinh[αk(dk− ck)]
, k = 1,m.

In equations (13) and (14), u( j)
∗ (x) = γ2

j

b j∫
a j

G j(x,s)u1(s,b)ds, j = 1,n,

and ū(k)∗ (x) = α2
k

dk∫
ck

Kk(x,v)u2(v,−d)dv, k = 1,m, are the particular solutions of (11)

and (12), respectively, with zero boundary conditions corresponding to conditions (3)
and (4), respectively, G j(x,s), j = 1,n, and Kk(x,v), k = 1,m, are Green’s
functions [14], and

G j(x,s) =
1

γ j sin[γ j(b j−a j)]

{
cosh[γ j(x−b j)] cosh[γ j(s−a j)], x > s,
cosh[γ j(x−a j)] cosh[γ j(s−b j)], x < s,

Kk(x,v) =
1

αk sinh[αk(dk− ck)]

{
cosh[αk(x−dk)] cosh[αk(v− ck)], x > v,
cosh[αk(x− ck)] cosh[αk(v−dk)], x < v.

It is obvious, that the functions G j(x,s) and Kk(x,v) are continuous functions
and G j(x,s) = G j(s,x) and Kk(x,v) = Kk(v,x).
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Further, by virtue of (13) and (14), according to (6) and (7), we obtain the
following equations:

k∗1 p j(x)+u1(x,b) = γ
2
j

b j∫
a j

G j(x,s)u1(s,b)ds+u( j)
0 (x), a j ≤ x≤ b j, j = 1,n, (15)

k∗2qk(x)+u2(x,−d) = α
2
k

dk∫
ck

Kk(x,v)u2(v,−d)dv+ ū(k)0 (x),

ck ≤ x≤ dk, k = 1,m. (16)

Now, by virtue of (8) and (9), from (15) and (16), we obtain the following
system of integral equations:

p j(x)+
1

πA∗k∗1

n

∑
i=1

bi∫
ai

(
ln

1
|x− s|

+C
)

pi(s)ds+
1

πA∗k∗1

m

∑
ρ=1

dρ∫
cρ

(N(x− v)+C)qρ(v)dv

=
γ2

j

πA∗k∗1

n

∑
i=1

b j∫
a j

G j(x,s)
bi∫

ai

(
ln

1
|s− t|

+C
)

pi(t)dt ds (17)

+
γ2

j

πA∗k∗1

m

∑
ρ=1

b j∫
a j

G j(x,s)

dρ∫
cρ

(N(s− τ)+C)qρ(τ)dτ ds+
u( j)

0 (x)
k∗1

, a j ≤ x≤ b j, j = 1,n,

qk(x)+
1

πA∗k∗2

m

∑
ρ=1

dρ∫
cρ

(
ln

1
|x− v|

+C
)

qρ(v)dv+
1

πA∗k∗2

n

∑
i=1

bi∫
ai

(N(x− s)+C) pi(s)ds

=
α2

k
πA∗k∗2

m

∑
ρ=1

dk∫
ck

Kk(x,v)

dρ∫
cρ

(
ln

1
|v− τ|

+C
)

qρ(τ)dτ dv

+
α2

k
πA∗k∗2

n

∑
i=1

dk∫
ck

Kk(x,v)
bi∫

ai

(N(v− t)+C) pi(t)dt dv+
ū(k)0 (x)

k∗2
, ck ≤ x≤ dk, k = 1,m.

It should be noted that the spectrum of the symmetric second-order differential
operator D = −d2/dx2 + γ2I with the domain of definition being twice continuous
differentiating functions, satisfying the boundary conditions

(
du(1)/dx

)
x=a = 0 and(

du(1)/dx
)

x=b = 0, are eigenvalues λp = γ2 + p2π2/(b− a)2 (p = 0,1,2, . . .), with
corresponding eigenfunctions cos [pπ(x−a)/(b−a)] (p = 0,1,2, . . .).

It is known [14], that symmetric quite continuous integral operator B:

Bϕ =

b∫
a

G(x,s)ϕ(s)ds,

which acts in the space L2(a,b) is an inverse of the operator D.
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Hence, we have:

b j∫
a j

G j(x,s)cos
[

pπ(s−a j)

b j−a j

]
ds =

(b j−a j)
2

(b j−a j)2γ2
j + p2π2 cos

[
pπ(x−a j)

b j−a j

]
, (18)

p = 0,1,2, . . . ,
dk∫

ck

Kk(x,v)cos
[

qπ(v− ck)

dk− ck

]
dv =

(dk− ck)
2

(dk− ck)2α2
k +q2π2 cos

[
qπ(x− ck)

dk− ck

]
, (19)

q = 0,1,2, . . . ,

where the functions cos
[

pπ(x−a j)

b j−a j

]
(p = 0,1,2, . . .) and cos

[
qπ(x− ck)

dk− ck

]
(q = 0,1,2, . . .), form full orthogonal systems in the spaces L2(a j,b j), j = 1,n, and
L2(ck,dk), k = 1,m, respectively.

Further, after replacing the variables x, s, v, t, and τ by ax, as, av, at, and aτ ,
respectively, where a > 0 is the coordinate of one of the end points of stringers, we
get the system (17) in the following form:

ϕ j(x)+δ
2

n

∑
i=1

βi∫
αi

ln
1
|x− t|

ϕi(t)dt−aγ
2
j δ

2
n

∑
i=1

β j∫
α j

G j(ax,as)

βi∫
αi

ln
1
|s− t|

ϕi(t)dt ds

+δ
2

m

∑
ρ=1

ηρ∫
ξρ

N1(x− τ)ψρ(τ)dτ−aγ
2
j δ

2
m

∑
ρ=1

β j∫
α j

G j(ax,as)

ηρ∫
ξρ

N1(s− τ)ψρ(τ)dτ ds

− p( j)
0 (ax) = 0, α j ≤ x≤ β j, j = 1,n, (20)

ψk(x)+ δ̄
2

m

∑
ρ=1

ηρ∫
ξρ

ln
1

|x− τ|
ψρ(τ)dτ−aα

2
k δ̄

2
m

∑
ρ=1

ηk∫
ξk

Kk(ax,av)

ηρ∫
ξρ

ln
1

|v− τ|
ψρ(τ)dτ dv

+ δ̄
2

n

∑
i=1

βi∫
αi

N1(x− t)ϕi(t)dt−aα
2
k δ̄

2
n

∑
i=1

ηk∫
ξk

Kk(ax,av)

βi∫
αi

N1(v− t)ϕi(t)dt dv

− q̄(k)0 (ax) = 0, xik ≤ x≤ ηk, k = 1,m,

since according to (18) and (19) we have also the following equalities:

β j∫
α j

G j(ax,as)ds =
1

aγ2
j
,

ηk∫
ξk

Kk(ax,av)dv =
1

aα2
k
, j = 1,n, k = 1,m. (21)
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Here
ϕ j(x) = p j(ax), ψk(x) = qk(ax), δ

2 = a/πA∗k∗1, δ̄
2 = a/πA∗k∗2, l∗ = l/a,

α j = a j/a, β j = b j/a, ξk = ck/a, ηk = dk/a, j = 1,n, k = 1,m, b∗ = b/a, d∗ = d/a,

p( j)
0 (ax) = u( j)

0 (ax)/k∗1, q̄(k)0 (ax) = ū(k)0 (ax)/k∗2,

N(ax) = ln
1
a
+N1(x), N1(x) = ln

1√
x2 + l2

∗
− κl2

∗
x2 + l2

∗
.

One can represent the system of integral equations (20) in the following form:

ϕ j(x)+δ
2

n

∑
i=1

βi∫
αi

M j(x, t)ϕi(t)dt +δ
2

m

∑
ρ=1

ηρ∫
ξρ

H j(x,τ)ψρ(τ)dτ = f ( j)
0 (x),

α j ≤ x≤ β j, j = 1,n, (22)

ψk(x)+ δ̄
2

m

∑
ρ=1

ηρ∫
ξρ

Rk(x,τ)ψρ(τ)dτ + δ̄
2

n

∑
i=1

βi∫
αi

Tk(x, t)ϕi(t)dt = q(k)0 (x),

ξk ≤ x≤ ηk, k = 1,m,

were

M j(x, t) = ln
1
|x− t|

−aγ
2
j

β j∫
α j

G j(ax,as) ln
1
|s− t|

ds,

H j(x,τ) = N1(x− τ)−aγ
2
j

β j∫
α j

G j(ax,as)N1(s− τ)ds, j = 1,n,

Rk(x,τ) = ln
1

|x− τ|
−aα

2
k

ηk∫
ξk

Kk(ax,av) ln
1

|v− τ|
dv, k = 1,m,

Tk(x, t) = N1(x− t)−aα
2
k

ηk∫
ξk

Kk(ax,av)N1(v− t)dv, k = 1,m,

f ( j)
0 (x) = p( j)

0 (ax) =
u( j)

0 (ax)
k∗1

=
Pjγ j cosh [aγ j(x−α j)]

sinh [aγ j(β j−α j)]
,

q(k)0 (x) = q̄(k)0 (ax) =
ū(k)0 (ax)

k∗2
=

Qkαk cosh [aαk(x−ξk)]

sinh [aαk(ηk−ξk)]
.

It is easy to see that the functions f ( j)
0 (x) and q(k)0 (x) are the adhesive contact

forces in the case of a rigid sheet (i.e. when E→ ∞) and integrable functions on the
segments x ∈ [α j,β j] and x ∈ [ξk,ηk], respectively.

Note that the system of integral equations (22) is obtained by the changing the
order of integration, the validity of which follows from the Fubini’s theorem [14].
This theorem will often be used below without special mention.
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Further, note that also, which the system of integral equations (22) was obtained
without using the stringers equilibrium conditions (5) in the form:

β j∫
α j

p j(as)ds = Pj/a, j = 1,n,

ηk∫
ξk

qk(av)dv = Qk/a, k = 1,m. (23)

In the system (22), the conditions (23) are satisfied automatically, since the
following equalities take place:

β j∫
α j

f ( j)
0 (x)dx = Pj/a, j = 1,n,

ηk∫
ξk

q(k)0 (x)dx = Qk/a, k = 1,m.

These can be easily verified by integrating the first n equations of (22) from
α j to β j, j = 1,n, respectively, and the second m equations of (22) from ξk to ηk,
k = 1,m, respectively, then changing the order of integration in the resulting double
integrals and taking into account the equalities, which follow from (21):

β j∫
α j

M j(x, t)dx = 0,

β j∫
α j

H j(x,τ)dx = 0, j = 1,n,

ηk∫
ξk

Rk(x,τ)dx = 0,

ηk∫
ξk

Tk(x, t)dx = 0,k = 1,m.

Some Particular Cases. Now let us consider several particular cases that are
directly obtained from the system of integral equations (22). In the case δ 2 = δ̄ 2 = 0,
from the system (22) we obtain the solution of the corresponding problem for the case
of a rigid sheet (i.e. when E→ ∞) in the form ϕ j(x) = f ( j)

0 (x), x ∈ [α j,β j], j = 1,n,
and ψk(x) = q(k)0 (x), x ∈ [ξk,ηk], k = 1,m, respectively. From these solutions, it is
easy to see that the functions ϕ j(x) and ψk(x) are bounded when x→ α j, x→ β j, and
x→ ξk, x→ ηk, respectively.

In the case of finite number finite stringers arranged on the finite intervals
[a j,b j], j = 1,n, or on the finite intervals [ck,dk], k = 1,m, instead of the system (22),
we obtain the system of Fredholm integral equations of the second kind with respect to
an unknown functions ϕ j(x) defined on the segments [α j,β j], j = 1,n, in the following
form:

ϕ j(x)+δ
2

n

∑
i=1

βi∫
αi

M j(x, t)ϕi(t)dt = f ( j)
0 (x), α j ≤ x≤ β j, j = 1,n, (24)

or with respect to an unknown function ψk(x) defined on the segments [ξk,ηk],
k = 1,m, in the form:

ψk(x)+ δ̄
2

m

∑
ρ=1

ηρ∫
ξρ

Rk(x,τ)ψρ(τ)dτ = q(k)0 (x), ξk ≤ x≤ ηk, k = 1,m. (25)
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Comparing the systems of integral equations (24) and (25), it is shown that,
they have the same form.

Further, according to the system (24), in the case of one finite stringer arranged
on the finite interval [a1,b1] (i.e. when n = 1 in the system (24) and we have j, i = 1),
instead of the system (24), we obtain the Fredholm integral equation of the second
kind with respect to unknown function ϕ1(x), defined on the segment [α1,β1], in the
following form:

ϕ1(x)+δ
2

β1∫
α1

M1(x, t)ϕ1(t)dt = f (1)0 (x), α1 ≤ x≤ β1. (24∗)

On the other hand, according to (22), in the case of two parallel finite stringers
arranged on the finite intervals [a1,b1] and [c1,d1] (i.e. when in the system (22) we
have n,m = 1, and also we have j,k = 1, and i,ρ = 1), instead of the system (22),
we obtain the system of Fredholm integral equations of the second kind with respect
to unknown functions ϕ1(x) and ψ1(x) defined on the segments [α1,β1] and [ξ1,η1],
respectively, in the following form:

ϕ1(x)+δ
2

β1∫
α1

M1(x, t)ϕ1(t)dt +δ
2

η1∫
ξ1

H1(x,τ)ψ1(τ)dτ = f (1)0 (x), α1 ≤ x≤ β1,

ψ1(x)+ δ̄
2

η1∫
ξ1

R1(x,τ)ψ1(τ)dτ + δ̄
2

β1∫
α1

T1(x, t)ϕ1(t)dt = q(1)0 (x), ξ1 ≤ x≤ η1. (22∗)

In the case of three finite stringers, two of which are located on the same line,
and defined on three finite intervals [a1,b1], [a2,b2] and [c1,d1] (i.e. when in the system
(22) we have n = 2, m = 1 and also we have j, i = 1,2, and k,ρ = 1) respectively,
instead of the system (22), we obtain the system of Fredholm integral equations of the
second kind with respect to three unknown functions ϕ1(x), ϕ2(x) and ψ1(x) defined
on the segments [α1,β1], [α2,β2] and [ξ1,η1], respectively, in the following form:

ϕ1(x)+δ
2

β1∫
α1

M1(x, t)ϕ1(t)dt +δ
2

β2∫
α2

M1(x, t)ϕ2(t)dt

+δ
2

η1∫
ξ1

H1(x,τ)ψ1(τ)dτ = f (1)0 (x), α1 ≤ x≤ β1,

ϕ2(x)+δ
2

β1∫
α1

M2(x, t)ϕ1(t)dt +δ
2

β2∫
α2

M2(x, t)ϕ2(t)dt

+δ
2

η1∫
ξ1

H2(x,τ)ψ1(τ)dτ = f (2)0 (x), α2 ≤ x≤ β2, (22∗∗)
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ψ1(x)+ δ̄
2

η1∫
ξ1

R1(x,τ)ψ1(τ)dτ + δ̄
2

β1∫
α1

T1(x, t)ϕ1(t)dt

+ δ̄
2

β2∫
α2

T1(x, t)ϕ2(t)dt = q(1)0 (x), ξ1 ≤ x≤ η1.

Thus, solving the problem is reduced to solving the system (22) of Fredholm
integral equations of the second kind with squarely integrable kernels in two variables
and with right-hand sides, which are the solutions of the problem in the case of rigid
sheet. From the system (22), it is easy to see that at the end points of stringers x = α j,
x = β j and x = ξk, x = ηk, the values of unknown shear contact forces ϕ j(x), j = 1,n,
and ψk(x), k = 1,m, respectively, are finite.

Also note that, which without presence of adhesive layer (i.e. in the case of
ideal mechanical contact between sheet and stringer) in the same end points of the
stringer the intensities of unknown contact shear forces (or stresses) have singularity
of the square root power of integrable order [5, 12, 13, 15–17].

Investigation Solvability of the System of Integral Equations (22). Now write
the system (22) in the following form:

ϕ +T ϕ = f0, (26)

where

ϕ =



ϕ1
...

ϕn

ψ1
...

ψm


, f0 =



f (1)0
...

f (n)0

q(1)0
...

q(m)
0


, T =



δ 2k11 · · · δ 2k1n δ 2s11 · · · δ 2s1m
...

δ 2kn1 · · · δ 2knn δ 2sn1 · · · δ 2snm

δ̄ 2t11 · · · δ̄ 2t1n δ̄ 2r11 · · · δ̄ 2r1m
...

δ̄ 2tm1 · · · δ̄ 2tmn δ̄ 2rm1 · · · δ̄ 2rmm


,

k jiϕi =

βi∫
αi

M j(x, t)ϕi(t)dt, j, i = 1,n, s jρψρ =

ηρ∫
ξρ

H j(x,τ)ψρ(τ)dτ,

j = 1,n, ρ = 1,m, (27)

rkρψρ =

ηρ∫
ξρ

Rk(x,τ)ψρ(τ)dτ, k,ρ = 1,m, tkiϕi =

βi∫
αi

Tk(x, t)ϕi(t)dt,

k = 1,m, i = 1,n.

Further, consider operator equation (26) in Banach space with elements
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y =



y1
...

yn

z1
...

zm


, where y j(x) ∈ L2(α j,β j) ( j = 1,n), zk(x) ∈ L2(ξk,ηk) (k = 1,m),

and with norm:

‖y‖=max
{
‖y1‖L2(α1,β1)

,‖y2‖L2(α2,β2)
, · · · ,‖yn‖L2(αn,βn)

,‖z1‖L2(ξ1,η1)
,‖z2‖L2(ξ2,η2)

,

· · · ,‖zm‖L2(ξm,ηm)

}
.

L2(α j,β j) and L2(ξk,ηk) are spaces of square integrable functions, specified
on the intervals (α j,β j), j = 1,n, and (ξk,ηk), k = 1,m, respectively.

Operators k ji and rkρ act in the following form: k ji : L2(αi,βi)→ L2(α j,β j)
( j, i= 1,n), and rkρ : L2(ξρ ,ηρ)→ L2(ξk,ηk) (k,ρ = 1,m), respectively, and operators
s jρ and tki act in the following form: s jρ : L2(ξρ ,ηρ)→ L2(α j,β j) ( j = 1,n, ρ = 1,m),
tki : L2(αi,βi)→ L2(ξk,ηk) (k = 1,m, i = 1,n), respectively.

Obviously, the operator T acts in the Banach space and is a Fredholm opera-
tor. A sufficient condition for inversion of operator I +T is the condition ‖T‖ < 1.
Then operator equation (26) can be solved by the method of successive approximations,
if ‖T‖< 1, where

‖T‖=max

{
δ

2

(
n

∑
i=1
‖k1i‖+

m

∑
ρ=1

∥∥s1ρ

∥∥) ,δ 2

(
n

∑
i=1
‖k2i‖+

m

∑
ρ=1

∥∥s2ρ

∥∥) ,

. . . ,δ 2

(
n

∑
i=1
‖kni‖+

m

∑
ρ=1

∥∥snρ

∥∥) , δ̄ 2

(
n

∑
i=1
‖t1i‖+

m

∑
ρ=1

∥∥r1ρ

∥∥) ,

δ̄
2

(
n

∑
i=1
‖t2i‖+

m

∑
ρ=1

∥∥r2ρ

∥∥) , . . . , δ̄ 2

(
n

∑
i=1
‖tmi‖+

m

∑
ρ=1

∥∥rmρ

∥∥)} .

Therefore, the condition ‖T‖< 1 will be satisfied, if

δ
2

(
n

∑
i=1
‖k1i‖+

m

∑
ρ=1

∥∥s1ρ

∥∥)< 1, δ
2

(
n

∑
i=1
‖k2i‖+

m

∑
ρ=1

∥∥s2ρ

∥∥)< 1,

. . . ,δ 2

(
n

∑
i=1
‖kni‖+

m

∑
ρ=1

∥∥snρ

∥∥)< 1, δ̄
2

(
n

∑
i=1
‖t1i‖+

m

∑
ρ=1

∥∥r1ρ

∥∥)< 1,

δ̄
2

(
n

∑
i=1
‖t2i‖+

m

∑
ρ=1

∥∥r2ρ

∥∥)< 1, . . . , δ̄
2

(
n

∑
i=1
‖tmi‖+

m

∑
ρ=1

∥∥rmρ

∥∥)< 1.

(28)

In this case, the solution of operator equation (26) is written in the form

ϕ = (I+T )−1 f0 =
∞

∑
κ=0

(−1)κT κ f0.
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Now let’s determine the values of δ 2 and δ̄ 2 parameters of the problem,
for which the conditions (28) will be satisfied. From (27), by virtue of Cauchy–
Bunyakovski inequality, we get:

∥∥k ji
∥∥≤ c ji, c ji =

 βi∫
αi

β j∫
α j

M2
j (x, t)dxdt


1
2

, j, i = 1,n,

∥∥s jρ
∥∥≤ e jρ , e jρ =

 ηρ∫
ξρ

β j∫
α j

H2
j (x,τ)dxdτ


1
2

, j = 1,n, ρ = 1,m,

‖tki‖ ≤ c∗ki, c∗ki =

 βi∫
αi

ηk∫
ξk

T 2
k (x, t)dxdt


1
2

, k = 1,m, i = 1,n,

∥∥rkρ

∥∥≤ e∗kρ
, e∗kρ =

 ηρ∫
ξρ

ηk∫
ξk

R2
k(x,τ)dxdτ


1
2

, k,ρ = 1,m.

(29)

Obviously, the expressions for c ji, e jρ , c∗ki and e∗kρ
are difficult to calculate, but

they can be estimated. Further, it was found out in [1], that the following estimates
take place:

c ji <

 βi∫
αi

β j∫
α j

ln2 |x− t| dxdt


1
2

( j, i = 1,n),

e jρ <

 ηρ∫
ξρ

β j∫
α j

N2
1 (x− τ)dxdτ


1
2

( j = 1,n, ρ = 1,m),

c∗ki <

 βi∫
αi

ηk∫
ξk

N2
1 (x− t)dxdt


1
2

(k = 1,m, i = 1,n),

e∗kρ <

 ηρ∫
ξρ

ηk∫
ξk

ln2 |x− τ| dxdτ


1
2

(k,ρ = 1,m).

(30)

The estimates (30) for e jρ and c∗ki can be obtained also in the form:

e jρ <
1
2

 ηρ∫
ξρ

β j∫
α j

ln2 [(x− τ)2 + l2
∗
]

dxdτ


1
2

+κl2
∗

 ηρ∫
ξρ

β j∫
α j

[
(x− τ)2 + l2

∗
]−2

dxdτ


1
2

( j = 1,n, ρ = 1,m),
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c∗ki <
1
2

 βi∫
αi

ηk∫
ξk

ln2 [(x− t)2 + l2
∗
]

dxdt


1
2

+κl2
∗

 βi∫
αi

ηk∫
ξk

[
(x− t)2 + l2

∗
]−2

dxdt


1
2

(k = 1,m, i = 1,n).

Then the conditions (28) will be realized, if

δ
2 <

(
n

∑
i=1

c ji +
m

∑
ρ=1

e jρ

)−1

= c j, j = 1,n,

δ
2
<

(
n

∑
i=1

c∗ki +
m

∑
ρ=1

e∗kρ

)−1

= ek, k = 1,m,

where c j and ek are positive numbers less than unity.
We also note that, from the condition of solvability of the system of Fredholm

integral equations (24) and (25), we obtain the conditions of its solvability in the form:

δ
2 <

(
n

∑
i=1

c ji

)−1

= c∗j , j = 1,n, and δ̄
2 <

(
m

∑
ρ=1

e∗kρ

)−1

= e∗k , k = 1,m,

respectively, where c∗j , j = 1,n, and e∗k , k = 1,m, are positive numbers less than unity.
The values of unknown shear forces ϕ j(x) and ψk(x) at the end points x = α j,

x = β j, j = 1,n, and x = ξk, x = ηk, k = 1,m, of stringers, respectively, can be obtained
from the system (22).

Conclusion. For investigation the changes in the law of distribution and beha-
vior of unknown shear contact forces in this article an effective solution of considered
problem is presented. The problem is reduced to solving arbitrary finite number
system of Fredholm integral equations of the second kind with respect to unknown
shear forces which are specified along two parallel lines on the finite number finite
intervals and with right-hand sides which are the solutions of the considered problem
in the case of rigid sheet. Further, are determined of the change regions of the
problem characteristic parameters for which this system of integral equations allows
the exact solutions. For some particular cases considered problem presented above, i.e.
for the systems of Fredholm integral equations (22∗), (22∗∗) and as well as integral
equation (24∗) the multiple numerical results and its analysis are presented in [1],
in the Supplementary Material.
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A. V. QEROBYAN

VERJAVOR �VOV VERJAVOR ERKAROW�YAMB STRWNGERNERW

HAMAKARGERIC BE�NAVOROWMNERW �OXANCOWM� ANVERJ SALIN

KP�OWN 
ERTERW MWJOCOV

A�xatanqowm ditarkva� � xndir a�a�gakan anverj sali (�i�e�i)

hamar, orn ir verin maker owy�i vra erkow zowgahe� g�eri erkarow�yamb

verjavor te�amaserowm ow�e�acva� � verjavor �vov verjavor erkarow-

�yamb stri gerneri hamakargerov tarber a�a�gakan bnow�agrerov:

�oxazdecow�yown� anverj sali  stringerneri mij bolor te�amaserowm

iragor�vowm � barak, miatesak  ayl fizikamexanikakan  erkra-

�a�akan bnow�agrer owneco� kp�own �erteri mijocov: Stringerner�

deformaciayi en en�arkvowm irenc �ayrerowm kira�va� horizonakan

kentronaca� ow�eri azdecow�yan tak: Anhayt kontaktayin ow�eri

oro�man xndir� hangecva� � erkow zowgahe� g�eri erkarow�yamb tarber

hatva�nerowm oro�va� verjavor �vov anhayt fownkcianeri nkatmamb

Fredholmi erkrord se�i integral havasarowmneri hamakargi low�man�:

Aynowhet oro�vowm en xndrin bnoro� bnow�agri� parametreri �o�oxman

ayn tirowy�ner�, oronc depqowm ayd havasarowmneri hamakarg� �owyl �

talis ��grit low�owm  or ayn kareli � low�el hajordakan motavorow-

�yownneri me�odov: Ditarkva� en masnavor depqer  owsowmnasirva�

en anhayt �o�a�vo� kontaktayi ow�eri varq�  bnowy�� stringirneri

�ayraketerowm: Ayd depqeri hamar �vayin ardyownqner� kaxva�

xndri bazma�iv parametreric owsowmnasirva� en naxord hodva�owm

(A.V. Kerobyan, K.P. Sahakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023),
86–100):

https://doi.org/10.1115 /1.3601299
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А. В. КЕРОПЯН

ПЕРЕДАЧА НАГРУЗОК ОТ СИСТЕМ КОНЕЧНОГО ЧИСЛА
СТРИНГЕРОВ КОНЕЧНЫХ ДЛИН К БЕСКОНЕЧНОЙ ПЛАСТИНЕ

ПОСРЕДСТВОМ ЛИПКИХ СЛОЕВ

В работе рассматривается задача для упругой бесконечной пластины,
которая на конечных участках вдоль двух параллельных линий своей
верхней поверхности усилена системой из конечного числа стрингеров
конечной длины с различными модулями упругости. Контактные связки
между пластиной и стрингерами во всех участках осуществляются посред-
ством одинаковых тонких липких слоев с другими физико-механическими
и геометрическими характеристиками. Стрингеры деформируются под
действием горизонтальных сосредоточенных сил, приложенных на их
концах. В работе задача определения закона распределения неизвестных
контактных сил, действующих между бесконечной пластиной н стринге-
рами, сведена к решению системы интегральных уравнений Фредгольма
второго рода с конечным числом неизвестных функций, определенных
вдоль двух параллельных линий на различных конечных интервалах.
Затем определялись области изменения характерных параметров задачи,
при которых полученная система интегральных уравнений допускает
точное решение и может быть решена методом последовательных прибли-
жений. Рассмотрены некоторые частные случаи и исследованы характер и
поведение неизвестных касательных контактных сил на концах стрингеров.
Численные расчеты для этих случаев в зависимости от различных парамет-
ров задачи исследованы в предыдущей статье (A.V. Kerobyan, K.P. Sa-
hakyan, Proc. YSU. Phys. Math. Sci. 57 (3) (2023), 86–100).


