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Introduction. The calculus of time scales was accomplished by Stefan Hilger
[1]. A time scale is an arbitrary nonempty closed subset of the real numbers. Let T
be a time scale, t1,#, € T with #; < 1, and an interval [t;,#,]T means the intersection
of the real interval with the given time scale. The major aim of the calculus of
time scales is to establish results in general, comprehensive, unified, and extended
forms. This hybrid theory is also widely applied on dynamic inequalities, see [2—5].
The basic ideas about time scale calculus are given in the monographs [6, 7].

We state here reverses of Callebaut’s and Rogers—Holder’s inequalities, see [8].
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where 8 € [0,1], B =min{l — 6,6} and y = max{1—0,0}.
If there exist constants m, M such that 0 < m < ﬁ <M < oo

8k
for any k € {1,2,...,n}, then we have that

2
n n n
Zwkflgzwkglz_zwksz(l % 5ZW g 21 O < y(M —m) (ZW&) ;
k=1 k=1 k=1

(2)
where Yy = max{l — 8,0}.
1 1
If p,g > 1 with — + — =1, then we have that
P q
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g L 11
P 4 AN R g\ 2
<2y Zwkfk Zwkgk Zwk Zwkfk Zwkgk )
k=1 k=1
3)

11 11
Whereﬁ:min{,}andy max{ }
P q P q

Preliminaries. First, we present a short introduction to a diamond-¢ derivative
as given in [9, 10].

Let T be a time scale and f(¢) be differentiable on T in the A and V senses.
Fort € T, the diamond- ¢ dynamic derivative f°*(¢) is defined by

e =affn+(1-a)f (), 0<a<l.

Thus f is diamond-¢ differentiable if and only if f is A and V differentiable.

The diamond-o derivative reduces to the standard A-derivative for a = 1,
or the standard V-derivative for o« = 0. It represents a weighted dynamic derivative
fora € (0,1).

The following definition is given in [10].

Lett,t € T and h: T — R. Then the diamond-« integral from #; to ¢ of /4 is

defined by
t t t
/h(s)oas _ oc/h(s)As+(1 - a)/h(s)Vs, 0<a<l,
I h 151

provided that there exist delta and nabla integrals of 4# on T.
The following well-known Young’s inequality holds:
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For ®,%¥ > 0 and § € [0, 1], we have

'Y < (1-8)D+ 8. 4)

Kittaneh and Manasrah [11, 12] provided a refinement and a reverse for Young
inequality as follows:

B (\/5—\/@)2 <(1-8)0+8¥— @' 0¥ < }'(\/5—\@)2’ )

where ®,¥ >0, § € [0,1], B =min{l — §,8} and y = max{1 —0,6}.

The following inequality is given in [8]. We observe that, if &,
¥ € [m,M] C (0,+c0), then ’\/5—\/‘?’ < v/M — \/m and by (5) we obtain the
following reverse of Young inequality

2
(1—6)CI>+6‘P—CI>1‘5lP5§y(\/A7I—\/%) . (6)

We also consider Kantorovich’s ratio defined by

The function K is decreasing on (0,1) and increasing on [1,4o0), K(h) > 1
1
forany 2 >0and K(h) =K <h> for any i > 0.

The following inequality is given in [13]. Let § € [0,1] and @,¥ > 0.
Then

(1—-8)®+8¥ < KY(L)D'0¥°, (7)

()
where 0 < L1 < g SL<eLl>1 and ¥y = max{1—5,8}.
The following inequality is given in [13]. Let 6 € [0,1] and ®,¥ > 0. Then

(1—8)®+8¥ < max{K"(l),K"(L)} &' °W¥° (8)

b
where 0 < [1 < v < L < oo, for some L, [ > 0 with LI > 1 and y = max{1 — 9,6}.

In this paper, it is assumed that all considerable integrals exist and are finite.
Main Results. Now, we give an extension of reverse Callebaut’s inequality on
time scales. Throughout the section, we assume that neither f =0 nor g = 0.

Theorem 1. Let w,f,g € C([t1,t2]1,R) be oq-integrable functions.
Let § € [0,1]. Then the following inequalities hold true:
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I 2
[/w G oag/rw lg(s oag(/'w@)f(g)g(g)oag”
/\w If(s) oag/rw lg(6)Pou s

— [ WOIFOPY Vg eas [ WOIIF6)P (P! oug

23 153 15} 2
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)
where B =min{l — 8,0} and y = max{l1 —§,0}.

f(e)1?
8(5)I?

f(D)?
l8(7)I?

Proof. Let ®(g) =

Then using (5), we have

and ¥(7) = for any ¢,7 € [t,52]r.

Q) @O, 6P
g <|g<g>| |g<r>|> U0 1r
LS@E (P (r@PY 0
INPGLE <|g<g>|2) <|g<r>|2) (o
GOLGAS
SY(|g<g>| |g<r>|>'

If we multiply inequality (10) by |g(¢)[*|g(7)|?, for any ¢,T € [t1,5]T,
then we get

B(7(6)Pls(®)P ~21(s(e) I (()|+ le(e) PL (D)
< (1=8)f (&) Ple(e) P+ 81(6) PLA(E) P = 7(6) P~ g0 P21 (e) P g (x) P2

<v(I£(9)P1e(m)* =21(6)g(9)lIf(D)e(D)] +e(S) PIF (D)) an
Multiplying (11) by |w(g)| and integrating with respect to ¢ from 7, to 1,
we obtain
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ﬁ(g(f)2 [WONIF(6)Peas =215 (e(x)] / WOII£()8(6) oa s
HI@PE [ (o) llgte)P o g)

< (1-8)lg(P [ WQIIF(6)Poas+8IF@)E [Iw(s)lg(s)Peas

12)

U@l P [ w(@lI£(6) P Dlg(e) P oas

<y<g<r>2 [WQIIF(6)Peas—21f(2)s(3)] / W(S)I£()e(s) oa s
HAE)R [ () llg(6) P oa g) .

Again, multiplying (12) by |w(7)| and integrating with respect to T from
11 to 1y, we obtain the desired inequality (9). O

In the following, we give another extension of reverse Callebaut’s inequality on
time scales.

Theorem 2. Let w,f,g € C([t1,t2]1,R) be oy-integrable functions.
1£(6)l < M < o0 on the set [t;,t]T. Let & € [0,1].

lg(c)| ~

Then the following inequality holds true:

/|w IIf(s) oag/|w ()P oas

= [ WO PIDIg(6) P ous / WP PP eas  (13)

4] 2
< (M ~m)’ ( J w©)lle()F o g) ,

where y = max{1—9,0}.

Assume further that 0 < m <
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Proof. Forany ¢, T € [t],h]T, it is clear that

QP FOR
"SR smE =M
FOF WP
slof ¥ =L

inequality (6), we have

Let () = forany g, 7 € [t1,52]r. Then using the

FOF | @) < ) -0 |f<r>|2) )
1— 14
(-8 o o g gop) SYMmmn 49
If we multiply inequality (14) by lg(¢)%|g(7) T € [t1,t2]T,

then we get
(1=8)I£(S)P (D) +81g(S)PIF (D) = I ()P g () o1 (7) ()P~

<YM —m)*[g(g)[g(7) .
(15)
Multiplying (15) by |w(¢)| and integrating with respect to ¢ from #; to t,, we obtain

(1=8)g(@) [ ()1 ()P ous + 3D [ w(Glle(e)F ous
~@PIE@P) [ ()P Vg(6) P ou g (16)

< Y(M—m)zlg(f)lz/IW(G)Ilg(G)IZOa G-

Again, multiplying (16) by |w(7)| and integrating with respect to T from
t1 to tp, we obtain the desired inequality (13). O

Now, we give an extension of reverse Cauchy—Schwarz’s inequality on time
scales.

Corollary 1. Let w,f,g € C([t1,12]T,R) be oq-integrable functions.

1£(9)
(3]

Assume further that 0 < m < < M < oo on the set [t1,t]T. Then the following

inequality holds true:

t t t 2
/IW(G)IIf(G)IZOaQ/IW(Q)Hg(G)IZOag— (/W(Q)f(G)g(G)Oa e‘)
f )

%M m) (/w e(s oag) .

A7)
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1
Proof. Putd = 3 in Theorem 2 and hence the result is obvious. O

Remark 1. We have the following:
(YLeta=1,T=Zt=1,6=n+1, f(k)=fr >0, glk) =g >0 and

n
w(k) =wi >0 forany k € {1,2,...,n} with Z wy = 1. Then inequality (9) reduces
k=1
to inequality (1).
(iLeta=1,T=Zti=1n=n+1, f(k)=fir >0, g(k) =gr >0 and
n
w(k) =wy >0 forany k € {1,2,...,m} with Z wi = 1. Then inequality (13) reduces

k=1
to inequality (2).

Now, we give an extension of reverse Rogers—Holder’s dynamic inequality.
Theorem 3. Let w,f,g € C([t1,t2]1,R) be oy-integrable functions.

1 1
If —+—=1withp > 1, then
P q

28 [ | [WOIF©Foas [w(6)lg@)lvous— [ IS 86l ous

1
2

1
2

S I—
-

x ( GGG g) ( [ w©llgs) g)
< (/W(g)f(g)”oa g) (/W<§)g(§)q<>a g)

~ [ W@l ()e(6) oas

1
P q

<2r| | [W@IA&)Ious [ m)llg@)lrous ~ [ Ino)IIF(©)IFle(s)lf ous

==
Q=
D=

x ( GG g) ( Jw©liss) o g> ,

11 11
whereﬁ:min{,}andy:max{,}.
P q P q

(18)
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1
Proof. Letd = —,
q

d(g) = WOy ) = WSl

QNGRS Jw©llg(@)7oas

r. Then using the inequality (5), we have

on the set [11,1]

p| QIO sl
[w@lf©roas [ Iw@)lis)roas

) w(6)I1/(5) 85I

J JW@IF6)F ous [mS)ls(6) 1 0as

1 QP 1 el
T
/|w GIRH: /|w (sl oas

19)
_ w(SIIF(S)llg(o)]

( GG g) ( [ w@llg(o)l7 o g)

| OGP | wOlsor
[w@lr©reas [ ws)lg6)leas

—2 w(S)ILf(6)I*lg(5)I?

J JW@lIf6)r ous [wS)ls(6) 1 ous
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Integrating (19) with respect to ¢ from #; to t,, we obtain the desired
inequality (18). O
Remark2. Leta=1,T=Zt=1t=n+1, f(k)=fi >0, g(k) =g >0
n
and w(k) = wy > 0 for any k € {1,2,...,n} with Z wy = 1. Then inequality (18)
k=1

reduces to inequality (3).

Now, we give another extension of reverse Rogers—Holder’s inequality on time
scales.

Theorem4. Letw, f,g € C([t1,2]T,R) be oq-integrable functions satisfying

15)
/\w(g)\ oq 6 = 1. Assume further that 0 < m < |f(g)] < M < o and
1

1 1

0<n<|g(g)| <N < oo on the set [t;,t]r. Let —+ — =1 with p > 1. Then the
P 4

following inequalities hold true:

q [5)

0< | [m@lrQIreas | | [wele@ieas | ~ [WE)Ir)s(e)leas

({8 (2) fmd )" )
X 7lw(g)llf(<;)|”<>ag p j|w(g)||g(g)|q<>ag :
[1 tl (20

)
where Y = max{ —, — o.
P 9q

Proof. Using the given conditions, for all ¢ € [t;,%,], we have
mP < |f(g)|P < MP and n? < |g(g)|? < N4,
which imply that

141

(%yg . HIK < <1;/>q

[ w©ligs)oas

1

and




COMPLEMENTS OF CLASSICAL AND DYNAMIC INEQUALITIES. ... 103

() (2)} <
JEQIHGIRY:

sl _ max{ (f‘nf) (N)} e

JEGIECIRT:

Therefore,

1
Using the inequality (6) for 6 = —,
q

N 1 S i
[w@lr©Ioas JEGIEGIR:
we get ! !
Loer 2(9)le

p 7 g -
[w@ls@Ireas [ WSlle(s)oas

1f(5)g(s)l

(jW(g)f(G)”oa g)}) (7W(€)8(€)q<>a g);
< (o { () (2) {2 ')

Multiplying (22) by |w(¢g)| and integrating with respect to ¢ from ¢#; to r,, we obtain

(22)

1—

1

JEGINGEGE:

(jW(g)f(g)poa C) (jW(g)g<g)qoa G) (23)
(o () () {2 G

This completes the proof of Theorem 4. O

P

Next, we give an extension of reverse Cauchy—Schwarz’s inequality on time
scales.
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Corollary 2. Letw, f,g € C([t1,t2]1,R) be og-integrable functions satisfy-

[5)
ing /|w(g)|<>a G = 1. Assume further that 0 < m < |f(¢)| <M < e and 0 <n <

n
|g(6)| <N < e on the set [t|,t2]1. Then the following inequalities hold true:

0= | [w@Ir©Poas | | [m@le@Pous) = [ ous

1 M N (m ny\?
<z |[maxq—,— —mln{—,—}
2 m n M'N

153 % l‘2. %
<\ [ wollr©Poas | | [Me)lis)Peas
N n
(24
Proof. Take p =g =2 in Theorem 4 and the result is obvious. [

Remark 3. Ler o =1, T=7Z t, =1, b =n+1, f(k) = fr >0,
g(k) = gx > 0 and w(k) = wy > 0 for any k € {1,2,...,n}. Then inequality (20)

reduces to inequality [5]
1 1

n (/1 |
0< <Z ka;f) <Z Wké’Z) — Y wifigr
k=1 k=1 k=1
M\5 /N\? 2N e
<rme (2)(3) o) G2 ()2
0 s/ .
< | Y wifl Y wig!
k=1 k=1

and inequality (24) reduces to inequality [S]

o P , L
0< (Y wifi Y wigi | — Y wifigk
k=1 k=1 k=1

1 M N . 2 e :
<3 ({3}l ) (E) ()

Now, we give another extension of reverse Rogers—Holder’s inequality on time
scales.

(26)

Theorem 5. Letw, f,g € C([t1,2]T,R) be oq-integrable functions satisfying

15)
/\w(g)\ o ¢ = 1. Assume further that 0 < m < |f(g)] < M < o and

n
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I 1
0<n<|g(g)] <N < oo on the set [t;,t]r. Let —+ — =1 with p > 1. Then the
P 4

( JGITGIRS g)

following inequality holds true:

( GG g)

1
4 q

(27)
<K7/ M P N q f
< () (5)) [Islretsleas
wherej/:max{l,l}.
P q
Proof. Using the given conditions, for all ¢ € [t1,#,|T, we have
mP <|f(g))P <MP and n? <|g(g)|? <N,
which imply that
P
(£) < SO < <M> (28)
M o) m
GG
n
e ()l N\
n\4 g g
(N> < 5 < n) . (29)
[w©iets)oas
Therefore,
y JEGIICIR:
KMMNH | w@llfE)l i
m) \n “ | EGIRGE
GG (30

<) ()

Using the inequality (7) for 6 = 1,
q

p
OIDP g

®(g) =

_ / WIS ou s a1 <M) (N)

$)= fz m n
[w©ligs)roas
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we get

Wil 1 Iwe)lis(o)l

[5) q 5]
[w@ls@Iroas [ mSllel6)oas

S

€29

w(SIlF(S)g(s)] .

( GG g) ( [ w©)lle()lea g)

Integrating (31) with respect to ¢ from #; to #,, we obtain

< K"(L)

JEGIGEGIE:
1 <KY(L) d

( [ W@l o g) ( GG g)

This completes the proof of Theorem 5. O

(32)

1
q

Next, we give an extension of reverse Cauchy—Schwarz’s inequality on time
scales.

Corollary 3. Letw, f,g € C([t1,t2]1,R) be on-integrable functions satisfy-
15}

ing / w(g)|oa ¢ = 1. Assume further that 0 <m < |f(g)| <M < oo and 0 <n <

1
1g(¢)| <N < o on the set [ty,t2]1. Then the following inequality holds true:

( IEGIGIRY g) ( JEGIIERS g)
2\ %
((T) ) [ @786 s

Proof. Take p =g =2 in Theorem 5 and the result is obvious. [

Remark 4. Ler o =1, T=7Z t, =1, h=n+1, f(k) = fir >0,
g(k) = gk > 0 and w(k) = wy > 0 for any k € {1,2,...,n}. Then inequality (27)
reduces to inequality [15]

1

2

(33)

D=

<K

1 1

n P P P AL
<Z ka;f) P (Z Wkgz> 1 SK’/((Z) (Z) ) Y wefigr, (34)
k=1 k=1

~
Il
_
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and, in particular, inequality (33) reduces to inequality

1 1 1
n 2 n 2 _

(Zmﬁ) (ngi) <K2 ((fnv ) ) Y wifigi (35)
k=1 k=1

Now, we give another extension of reverse Rogers—Ho6lder’s dynamic inequality.

Theorem 6. Let w,u,uz, f,g € C([t1,t2]1,R) be og-integrable functions.
Assume further that 0 <m < |f(¢)| <M < o and 0 < n <|g(g)| <N < o on the set

[t1,02]T. Let —+ — = 1 with p > 1. Then the following inequalities hold true:
P 4q

( [ ()l ()7(6) g) ( [w()lla()s(6)] g)

< ( / W@l (IIF(6)P o g) ( / WSl l12(S)] g)

%) 15}
36
[w@lm@)oas | | [w@l@liee)roas | 7
e w7 () (5
mP n4
(/w s Oag) (/w IIAE ><>ag>
where ¥ = max{ }
P q
Proof. Forany ¢, T € [t],h]T, it is clear that
() MP 37)

Na = Jg(r)d = nt
Let

N4 MP
for any 6,7 € [t1,t2]T, | = — and L = - Then using inequalities (4) and (8),
m n

respectively, we have

17 (S)llg(o)] < ;!f(G)!” + ;Ig(f)\"

<max (it (20} 0 (M) )l eto)

(38)
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Multiplying by |w(g)||u1(g)| and integrating (38) with respect to ¢ from #; to
1, we obtain

[ &)l (€)f (@l as | le(@)

<5 | [ elm@s@rons |+ | [inlmielons |l

<man i (20) (M) ] [ W@ la©)1oas | 566

Multiplying by |w(7)||u2(7)| and integrating (39) with respect to 7 from #; to
1y, we obtain the desired inequality (36). 0

Received 07.02.2025
Reviewed 17.10.2025
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UNRUUUUWY QbACPL cUSNUL UUSPL

AUUUUUL BJd HPLUUPY WLNUMUUUCNHE-8SNAFLLEND LOUWSNFULED,
neALL JBLLAFOJEL BL SUUUWLUUUSPL UWUSSUALEMD SUSJUNUb JrU

Wu htpugnpujut hnnuodmd  dtbp Ghpuyugbnud Ghp  Yuybipngh,
Nenotipu Nnintiph L Unph-Cywpgh wihwjwuwpnipnibitph hwjunupa dh pubh
pinhwipugmuittp dwdwiwuwhtt Jwupypupbbtph ypw 8niigh wthwjwuwpni-
pybbtph hwwnwpamdibbph dhongny: Wprymibpbbph nhulpby, wipbnhung,
pyulypuwyhtt ppupptpuybtpp dhuynpymd U ponpuytynid G0 dwdwbwjuyht
dwuppwpbtinh Ypu:

MYXAMMA/ JZKUBPUJI ITAXAB CAXUP

JOIIOJIHEHNA KJTACCUYECKUX N JUHAMMWYECKNX HEPABEHCTB,
AHAJIN3NPOBAHBIX BO BPEMEHHBIX MACIITABAX

B nmanHOI mcciemoBaTebCKOW CTAThe MBI IIPEJCTABIISIEM HECKOJIBKO
obobrennit obpaTHBIX HepaBeHCTB Kaanbo, Pomxkepca-Xomamepa m Kormm-
[IBapia 4vepes obparHble HepaBeHcTBa FHOHra BO BpEeMEHHBIX MAaCIITabaX.
JluckpeTHble, HEITPEPBIBHBIE M KBAHTOBBIE BEPCUH PE3YJIHLTATOB YHUMDUIINPOBAHBI
U PACHIIPEHLI BO BPEMEHHLIX MacllTabax.
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