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A proper edge-coloring of a graph is called a sum edge-coloring if it mini-
mizes the total sum of colors on all the edges of the graph. The aforementioned
minimal sum is called the edge-chromatic sum of the graph, and the minimal
number of colors needed for a sum edge-coloring is called the edge-strength of
the graph. In this paper, upper bounds on the values of the edge-chromatic sums
of some complete tripartite graphs are given, while for some other complete
tripartite graphs, the exact values of both parameters are obtained.
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Introduction. The sum coloring problem has been suggested for the first time
in the context of integrated circuit design by Supowit in [1] in 1987. Independently,
the problem was introduced by Kubicka in [2] in 1989. In both cases, the focus was
on the proper coloring of the vertices of graphs. After the appearance of numerous
investigations and the expansion of the topic, a similar problem arose concerning the
edge-colorings of graphs. Bar-Noy et al. introduced the sum edge-coloring problem
in [3] in 1998.

The sum edge-coloring problem is shown to be NP-hard [3], even for very
specific classes of graphs such as regular graphs [4] and bipartite graphs with maxi-
mum degree 3 [5] and even for some more specific class of graphs within the latter
[6]. There are also some approximation algorithms known, for example, there is a

2-approximation algorithm for general graphs [3],
11
8

-approximation algorithm for
regular graphs [6]. In [6], an upper bound on the edge-chromatic sum of some split
graphs is also given. For the edge-strength parameter of graphs, a theorem similar to
Vizing’s is proven by Hajiabolhassan in [7].

Both the edge-chromatic sum and edge-strength parameters are known for
complete graphs [6]. A big family of graphs that still needs investigation is complete
multipartite graphs.
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For bipartite graphs, the edge-strength is shown in [8] to be equal to the maxi-
mum degree of the graph, so for complete bipartite graphs Kn,m(n≥ m), it is easy to
see that the exact value of its edge-strength is equal to n and it is also easy to obtain
the edge-chromatic sum of it by noticing that each color from 1 to n is used exactly m
times in a sum edge n-coloring of the graph.

The current work concentrates on complete tripartite graphs and gives upper
bounds or in some cases the exact values of these parameters of some complete
tripartite graphs.

Preliminaries. The graphs considered in this paper are finite, undirected, and
simple. The terminology of basic concepts not specifically defined in the paper can be
found in [9].

A proper vertex-coloring of a graph is a mapping from its vertices to positive
integers so that adjacent vertices correspond to distinct numbers. For a given proper
vertex-coloring α of a graph G, denote the sum of colors assigned to all vertices
by Σ(G,α). Let the vertex-chromatic sum of the graph G be the minimal Σ(G,α)
among all proper vertex-colorings α . Let us denote this sum by Σ(G). All proper
vertex-colorings α , for which Σ(G,α) = Σ(G), are called sum vertex-colorings of
graph G. The minimum number of colors needed to construct a sum vertex-coloring
for a graph G is called the vertex-strength of G and is denoted by s(G).

Similarly, proper edge-coloring of a graph G is a mapping α : E(G) −→ N
for which each adjacent edges e and e′ satisfy α(e) 6= α(e′). Let the spectrum of
the vertex v (v ∈V (G)) in the coloring α be the set of colors on the edges adjacent
to v: SG(v,α) = {α(e) | v ∈ e,e ∈ E(G)}.

If the number of colors used in a proper edge-coloring is k, we will sometimes
call the coloring a proper edge k-coloring. The minimum number of colors needed to
construct a proper edge-coloring is called the edge-chromatic index of the graph G and

denoted by χ ′(G). For a proper edge-coloring α we denote
′

∑(G,α) = ∑
e∈E(G)

α(e).

The edge-chromatic sum of the graph G is defined as
′

∑(G) = min
α

′

∑(G,α) where α

is a proper edge-coloring of the graph G. Proper edge-colorings, for which this sum is
achieved, are called sum edge-colorings, and the minimum number of colors needed
to construct a sum edge-coloring for a graph G is called the edge-strength of G and is
denoted by s′(G). Obviously, s′(G)≥ χ ′(G).

For any natural numbers n,m, and l, we define the complete tripartite graph
Kn,m,l as a graph with the vertex and edge sets given respectively as follows: V (Kn,m,l)=
{v1,v2, ...,vn,u1,u2, ...,um,w1,w2, ...,wl} and E(Kn,m,l) = {viu j : 1 ≤ i ≤ n,1 ≤ j ≤
m}∪ {viw j : 1 ≤ i ≤ n,1 ≤ j ≤ l}∪ {uiw j : 1 ≤ i ≤ m,1 ≤ j ≤ l}. For simplicity
we will call the complete bipartite graph balanced if n = m = l and unbalanced if

max(n,m, l)≥ n+m+ l
2

.

A graph G is called overfull if |V (G)| is odd and |E(G)|> ∆(G)(|V (G)|−1)
2

,

where ∆(G) is the maximum degree of G.
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Since each sum edge-coloring α is a proper edge-coloring, if the degree
of vertex v ∈ V (G) is denoted by dG(v), then ∑

c∈SG(v,α)

c ≥ 1 + 2 + ...+ dG(v) =

dG(v)(dG(v)+1)
2

. This leads us to the following observation.

O b s e r v a t i o n. For any graph G, we have:

∑
′(G)≥ 1

4 ∑
v∈V (G)

dG(v)(dG(v)+1).

We will also use the following Lemma and Theorem in this paper.

L e m m a. For a graph G with s′(G) ≥ 2 and any k ∈ N that satisfies
2≤ k ≤ s′(G), we have:

∑
′(G)≥ k

(
|E(G)|− k−1

2

⌊
|V (G)|

2

⌋)
+

(s′(G)− k)(s′(G)− k+1)
2

.

P ro o f. Let α be any sum edge s′(G)-coloring of G. For each color
i (1 ≤ i ≤ s′(G)), denote the number of edges that are assigned with the color i

in α by ci. We know that 1≤ ci ≤
⌊
|V (G)|

2

⌋
. To complete the proof, we can see that

∑
′(G) =

s′(G)

∑
i=1

i · ci =
s′(G)

∑
i=1

(k+(i− k)) · ci =
s′(G)

∑
i=1

k · ci−
k

∑
i=1

(k− i) · ci+

+
s′(G)

∑
i=k+1

(i− k) · ci = k|E(G)|−
k

∑
i=1

(k− i) · ci +
s′(G)

∑
i=k+1

(i− k) · ci ≥

≥ k|E(G)|−
k

∑
i=1

(k− i) ·
⌊
|V (G)|

2

⌋
+

s′(G)

∑
i=k+1

(i− k) ·1 =

= k
(
|E(G)|− k−1

2

⌊
|V (G)|

2

⌋)
+

(s′(G)− k)(s′(G)− k+1)
2

.

T h e o r e m 1. [10] For a complete multipartite graph G, we have:

χ
′(G) =

{
∆(G), if G is not overfull,
∆(G)+1, if G is overfull.

Balanced Complete Tripartite Graphs.

T h e o r e m 2. For any n ∈ N, we have:

∑
′(Kn,n,n) =


3n2(2n+1)

2
, if n is even,

n(2n+1)(3n+1)
2

, if n is odd,

and

s′(Kn,n,n) =

{
2n, if n is even,
2n+1, if n is odd.
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P ro o f. Let us consider separate cases based on the parity of n.
Case 1. n is even.
Note that 3n is also even, so from Theorem 1, we have χ ′(Kn,n,n) = 2n. Consider

a proper edge 2n-coloring α of Kn,n,n. Since the degree of each vertex is 2n, each
vertex is adjacent to one edge of each color from 1 to 2n. Hence,

Σ
′(Kn,n,n,α) =

3n2(2n+1)
2

.

Since s′(Kn,n,n) ≥ ∆(Kn,n,n) = 2n, we can apply Lemma by setting k = 2n.
It follows that

Σ
′(Kn,n,n)≥ 2n

(
3n2− 2n−1

2

⌊
3n
2

⌋)
= 6n3− 3n2(2n−1)

2
=

3n2(2n+1)
2

.

This means that α is a sum edge-coloring, also establishes the values of
Σ′(Kn,n,n) and s′(Kn,n,n) in this case.

Case 2. n is odd.
In this case, the graph is overfull, thus, from Theorem 1 we have

s′(Kn,n,n)≥ 2n+1. Taking k = 2n+1 in Lemma, we obtain

∑
′(Kn,n,n)≥ (2n+1)

(
3n2−n

3n−1
2

)
=

n(2n+1)(3n+1)
2

.

To complete the proof, we provide a proper edge-coloring βn that uses colors
1,2, ...,2n+1 and for which

Σ
′(Kn,n,n,βn) =

n(2n+1)(3n+1)
2

.

We construct the coloring as follows:

1) for any 1≤ i≤ n+1
2

,

βn(viu1) = n−2i+3,

2) for any n > 1 and
n+3

2
≤ i≤ n,

βn(viu1) = 3n−2i+4,

3) for any n > 3 and 3≤ i≤ n+1
2

and 1≤ j ≤ i−2,

βn(viu2 j) = 2n+2 j−2i+4,

4) for any n > 1 and 1≤ i≤ n+1
2

and max(1, i−1)≤ j ≤ n−1
2

,

βn(viu2 j) = 2 j−2i+3,

5) for any n > 1 and 2≤ i≤ n+1
2

and 1≤ j ≤ i−1,

βn(viu2 j+1) = 2n+2 j−2i+3,
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6) for any n > 1 and 1≤ i≤ n−1
2

and i≤ j ≤ n−1
2

,

βn(viu2 j+1) = 2 j−2i+2,

7) for any n > 1 and
n+3

2
≤ i≤ n and 2≤ j ≤ n,

βn(viu j) = 2n−2i+ j+3,

8) for any 1≤ i≤ n+1
2

and 1≤ j ≤ n,

βn(viw j) = n−2i+ j+3,

9) for any n > 3 and
n+5

2
≤ i≤ n and 1≤ j ≤ i− n+3

2
,

βn(viw2 j−1) = 3n+2 j−2i+4,

10) for any n > 1 and
n+3

2
≤ i≤ n and i− n+1

2
≤ j ≤ n+1

2
,

βn(viw2 j−1) = n+2 j−2i+3,

11) for any n > 1 and 1≤ i≤ n−1
2

and 1≤ j ≤ n+1
2

,

βn(u2iw2 j−1) = 2i+2 j,

12) for any n > 3 and
n+5

2
≤ i≤ n and 1≤ j ≤ i− n+3

2
,

βn(viw2 j) = 3n+2 j−2i+3,

13) for any n > 1 and
n+3

2
≤ i≤ n and i− n+1

2
≤ j ≤ n−1

2
,

βn(viw2 j) = n+2 j−2i+2,

14) for any n > 3 and 1≤ i≤ n−3
2

and 1≤ j ≤ n−1
2
− i,

βn(u2iw2 j) = n+2i+2 j,

15) for any n > 1 and 1≤ i≤ n−1
2

and
n+1

2
− i≤ j ≤ n−1

2
,

βn(u2iw2 j) = 2i+2 j−n+1,

16) for any n > 1 and 1≤ i≤ n−1
2

and 1≤ j ≤ n+1
2
− i,

βn(u2i−1w2 j−1) = n+2i+2 j−1,

17) for any 1≤ i≤ n+1
2

and
n+3

2
− i≤ j ≤ n+1

2
,

βn(u2i−1w2 j−1) = 2i+2 j−n−2,
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18) for any n > 1 and 1≤ i≤ n+1
2

and 1≤ j ≤ n−1
2

,

βn(u2i−1w2 j) = 2i+2 j−1.

The case n = 1 is easy to verify and the case n = 3 is illustrated in Fig. 1,
so let us concentrate on the cases, where each of the 18 points participates in the
construction. Note that in the coloring βn the spectrums of vertices are as follows (for
better illustration, each separate set from the right side of the equations corresponds to
one of the points above):

SKn,n,n(v1,βn) ={n+1}∪{3,5, ...,n}∪{2,4, ...,n−1}∪
∪{n+2,n+3, ...,2n+1},

SKn,n,n(v2,βn) ={n−1}∪{1,3, ...,n−2}∪{2n+1}∪{2,4, ...,n−3}∪
∪{n,n+1, ...,2n−1},

SKn,n,n(vi,βn) ={n−2i+3}∪{2n−2i+6,2n−2i+8, ...,2n}∪
∪{1,3, ...,n−2i+2}∪
∪{2n−2i+5,2n−2i+7, ...,2n+1}∪
∪{2,4, ...,n−2i+1}∪

∪{n−2i+4,n−2i+5, ...,2n−2i+3}
(

3≤ i≤ n−1
2

)
,

SKn,n,n(v n+1
2
,βn) ={2}∪{n+5,n+7, ...,2n}∪{1}∪

∪{n+4,n+6, ...,2n+1}∪{3,4, ...,n+2},
SKn,n,n(v n+3

2
,βn) ={2n+1}∪{n+2,n+3, ...,2n}∪{2,4, ...,n+1}∪

∪{1,3, ...,n−2},
SKn,n,n(vi,βn) ={3n−2i+4}∪

∪{2n−2i+5,2n−2i+6, ...,3n−2i+3}∪
∪{3n−2i+6,3n−2i+8, ...,2n+1}∪
∪{2,4, ...,2n−2i+4}∪
∪{3n−2i+5,3n−2i+7, ...,2n}∪

∪{1,3, ...,2n−2i+1}
(

n+5
2
≤ i≤ n

)
,

SKn,n,n(u1,βn) ={n+1,n−1, ...,2}∪{2n+1,2n−1, ...,n+4}∪
∪{n+3,n+5, ...,2n}∪{1}∪{3,5, ...,n}

SKn,n,n(u2i+1,βn) ={2n+1,2n−1, ...,n+2i+2}∪{2i,2i−2, ...,2}∪
∪{n+2i+1,n+2i−1, ...,2i+4}∪
∪{n+2i+3,n+2i+5, ...,2n}∪{1,3, ...,2i+1}∪

∪{2i+3,2i+5, ...,n+2i}
(

1≤ i≤ n−1
2

)
,



ON SUM EDGE-COLORINGS OF COMPLETE TRIPARTITE GRAPHS. 75

SKn,n,n(u2i,βn) ={2n,2n−2, ...,n+2i+3}∪{2i+1,2i−1, ...,1}∪
∪{n+2i,n+2i−2, ...,2i+3}∪
∪{2i+2,2i+4, ...,n+2i+1}∪
∪{n+2i+2,n+2i+4, ...,2n−1}∪

∪{2,4, ...,2i}
(

1≤ i≤ n−3
2

)
,

SKn,n,n(un−1,βn) ={n,n−2, ...,1}∪{2n−1,2n−3, ...,n+2}∪
∪{n+1,n+3, ...,2n}∪{2,4, ...,n−1},

SKn,n,n(w2i−1,βn) ={n+2i,n+2i−2, ...,2i+1}∪
∪{2n+1,2n−1, ...,n+2i+4}∪
∪{2i,2i−2, ...,2}∪
∪{2i+2,2i+4, ...,n+2i−1}∪
∪{n+2i+1,n+2i+3, ...,2n}∪

∪{1,3, ...,2i−1}
(

1≤ i≤ n−3
2

)
,

SKn,n,n(wn−2,βn) ={2n−1,2n−3, ...,n}∪{n−1,n−3, ...,2}∪
∪{n+1,n+3, ...,2n−2}∪{2n}∪
∪{1,3, ...,n−2},

SKn,n,n(wn,βn) ={2n+1,2n−1, ...,n+2}∪{n+1,n−1, ...,4}∪
∪{n+3,n+5, ...,2n}∪{1,3, ...,n},

SKn,n,n(w2i,βn) ={n+2i+1,n+2i−1, ...,2i+2}∪
∪{2n,2n−2, ...,n+2i+3}∪
∪{2i−1,2i−3, ...,1}∪
∪{n+2i+2,n+2i+4, ...,2n−1}∪
∪{2,4, ...,2i}∪

∪{2i+1,2i+3, ...,n+2i}
(

1≤ i≤ n−1
2

)
.

This calculation shows that the coloring βn is a proper edge-coloring for each
n > 3, hence it only remains to compute the sum of all colors. One can do so by

noticing that each color from 1 to 2n appears exactly
3n−1

2
times, and the color

2n+1 appears exactly n times in the coloring βn:

∑
′(Kn,n,n,βn) =

3n−1
2

(1+2+ ...+2n)+n(2n+1) =

= (2n+1)
2n(3n−1)+4n

4
=

n(2n+1)(3n+1)
2

.
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Fig. 1. The complete tripartite graph K3,3,3 with β3 edge-coloring.

Unbalanced Complete Tripartite Graphs. Here we give the edge-chromatic
sum and the edge-strength of the graphs Kn,m,l , where n≥ m+ l.

T h e o r e m 3. For any n,m, l ∈ N such that n≥ m+ l and m≥ l, we have:

∑
′(Kn,m,l) =

(n+m+1)(lm+ ln+mn)−m2n
2

and
s′(Kn,m,l) = n+m.

P ro o f. Let us denote the right-hand side of the first claim in the theorem
statement by S. Consider the complete bipartite graph Kp,q for arbitrary p ≥ q.
Let V (Kp,q) = {x1,x2, ...,xp,y1,y2, ...,yq} and E(Kp,q) = {xiy j|1≤ i≤ p,1≤ j ≤ q}.
We know that the graph Kp,q has a proper edge p-coloring, let us fix one of such
colorings for each p and q and denote this coloring by αp,q.

Now let us construct a proper edge-coloring β for Kn,m,l in the following way:

1) for any 1≤ i≤ n and 1≤ j ≤ m,

β (viu j) = αn,m+l(xiy j),

2) for any 1≤ i≤ n and 1≤ j ≤ l,

β (viw j) = αn,m+l(xiym+ j),

3) for any 1≤ i≤ m and 1≤ j ≤ l,

β (uiw j) = n+αm,l(xiy j).

It is easy to see that β is a proper edge (n+m)-coloring. Moreover, it satisfies
Σ′(Kn,m,l,β ) = S.
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To finish the proof, we need to show that ∑
′(Kn,m,l) ≥ S. Let E1 = {viu j :

1 ≤ i ≤ n,1 ≤ j ≤ m} and E2 = E(Kn,m,l)\E1. If we denote by G1 and G2 the edge-
induced subgraphs of Kn,m,l corresponding to the edge sets E1 and E2 respectively,
then it is obvious that ∑

′(Kn,m,l)≥∑
′(G1)+∑

′(G2), since one can use any sum
edge-coloring of Kn,m,l to color similarly the edges of G1 and G2. Note that both G1
and G2 are bipartite graphs for which we know the respective edge-chromatic sums.
As a result,

∑
′(Kn,m,l)≥∑

′(G1)+∑
′(G2) =

mn(n+1)
2

+
l(n+m)(n+m+1)

2
= S.

Some Other Complete Tripartite Graphs. Now we give an upper bound on
the edge-chromatic sum of graphs K2n,m,l , where 1.5n≥ m≥ l and m > n > 1. Note
that if m≤ n or n = 1, the result in the previous section establishes the exact value of
the edge-chromatic sum.

T h e o r e m 4. For any n,m, l ∈ N such that 1.5n≥ m≥ l and m > n > 1, we
have:

∑
′(K2n,m,l)≤

l(2n+m)(2n+m+1)
2

+mn(2m+1).

P ro o f. First, we introduce an edge-coloring α for K2n,m,m and prove that it is
a proper edge-coloring. We construct the coloring as follows:

1) for any 1≤ i≤ m and 1≤ j ≤ 2n,

α(wiv j)≡ 2i+ j−2 mod 2m,α(wiv j) ∈ {1,2, ...,2m},

2) for any 1≤ i≤ 2m−2n and 1≤ j ≤ 2m−2n− i+1,

α(wiu j)≡ 2n+3i+ j−3 mod 2m,α(wiu j) ∈ {1,2, ...,2m},

3) for any 1≤ i≤ m and max(1,2m−2n− i+2)≤ j ≤ m− i+1,

α(wiu j) = 3m− i− j+2,

4) for any 2≤ i≤ m and m− i+2≤ j ≤min(m,3m−2n− i+1),

α(wiu j)≡ 2n−m+3i+ j−3 mod 2m,α(wiu j) ∈ {1,2, ...,2m},

5) if 2n > m+1 then for any 2m−2n+2≤ i≤ m and 3m−2n− i+2≤ j ≤ m,

α(wiu j) = 4m− i− j+2,

6) if m is not divisible by 3, then for any 1≤ i≤ 2n and 1≤ j ≤ m,

α(viu j)≡ 2n−3i−2 j+3 mod 2m, α(viu j) ∈ {1,2, ...,2m},

7) if m is divisible by 3, then for any 1≤ i≤ 2m
3

and 1≤ j ≤ m,

α(viu j)≡ 2n−3i−2 j+5 mod 2m, α(viu j) ∈ {1,2, ...,2m},

α(v 2m
3 +iu j)≡ 2n−3i−2 j+1 mod 2m, α(v 2m

3 +iu j) ∈ {1,2, ...,2m},
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Fig. 2. The complete tripartite graph K4,3,3 with α edge-coloring.
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Fig. 3. The complete tripartite graph K6,4,4 with α edge-coloring.
Vertices evenly spaced around the circle.

8) if m is divisible by 3, then for any 4m
3 +1≤ i≤ 2n and 1≤ j ≤ m,

α(viu j)≡ 2n−3i−2 j+3 mod 2m, α(viu j) ∈ {1,2, ...,2m}.

Figs. 2 and 3 illustrate the colorings on the example of K4,3,3 and K6,4,4
respectively.

It is easy to see that each edge is assigned to exactly one color, so to prove that α

is a proper edge-coloring, it remains to check that no two adjacent edges are assigned
to the same color. It is also easy to see that for each of the points of construction from
1 to 8, if we fix one of the parameters (i or j), the colors within the point are pairwise
distinct. So we only need to consider each pair of different points (1≤ x 6= y≤ 8) and
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prove that there is no edge from x adjacent to an edge from y having the same color.
In most of the cases it is trivial, so to not show all the 28 possibilities, here we only
show the parts relatively harder to prove:

1)–2). Suppose 2i + j1 − 2 ≡ 2n + 3i + j2 − 3 mod 2m. This means that
2n−1+ i+ j2− j1 ≡ 0 mod 2m. From i+ j2 ≤ 2m−2n+1 we get 2n−1+ i+ j2−
j1 ≤ 2m− j1 ≤ 2m−1 and from j1 ≤ 2n we get 2n−1+ i+ j2− j1 ≥ i+ j2−1≥ 1,
which leads to a contradiction. Case 1)–4) is proven similarly.

1)–3). Since i+ j ≤ m+1, 3m− i− j+2≥ 2m+1, so it cannot intersect with
the point 1). Similarly, colors in 5) are also greater than 2m, so a lot of cases are
solved using this property.

1)–6). Suppose 2i1 + j− 2 ≡ 2n− 3 j− 2 j2 + 3 mod 2m. This means that
2n−2i1−4 j−2 j2 +5≡ 0 mod 2m, which is impossible since the left-hand side of
the above statement is always even. 1)–7) and 1)–8) are proven similarly.

2)–4). Suppose 2n+3i+ j1−3≡ 2n−m+3i+ j2−3 mod 2m. This means
that m+ j1− j2 ≡ 0 mod 2m. Here we have m− j2 ≤ i−2 and j1 ≤ 2m−2n− i+1,
so m+ j1− j2 ≤ i− 2+ 2m− 2n− i+ 1 = 2m− 2n− 1 < 2m. From the other side,
j2 ≤ m so m+ j1− j2 > 0. Contradiction.

2)–6). Suppose 2n+3i1 + j−3≡ 2n−3i2−2 j+3 mod 2m. This means that
3i1 + 3i2 + 3 j− 6 ≡ 0 mod 2m. Since m is not divisible by 3, i1 + i2 + j− 2 ≡ 0
mod 2m. i1 + j ≤ 2m− 2n+ 1 and i2 ≤ 2n so 0 < i1 + i2 + j2− 2 ≤ 2m− 2n+ 1+
2n−2 = 2m−1 < 2m. Contradiction.

2)–7). Suppose 2n+3i1 + j−3≡ 2n−3i2−2 j+5 mod 2m. This means that
3i1 +3i2 +3 j−8≡ 0 mod 2m. Since m is divisible by 3, it is impossible.

2)–8). Suppose 2n+3i1 + j−3≡ 2n−3i2−2 j+3 mod 2m. This means that

3i1+3i2+3 j−6≡ 0 mod 2m. Since m is divisible by 3, i1+ i2+ j−2≡ 0 mod
2m
3

.

i2 >
2m
3

so i1 + i2 + j2− 2 >
4m
3

and i1 + j1 ≤ 2m− 2n+ 1 so i1 + i2 + j2− 2 ≤

2m−2n+1+2n−2 = 2m−1 <
6m
3

. Contradiction.

Hence α is a proper edge 2n + m-coloring. To construct a corresponding
coloring αl for K2n,m,l(l ≤ m) we consider K2n,m,l as a graph obtained by removing
vertices wl+1,wl+2, ...,wm from K2n,m,m and take the same coloring α of K2n,m,m on the
remaining edges. Clearly, it is also a proper edge-coloring. Note that SK2n,m,l (wi,αl) =
{1,2, ...,2n+m}(1 ≤ i ≤ l), and for each 1 ≤ i ≤ n, the set {α(vxu j) | 2i ≤ x ≤
2i+ 1 and 1 ≤ j ≤ m} is equal to {1,2, ...,2m} so the sum of colors can be easily

calculated: ∑
′(K2n,m,l,αl)≤

l(2n+m)(2n+m+1)
2

+mn(2m+1).

C o r o l l a r y 1. For any n,m ∈ N such that 1.5n > m > n > 1, we have:

∑
′(K2n,m,m) =

m(2n+m)(2n+m+1)
2

+mn(2m+1).

P ro o f. The corollary follows directly from Theorem 4 and Observation.
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C o r o l l a r y 2. For any n,m ∈ N such that 1.5n > m > n > 1, we have:

∑
′(K2n,m,m−1) =

(m−1)(2n+m)(2n+m+1)
2

+mn(2m+1).

P ro o f. Consider a sum edge-coloring α of K2n,m,m−1. Taking into account
that there are m− 1 vertices that have a degree of 2n+m, there are at least 2n−m
edges incident to each of those m−1 vertices that are colored by a color greater than
2m. And the total sum of those colors on the edges having a color greater than 2m is at

least (m−1)((2m+1)+(2m+2)+ ...+(2n+m)) =
(m−1)(3m+2n+1)(2n−m)

2
.

Now consider the remaining |E(K2n,m,m−1)|− (m−1)(2n−m) = 2nm+2m2−2m =

2m(n+m−1) edges. Note that each color can be used at most
⌊
|V (K2n,m,m−1)|

2

⌋
=

2n+2m−2
2

= n+m− 1 times in α . So to color those 2m(n+m− 1) edges, the
minimum sum we can achieve is to assign each color from 1 to 2m to n+m−1 edges.
Hence,

∑
′(K2n,m,m−1) = ∑

′(K2n,m,m−1,α)≥ (m−1)(3m+2n+1)(2n−m)

2

+(n+m−1)
2m(2m+1)

2
=

(m−1)(2n+m)(2n+m+1)
2

+mn(2m+1).

From the Theorem 4 we conclude the statement of the current corollary.

Here we show three propositions that are easier to prove.

P r o p o s i t i o n 1. For any n ∈ N,

∑
′(K2n,2n,2n−1) = 2n(4n+1)(3n−1)

and
s′(K2n,2n,2n−1) = 4n.

P ro o f. It is easy to see that the graph is not overfull, so the Theorem 1 gives
us that there exists a proper edge 4n-coloring α of K2n,2n,2n−1. Note that each color

can be used at most
⌊
|V (K2n,2n,2n−1)|

2

⌋
= 3n−1 times in α , so

′

∑(K2n,2n,2n−1,α)≤

4n(4n+1)(3n−1)
2

= 2n(4n+1)(3n−1), while the Lemma implies
′

∑(K2n,2n,2n−1)≥

2n(4n+1)(3n−1), so
′

∑(K2n,2n,2n−1)= 2n(4n+1)(3n−1), α is a sum edge-coloring,
and s′(K2n,2n,2n−1) = 4n.

P r o p o s i t i o n 2. For any integer n > 1,

∑
′(Kn,n,1) =

n3 +6n2 +3n+2
2

and
s′(Kn,n,1) = 2n.
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P ro o f. The graph is not overfull, so χ ′(Kn,n,1) = 2n. This means that we can

put k = n+2 in the Lemma and deduce
′

∑(Kn,n,1)≥
n3 +6n2 +3n+2

2
. To complete

the proof, we describe a sum edge 2n-coloring α below.

1) for any 1≤ i≤ n−1 and 1≤ j ≤ n,

α(viu j)≡ i+ j mod n+1,α(viu j) ∈ {1,2, ...,n+1},

2)
α(vnu1) = n+2,

3) for any 2≤ j ≤ n,

α(vnu j)≡ i+ j mod n+1,α(vnu j) ∈ {1,2, ...,n+1},

4) for any 1≤ i≤ n,
α(viw1) = i,

α(uiw1) = n+ i.

It is easy to see that the coloring is a proper edge coloring with the required
sum of colors.

P r o p o s i t i o n 3. For any integer n > 1,

∑
′(Kn,n,2) =

n3 +10n2 +5n+2
2

and
s′(Kn,n,1) = 2n.

P ro o f. First, consider the following proper edge 2n-coloring α of Kn,n,2:

1) for any 1≤ i≤ n−1 and 1≤ j ≤ n,

α(viu j)≡ i+ j mod n+1,α(viu j) ∈ {1,2, ...,n+1},

2)
α(vnu1) = n+2,

3) for any 2≤ j ≤ n,

α(viu j)≡ i+ j mod n+1,α(viu j) ∈ {1,2, ...,n+1},

4) for any 1≤ i≤ n,
α(viw1) = i,

α(uiw1) = n+ i,

α(viw2) = 2n+1− i,

α(uiw2) = i.
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Clearly, ∑
′(Kn,n,2,α) =

n3 +10n2 +5n+2
2

. Now consider any proper

edge-coloring β of Kn,n,2. Note that it is possible to construct a coloring for
Kn,n,2−w2 denoted by β ′, where

∑
′(Kn,n,1,β

′) = ∑
′(Kn,n,2,β )− ∑

w2v∈E(Kn,n,2)

β (w2v)≤∑
′(Kn,n,2,β )−

2n(2n+1)
2

.

This means that

∑
′(Kn,n,2,β )≥∑

′(Kn,n,1,β
′)+

2n(2n+1)
2

≥ n3 +6n2 +3n+2
2

+
2n(2n+1)

2
=

n3 +10n2 +5n+2
2

,

which completes the proof.
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H. V. MIQAELYAN

LRIV EREQKO�MANI GRAFNERI GOWMARAYIN KO�AYIN

NERKOWMNERNERI MASIN

�i�t ko�ayin nerkowm�, ori depqowm grafi bolor ko�eri gowyneri

gowmar� nvazagowynn �, ko�vowm � grafi gowmarayin ko�ayin nerkowm:

Veron�yal nvazagowyn gowmarn anvanowm en grafi ko�ayin qromatik

gowmar, isk gowmarayin ko�ayin nerkman hamar pahanjvo� gowyneri

nvazagowyn qanak�` grafi ko�ayin hzorow�yown: Ays a�xatanqowm trvel

en verin gnahatakanner lriv ereqko�mani oro� grafneri ko�ayin

qromatik gowmarneri hamar, oro� ayloc hamar stacvel en n�va� erkow

parametreri ��grit ar�eqner�:

Г. В. МИКАЕЛЯН

О СУММАРНЫХ РЕБЕРНЫХ РАСКРАСКАХ ПОЛНЫХ
ТРЕХДОЛЬНЫХ ГРАФОВ

Правильная реберная раскраска графа называется суммарной
реберной раскраской, если она минимизирует общую сумму цветов на
всех ребрах графа. Указанная минимальная сумма называется реберно-
хроматической суммой графа, а минимальное количество цветов,
необходимое для суммарной реберной раскраски, называется реберной
силой графа. В данной работе приведены верхние оценки значений реберно-
хроматических сумм некоторых полных трехдольных графов, а для
некоторых других полных трехдольных графов получены точные значения
обоих параметров.
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