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ON DEFICIENCY OF COMPLETE 3-PARTITE
AND 4-PARTITE GRAPHS
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A proper t-edge-coloring of a graph G is a mapping a : E(G) — {1,...,1}
such that all colors are used, and a(e) # o(e’) for every pair of adjacent edges
e,e € E(G). If « is a proper edge-coloring of a graph G and v € V(G),
then the spectrum of a vertex v, denoted by S (v, ), is the set of all colors
appearing on edges incident to v. The deficiency of o at vertex v € V(G),
denoted by def(v, ), is the minimum number of integers that must be added
to S (v, ) to form an interval, and the deficiency def (G, @) of a proper edge-
coloring a of G is defined as the sum Z def(v, at). The deficiency of a graph

veV(G)

G, denoted by def(G), is defined as follows: def(G) = miny def (G, o), where
the minimum is taken over all possible proper edge-colorings of G. In 2019,
Davtyan, Minasyan, and Petrosyan provided an upper bound on the deficiency of
complete multipartite graphs. In this paper, we improve this bound for complete
tripartite and some complete 4-partite graphs. We also confirm the conjecture
that states the deficiency of a graph is bounded by the number of vertices of the
graph for all tripartite graphs containing up to 10 vertices.
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Introduction. All graphs considered in this work are finite, undirected, and
contain no multiple edges or loops. For a graph G = (V,E), we denote the sets of
vertices and edges by V(G) and E(G), respectively. The degree of a vertex v € V(G)
in graph G is denoted by dg(v). A proper edge t-coloring of graph G is a mapping
o : E(G) — {1,...,t}, in which all colors are used, and for any two adjacent edges
e, € E(G), a(e) # a(e'). If o is a proper edge-coloring of a graph G and v € V(G),
then the spectrum of a vertex v, denoted by S (v, @), is the set of all colors appearing
on edges incident to v. A proper edge ¢-coloring of G is called an interval z-coloring,
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if the colors on the edges incident to each vertex of G form an interval of natural
numbers. A graph G is said to be interval colorable, if there exists a positive integer
t, for which it has an interval #-coloring. Let the set of all interval colorable graphs
be denoted by 1. The concept of interval edge-coloring of graphs was introduced
by Asratian and Kamalian [1] in 1987. In [1] the authors proved, that if G € M,
then ¥’ (G) = A(G). Asratian and Kamalian also proved [, 2], that if a triangle-free
graph G admits an interval ¢-coloring, then 7 < [V(G)|— 1. In [3, 4], Kamalian in-
vestigated interval colorings of complete bipartite graphs and trees. In particular,
he proved that the complete bipartite graph K, , has an interval z-coloring if and
only if m+n—ged(m,n) <t <m+n— 1, where gcd(m,n) is the greatest common
divisor of m and n. In [5, 6], Petrosyan, Khachatrian, and Tananyan proved that

1
the n-dimensional cube Q, has an interval ¢-coloring if and only if n <t < M

The problem of determining whether a given graph is interval colorable is
NP-complete, even for regular [1] and bipartite [7] graphs. Surveys on the topic
can be found in some books [8, 9].

Not all graphs admit interval edge-colorings; the smallest example is K3. Since
interval colorability is not universal, it is natural to measure how close a graph is to
being interval colorable. Giaro, Kubale and Malafiejski introduced such a measure
in [10], called the deficiency of a graph (another measure was suggested in [ 1]). The
deficiency def(G) is the minimum number of pendant edges whose attachment makes
G interval colorable. Deficiency can also be described via proper edge-colorings.
For a proper edge-coloring ¢, the deficiency at a vertex v, def(v, &), is the minimum
number of integers that must be added to the color set S(v, o) to form an interval.
The deficiency of o is def(G, o) = Yoev(c) def(v, o), and the deficiency of the graph is
def(G) = ming def(G, ), where the minimum is taken over all proper edge-colorings
of G.

Determining def(G) is NP-complete, even for regular and bipartite graphs
[1,7,10]. In [10], Giaro, Kubale, and Matafiejski studied deficiencies of bipartite
graphs and showed that some bipartite graphs have deficiency approaching the number
of vertices. In [12] they proved, that if G is an r-regular graph with an odd number of
vertices, then def(G) > r/2, and determined the deficiency of odd cycles, complete
graphs, wheels and broken wheels. Schwartz [13] investigated regular graphs and ob-
tained tight bounds, showing that some regular graphs have large deficiency. Bouchard,
Hertz and Desaulniers [ 14] established lower bounds on def(G) and proposed a tabu
search algorithm for finding proper edge-colorings with minimum deficiency.

Recently, Borowiecka-Olszewska, et al. [15] studied the deficiency of k-trees.
They determined the deficiency of all k-trees with maximum degree at most 2k,
for k € {2,3,4}, and proved, that if G has an odd number of vertices, then
wei() > JEG) = (V(G) = NAG)

on near-complete graphs: for every n € N, def(K5,,+1 —e) =n— 1. In [16], the authors
obtained an upper bound for the deficiencies of complete multipartite graphs. Also,
in [17], computer experiments were used to determine the interval colorability of

. They also posed the following conjecture
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bipartite graphs. Our work uses both approaches to improve upon the results known
for the deficiencies of some tripartite and 4-partite graphs. In particular, we show
that all connected tripartite graphs containing up to 10 vertices have a deficiency of
at most 3.

Notations and Auxiliary Results. For any proper coloring & of the graph G,
and any vertex v € V(G), we denote the smallest and largest colors of S(v, o) by
S(v,a) and S(v, @), respectively.

Lemma. [/8]. Letn€ Nand L= (I},l,...,l,) be a multiset such that for
each i, where 1 <i <max(L) 3 j:1j = i. Then the complete bipartite graph K, ,
has a proper edge coloring such that
Svi,a) =S(uj,0) =1;, vieViu;eU,ie{l,2,...,n}.
Main Result.

Theorem 1. Forany a,b,c € Nwitha < b < ¢, we have
a*+1

5 .

Proof. Let G= K, .. Observe that the graph can be decomposed into two

complete bipartite subgraphs isomorphic to K, ;4. and Kj, .. Let the vertex set of the
graph be denoted as V(G) = V; UV, U V3, where:

def(Ka_’h’C) < \‘

Vi={vi,vig, - vint, Va={va1,v20,...,v2c}s
V3 = {V371,V372,. . .,V37a}.

Then the graph can be decomposed into H = G[V; UV,] and F = (V,E), where
V=V(G),E={uv: ueV(H), veVs}.
Define a proper edge coloring ;> of H:

06172(\/17[‘\/27]'):1'4-]'—1 for all 1 Sigb, ISjSC.

Clearly, oy > is an interval edge coloring, and for any vertex vi; € Vi, the
spectrum is:

Sviganz)={i,i+1,...;i+(c—1)}=[i,i+c—1];
and for any v, ; € Va:
Sajo,anp)={1+j—124j—1,....b+j—1}=[j,b+j—1].

This implies that:

e for any vy ; € Vi, we have

Sipain) =i, Svi,0n2)=i+c—1;

e for any v ; € V2, we have

S(vaj,012) =j, S(vaj,0up)=j+b—1.
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Now define a proper edge coloring &’ of F as follows: for 1 <i<aand 1< j<b,let
S )+ || =(G+e—1)+ M . ifiis odd,

' (v3v1j) =
Svij,an2)— |51 =Jj— |5, if i is even;
andfor 1 <i<agand1<j<c,let

Svj,ou2)— |z =7—|=|: if i is odd,

OC/(V3’,'V2J) =
— 1

Svaj,ou0)+ | = —(j—i-b—l)—i-[;-‘, if i is even.

Now we construct a proper edge coloring o for graph G as follows:
oaia(e), ifecE(H),
a(e) =
a'(e), ifecE(F).
Note that in this coloring, the deficiency arises only at the vertices belonging to
V3, and for each such vertices we have

def(vs;) =2 m Y

)

Therefore:

def(Kyp) < def(Kyp e 00) =Y (z [2
=1

~
o ————

a

2n? = — ifa=2
n 7 if a =2n,
= p
2n2+2n+1:3+0.5, ifa=2n+1,
< a2—|—1J‘
L 2
O
Theorem 2. Foranym,n,p,q € Nwithm+n = p+q, we have
VZ
def(K(mm,p.4)) < (p—n)(p—m) < 'L

Proof. Without loss of generality, assume p > m, m > n, p > q. Let
G = Kinn,p,q- Let the vertex set of the graph G be denoted as V(G) = Vi UV, UV3UV,,
where:
Vi={viviz,ooviml, Va={va1,v22,....van},

Va={vs1,v30,...,v3p}, Va={va1,van,...,vaq}-
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Then the graph can be decomposed into H = G|V, UV,], K = G[V3 U V4], and
F=(V,E),whereV=V(G),E={uv: ucV(H),veV(K)}.

Define a proper edge coloring o for H by

Ol(vlﬂ'Vz’j) =i+j—1.
Clearly, o is and interval edge coloring, and for any vertex vy ; € Vi, the spectrum is:
Svipa)={i,i+1,...i+n—1} =[i,i+n—1],
and for any vertex v, ; € V5:
Stvoj, ) ={j,j+1,....j+m—1} =[j,j+m—1].
This implies that:

* for any vi; € Vi, we have
S(vi,a) =i, Shia)=i+n—1;

* forany v ; € V>, we have
§(V2,j»a) =/ S("Z,j,a) =j+m—1.

Similarly, define a proper edge coloring 3 for K
B(vava ;) =i+j—1.
Using the same reasoning as above we get

* for any v3; € V3, we have
§(V3,iaﬁ):ia S(V3l7ﬁ):l+q_1’

e for any v4 ; € V4, we have
S(vajsB)=1Jj, S(va;,B)=j+p—1.

By rearranging the vertices of V(H) as

Vl,laV1,2a~--aV1,an2,1,V2,27--~7V2,q,v2,q+17~~-aV2,naV1,q+laV1,q+25-~-aV1,m§
and V(K) as

v3,lav3,27'"av3,q7v4,17v4,27"'V4,qav3,q+la'"7V3,n7v3,n+17v3,n+1’"‘7v3,p;
we obtain

SHoa) |1 2 - g 12 - q g+l - n g+1 - m

Using Lemma, and by taking the multiset L as
L= (172’... ’q’1’27... q,q+ 1, ng+1,-- ’m),
we can construct an coloring 7y of F such that:
S(Vij’y):{jjunjum—l, ifie{1,2,4}, ori=3and j <n,
7 jtn+tm—1—(n—gq), ifi=3andn+1<j<p.
Combining all colorings, we define o’ coloring for G:
ole)+m+n+1, ifec E(H);
a'(e) =< Ble)+m+n+1, ifec E(K);
y(e), ife € E(F).
It is easy to check that o is indeed a proper interval coloring for G. By
examining the spectrum for each vertex v € V(G) under coloring o, we have:
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e forany vi; €V, 1 <i<m,
S o) =ii+n+m—1|Ui+n+m,i+n+m+n—1]=[i,i+2-n+m—1];

e forany v; € Vo, 1 <i<n,
S(vai, o) =[i,i+n+m—1]U[i+n+m,i+n+m+m—1]=[i,i+n+2-m—1];

e forany v3; € V3,1 <i<n,
S o) =[i,i+n+m—1|Uli+n+m,i+n+m+q—1]=[i,i+n+m+q—1];

e forany v3; € V3, n+1<i<p,
Svipno)=[i,i+n+m—1—(n—q)|U[i+n+mi+n+m—+q—1];

e forany vq; € V4, 1 <i<gq,
S, o) =[i,i+n+m—1]UJi+n+m,i+n+m+p—1]=[i,i+n+m+p—1].

Clearly, the deficiency appears only at vertices v;;, where i = 3 and
n+1 < j < p. From the construction it follows that the deficiency of each such
vertex is exactly n — q.

Therefore,

def(G) < (p—n)(n—q).

Now estimate this expression. Note that

_ra Ml
m+n=p+q= .
2
Setv=|V|.
Let , y
p:Z—i_av q:Z_aa
v v
=_4b =_—p
m=gtbh n=g=o

where a,b € |0, 2} Then:

2

(p=mn=q) = (a+b)a—b) = —b* << 1o,
Thus, )
def(K(mn,p.a)) < (p—m)(p—m) < 1 -

O]

Theorem 3. For any connected tripartite graph G with tripartition (U,V,K)
such that |U| + |V|+|K| < 10, we have

def(G) < 3.
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Proof. As a part of the computational experiments, a modified version of
the initial code from the [19] nauty library (specifically nauty-genbg, which is used
for generating bipartite graphs) was used. The program was adapted to generate
all tripartite graphs with a given number of vertices, up to isomorphism. It should
be noted that this modification excluded graphs that are 2-colorable (i.e. bipartite),
as they are known to be interval colorable [17].

Using this adapted generator, all tripartite graphs with up to 10 vertices were
produced. Then, a randomized backtracking algorithm was applied to produce proper
edge colorings with as small a deficiency as possible.

As a result, we found that for all tripartite graphs with up to 10 vertices,
the deficiency is no more than 3. Moreover, this bound is tight for regular
graph K3 3.3,

A(K333)
2
The initial source code used in these experiments, as well as the resulting dataset,
can be found at the following https://github.com/vtsirunyan/masters

def(K3’333) = =3.

Graph distribution based on the found colorings with least deficiency

V(G)| | def(G) =0 | def(G,ct) =1 | def(G,0t) =2 | def(G) =3 |
3 0 1 0 0
4 2 0 0 0
5 8 4 0 0
6 61 3 0 0
7 444 30 1 0
8 4783 230 23 0
9 62055 13201 5690 1
10 1992469 17839 20 0

O

Conclusion. This work is devoted to the study of the deficiency of complete
3-partite and 4-partite graphs. In particular, better upper bounds were obtained
for the deficiency of complete 3-partite and certain classes of complete 4-partite
graphs.

The main results obtained in this work are as follows:

e For all m,n,p,q € N such that m+n = p + g, the following holds for the

graph K (m,n, p,q):
\45

e For any natural numbers a < b < c, the following inequality holds:

241
def(Kyp.) < V + J

2
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where K, 5, - is a complete tripartite graph.

e The deficiency of all tripartite graphs with up to 10 vertices is at

most 3.
Received 20.11.2025
Reviewed 07.12.2025
Accepted 20.12.2025
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Jd. 2. shNFL3UWL

LOPJ, 3-UNAUUWLP BJd NCPNT 4-UNAUULD QLUEDLED
TIPS hSh NESUQNSNFU

o E(G) — {1,...,t} wppuuyupytpmip Yngdnd &t G gpudh Ghonp
Uynnuyht Gbpymy, tpb gubugwd tpynt hwplwb e,¢’ € E(G) Ynntph hwdwp
a(e) # a(e'): G qpudh o hoyp Ynnuyht Ghpuwd nhwypmd v ququph uwtpp
wubiny Jhwuwbwip wyn ququpht jhg Ynndtiph gnybtph pwquinienip b
Yopwbwykbp S(v,a)-n: o Ohpyuwd ntypmd v € V(G) ququph ntidhghypt
wjlt ijuqugnyl wdpnne pytph pwbwlb £, npp whypp L wdtjughty S(v, a)-hi,
nputiugh wjd Yuqih wdpnng pytiph dhowhuwyp: G gnudh nidhghypt o Ghoyp
utpyuwt  ntwpmd G gpudh  ququpltiph  ntidhghypbtiph  gnidwpt £

Z def(v,a): G gpudh ntdhghyp vwhiwiymy b npybu pninp htwpwynp
veV(G)

6hoq Ynnuyhtt Gbpynuittiph hwdwywpuupiwt nEdhghpttiphg wqugnyip
def(G) = ming def (G, ): 2019 pywlwht dwypjuih, Uhpnudjuih b Mtyppnuywbh
Unnihg upugdty © phy  pwqiwynndwih  gpudbph nbdhghph  ytpht
qwhupuiui: u wouuputpnid upugyty L wyn quwhugpujuth jujugnd
Inhy tiptip Ynniwbh gpudbbiph, hbgwbu Gwle npnp |phy 4-Ynniwbh gpuddtiph
hwdwp: Uhtsh 10 qugqup wwpmbwlnn tptipynndwbh gpudbbph hwdwnp
wuuwgnigytiy £ Owl hhuynptqb, pup nph gpudbbiph ntidhghpp thnpp Jud
huwjwuwn £ gnwdh ququpdtnph putwyhi:
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B. /1. INPYHSIH

JEOUINT HEKOTOPBIX ITOJIHBIX TPEXIOJIBHBIX
N YETBIPEXJIOJIBHBIX T'PA®OB

Orobpaxkenne @ : E(G) — 1,...,t Ha3bIBaCTCS NPABUAbLHOU [-Packpackot
pebep rpada G, eciin UCIIOIB3YIOTCS BCE I[BETA W JJIst JIFOOBIX IBYX CMEXKHBIX
pebep e,¢’ € E(G) somonnsiercs o(e) # o(e’). Ecan o — npaBusibHas packpacka
pebep rpada G u v € V(G), TO CIEKTPOM BEPIIUHBI V, 0003HAYAEMBIM YePe3
S(v,at), Ha3bIBAETCSI MHOXKECTBO BCEX I[BETOB pebep, MHIMJIEHTHBIX BEpIIMHE
v. deguyumom packpacku & 6 eepwune v € V(G), obosnauaembim def(v, o),
HA3BIBAETCSI MUHUMAJIBHOE KOJMIECTBO IEJIBIX UUCE], KOTOPbIe HEOOXOINMO
J106aBUTH K MHOXKECTBY S(V, @), 9T00BI OHO 0O6pa30BbIBAIO HHTEpBA. leduyum
npasusvhot packpacku o 2paga G, obosuauaembiii def(G, o), onpesensiercs: Kak
cyMMma Z def(v, ). Jlepuuum epaga G, obo3naaaemsrii def(G), onpenensercs

veV(G)

caepytonum obpazom: def(G) = ming def(G, @), rye MurUMYM GepeTcs 10 BeeM
BOBMOXKHBIM TPABUJILHBIM packpackam pebep rpada G. B 2019 r. lasran,
Munacsia u IleTpocsin mostyqmin BepXHIOIO OIEHKY JePUIMTA TOJTHBIX MHOTO-
nosbHBIX TpadoB. B HacrosIeit paboTe 3Ta OlEHKA Y/IydIeHA JJIs MOJTHBIX
TPEXJIOJbHBIX TPadOB, & TaK¥Ke HEKOTOPBIX MTOJHBIX Y€ThIPEXI0JIBHBIX IpadoB.
Kponme Toro, a71st Bcex TpexI0abHBIX IpadoB, coaepKaiinx He 6osee 10 BepIuH,
JIOKA3aHO, 9TO UX JeUIUT He MPEBBIAET KOJIMIECTBA BepIuH rpada.



