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M a t h e m a t i c s

ON THE CALCULATION OF THE COEFFICIENTS
OF CUBIC SPLINES ON A SET OF EQUIDISTANT KNOTS
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As is known, the coefficients of the interpolation cubic spline are found
by solving a tridiagonal system of linear algebraic equations of a special type.
To solve the system, a well-known numerical algorithm is usually used. In this
paper, an alternative method for finding the coefficients of a natural cubic spline
on a uniform set of knots is proposed. The method is based on the analytical
inversion of the tridiagonal matrix, which made it possible to obtain closed-
form expressions for the coefficients. This approach allows us both identify the
analytical dependence of the spline coefficients on its values at the knots and
obtain simple formulas for calculating these coefficients, by passing the solution
of the system.
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Introduction. Let us first recall the definition of an interpolating cubic spline
[1, 2]. Consider a subdivision a = x0 < x1 < · · ·< xn−1 < xn = b of the interval [a,b].
At the knots xi, i = 0,1, . . . ,n some values yi are given. An interpolating cubic spline
S(x), i.e S(xi) = yi, i = 0,1, . . . ,n, is a piecewise cubic polynomial whose first and
second order derivatives are continuous at the knots x1,x2, . . . ,xn−1. The cubic spline
S(x) is called natural under the additional condition S′′(a) = S′′(b) = 0.

Here we will consider the case of uniform set of knots xi+1 = xi + h,
i = 0,1, . . . ,n−1 with the step h = (b−a)/n. Let Si(x), 0≤ i≤ n−1, be the cubic
polynomial that represents the natural spline S(x) on the subinterval [xi,xi+1].
The polynomials Si(x) can be written in the form

Si(x) = yi +mi(x− xi)+
Mi

2
(x− xi)

2 +
Mi+1−Mi

6h
(x− xi)

3 (1)

(see [1, 2]). The values Mi are determined from the system of linear equations

Mi−1 +4Mi +Mi+1 = γi, i = 1,2, . . . ,n−1; M0 = Mn = 0, (2)
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where

γi = 6
yi−1−2yi + yi+1

h2 , i = 1,2, . . . ,n−1. (3)

The values mi in (1) are calculated by formulas

mi =
yi+1− yi

h
− h

6
(2Mi +Mi+1), i = 0,1, . . . ,n−1.

To determine the values Mi, the tridiagonal system of linear Eq. (2) can be
solved using a well-known numerical algorithm [1, 2]. The implementation of this
algorithm, taking into account the calculation of the right-hand sides γi of the system
by formulas (3), requires ∼ 10n arithmetic operations.

In this paper, we propose an alternative method for calculating the values Mi by
deriving explicit expressions for these values. The method is based on the analytical
inversion of the matrix of system (2). In this way, we obtain the expressions for the
quantities Mi through the values yi of the cubic spline at the knots.

Derivation of Basic Formulas. Let

A =


4 1
1 4 1 0

. . . . . . . . .
0 1 4 1

1 4

 , (4)

be the matrix of system (2) of order n− 1. The system can be written as AM = Γ,
where M = [M1,M2, . . . ,Mn−1]

T and Γ = [γ1,γ2, . . . ,γn−1]
T are the vectors of the

unknowns and right-hand sides, respectively. Then

M = A−1
Γ. (5)

To calculate the elements of the inverse matrix A−1, we use formulas derived in
the article [3]. In this work, a symmetric tridiagonal Toeplitz matrix

A=


a b
b a b 0

. . . . . . . . .
0 b a b

b a

 , b 6= 0

of order n was considered. Under the condition |a| > 2|b|, which also ensures the
nonsingularity of matrix A, the following expressions for the elements of the inverse
matrix A−1 = [κi j]n×n was obtained. Namely, for the values j = 1,2, . . . ,n:

κi j =
(−1) j−i

r
·

[(
a+ r
2b

)i

−
(

a− r
2b

)i
] [(

a+ r
2b

)n+1− j

−
(

a− r
2b

)n+1− j
]

[(
a+ r
2b

)n+1

−
(

a− r
2b

)n+1
] (6)



ON THE CALCULATION OF THE COEFFICIENTS OF CUBIC SPLINES. . . 65

if i = 1,2, . . . , j−1 and

κi j =
(−1)i− j

r
·

[(
a+ r
2b

)n+1−i

−
(

a− r
2b

)n+1−i
] [(

a+ r
2b

) j

−
(

a− r
2b

) j
]

[(
a+ r
2b

)n+1

−
(

a− r
2b

)n+1
] (7)

if i = j, j+1, . . . ,n, where r ≡
√

a2−4b2.
With regard to matrix A from (4), the expressions (6) and (7) for calculating the

elements of the inverse matrix A−1 = [xi j]n−1×n−1 take the following form. For the
values j = 1,2, . . . ,n−1:

xi j =
(−1) j−i

2
√

3
· (t

i− t−i)(tn− j− t−n+ j)

(tn− t−n)
(8)

if i = 1,2, . . . , j−1 and

xi j =
(−1)i− j

2
√

3
· (t

n−i− t−n+i)(t j− t− j)

(tn− t−n)
(9)

if i = j, j+1, . . . ,n−1, where t ≡ 2+
√

3.
If we introduce the notation

αk ≡
tk− t−k

2
√

3
, k = 0,1, . . . ,n , (10)

then expressions (8) and (9) can be written as

xi j = (−1) j−i αiαn− j

αn
, i = 1,2, . . . , j−1 (11)

and
xi j = (−1)i− j αn−iα j

αn
, i = j, j+1, . . . ,n−1 . (12)

The quantities αk defined in (10) can be calculated using a simple recurrent
procedure. Indeed, it is not difficult to obtain a relation

αk−1 +αk+1 = 4αk, (13)
from which

αk+1 = 4αk−αk−1, k = 1,2, . . . ,n−1, (14)

where α0 = 0, α1 = 1. We eventually obtain α2 = 4,α3 = 15 and etc. This requires
∼ 2n arithmetic operations. Note that all quantities αk, k ≥ 1 are positive integers.

Let us proceed to calculating the components of the vector M. Based on (5), for
the values i = 1,2, . . . ,n−1 we have

Mi =
i−1

∑
j=1

xi jγ j +
n−1

∑
j=i

xi jγ j =
i−1

∑
j=1

x jiγ j +
n−1

∑
j=i

x jiγ j.

From here, using expressions (11) and (12), we obtain

Mi =
i−1
∑
j=1

(−1)i− j α jαn−i

αn
γ j +

n−1
∑
j=i

(−1) j−i αn− jαi

αn
γ j

=
(−1)i

αn

(
αn−i

i−1
∑
j=1

(−1) jα jγ j +αi
n−1
∑
j=i

(−1) jαn− jγ j

)
.
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Substituting expression (3) for the values γi into the last equality yields

Mi =
(−1)i

αn
· 6

h2

(
αn−i

i−1
∑
j=1

(−1) jα j(y j−1−2y j + y j+1)

+αi
n−1
∑
j=i

(−1) jαn− j(y j−1−2y j + y j+1)

)
,

from where, after simple transformations, we obtain

Mi =
(−1)i

αn
· 6

h2

(
αn−i

(
−α1y0 +

i−1
∑
j=1

(−1) j+1(α j−1 +2α j +α j+1)y j

)
+(−1)i+1

(
αn−i(αi−1 +αi)+αi(αn−i−1 +αn−i)

)
yi

+αi

(
n−1
∑

j=i+1
(−1) j+1(αn− j−1 +2αn− j +αn− j+1)y j +(−1)n−1α1yn

))
.

Finally, taking into account relation (13), we arrive at the expressions for the
values Mi, i = 1,2, . . . ,n−1, that is

Mi =
(−1)i

αn
· 6

h2

(
αn−i

(
−α1y0 +6

i−1
∑
j=1

(−1) j+1α jy j

)
+(−1)i+1 (αn−i(αi−1 +αi)+αi(αn−i−1 +αn−i))yi

+αi

(
6

n−1
∑

j=i+1
(−1) j+1αn− jy j +(−1)n−1α1yn

))
.

(15)

R e m a r k. The integers αk, recurrently calculated in (14), are universal in
nature, in the sense that they do not depend on either the values of the knots or the
values of the spline at these knots.

Let us note one important feature of the obtained expressions (15). They
establish an explicit analytical dependence of the quantities Mi on the values of the
cubic spline at the knots. This can be useful in both theoretical studies and numerical
calculations. For example, expressions (15) allow us to calculate new quantities Mi

quickly when changing the values of a cubic spline at one or more knots. For the
sake of simplicity, let us consider the case when only the value y0 changes to ỹ0.
Accordingly, all values Mi will change to M̃i, while

M̃i = Mi +
α1

αn
· 6

h2 (ỹ0− y0) · (−1)i+1
αn−i, i = 1,2, . . . ,n−1.

Implementation Details. Let us turn to expression (15), writing it in the form

Mi =
6

αnh2

(
αn−i

(
pi− (αi−1 +αi)yi

)
+αi

(
qi− (αn−i−1 +αn−i)yi

))
, (16)

where

pi = (−1)i
(
−α1y0 +6

i−1

∑
j=1

(−1) j+1
α jy j

)
, i = 1,2, . . . ,n−1
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and

qi = (−1)i

(
6

n−1

∑
j=i+1

(−1) j+1
αn− jy j +(−1)n−1

α1yn

)
, i = 1,2, . . . ,n−1.

The quantities pi and qi can be calculated using recurrence relations
p1 = α1y0; pi+1 =−pi +6αiyi, i = 1,2, . . . ,n−2 (17)

and
qn−1 = α1yn; qi =−qi+1 +6αn−i−1yi+1, i = n−2,n−3, . . . ,1 . (18)

A simple calculation shows that computing the values pi and qi using formulas
(17) and (18) requires∼ 5n arithmetic operations. Another∼ 10n arithmetic operations
are required to calculate all the values Mi using expressions (16).
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A. H. MANOWKYAN

HAVASARAHE� HANGOWYCNERI BAZMOW�YAN VRA XORANARDAYIN

SPLAYYNERI GOR
AKICNERI HA
VARKI MASIN

In�pes haytni �, interpolyacion xoranardayin splayni gor�akic-

ner� oro�vowm en hatowk tipi g�ayin hanraha�vakan havasarowmneri

ereqankyownag�ayin hamakargic: Nman hamakarger� low�elow hamar

sovorabar �gtagor�vowm � haytni �vayin algori�m�: Ays a�xatanqowm

a�ajarkvowm � havasarahe� hangowycneri bazmow�yan vra bnakan

xoranardayin splayni gor�akicner� gtnelow ayl�ntranqayin e�anak,

or� himnva� � ereqankyownag�ayin matrici verlow�akan hakadar�man

vra: Ardyownqowm stacvel en bacahayt artahaytow�yownner splayni

gor�akicneri hamar: Ays motecowm� �owyl � talis in�pes bacahaytel

splayni gor�akicneri verlow�akan kaxva�ow�yown� hangowycneri vra dra

ar�eqneric, aynpes �l stanal ayd gor�akicner� ha�varkelow parz

bana� er` �rjancelov hamakargi low�owm�:
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А. А. МАНУКЯН

О ВЫЧИСЛЕНИИ КОЭФФИЦИЕНТОВ КУБИЧЕСКИХ СПЛАЙНОВ
НА МНОЖЕСТВЕ РАВНООТСТОЯЩИХ УЗЛОВ

Как известно, коэффициенты интерполяционного кубического
сплайна определяются из трехдиагональной системы линейных алгебраи-
ческих уравнений специального вида. Для решения таких систем обычно
используется известный численный алгоритм. В данной работе пред-
лагается альтернативный метод нахождения коэффициентов натурального
кубического сплайна на равномерном множестве узлов. Метод основан
на аналитическом обращении трехдиагональной матрицы, в результате
чего были получены явные выражения для коэффициентов сплайна. Такой
подход позволил как выявить аналитическую зависимость коэффициентов
сплайна от его значений в узлах, так и получить простые формулы для
расчёта этих коэффициентов, минуя решение системы.


