PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2010, № 3, p. 35–39

Mathematics

A REMARK ON STRICT UNIFORM ALGEBRAS

M. I. KARAKHANYAN^{*}, T. M. KHUDOYAN

Chair of Differential Equations, YSU

We study some properties of algebras of bounded continuous functions on a completely regular space, these algebras being equipped with the strong topology defined by of family multiplication operators (strict uniform algebras). We prove an analog of a theorem due to M. Sheinberg for strict uniform algebras (see [1-3]).

Keywords: Strict uniform algebra, amenable algebra, bimodule.

Let Ω be a completely regular Hausdorff space, and $C_*(\Omega)$ be the algebra of all bounded complex-valued continuous functions on Ω . If we equip the space $C_*(\Omega)$ with the topology induced by sup-norm $||f||_{\infty} = \sup\{|f(x)|: x \in \Omega\}$, then we obtain a commutative Banach algebra $C_b(\Omega)$ with the property that the maximal ideals space of which is $M_{C_b(\Omega)} = \beta \Omega$, where $\beta \Omega$ is the Stone-Chekh compactification for Ω . Recall that we call *the remainder* of Ω in the extension $\beta \Omega$ the space $\beta \Omega \setminus \Omega$ with the topology induced from $\beta \Omega$ (see [4–5]). Let $\mathcal{K}(\Omega)$ be the set of all compacts $Q \subset \beta \Omega \setminus \Omega$ and for $Q \in \mathcal{K}(\Omega)$ denote

$$C_{O} = C_{O}(\Omega) = \{ f \in C_{b}(\Omega) : \hat{f} \mid_{O} = 0 \},\$$

where \hat{f} is the Gelfand transform of f. Then $C_Q(\Omega)$ is Banach algebra with bounded approximative identity, and $C_b(\Omega)$ is C_Q -module. In the case when $Q_1, Q_2 \in \mathcal{K}(\Omega)$ and $Q_1 \subset Q_2$, we have $C_{Q_1}(\Omega) \supset C_{Q_2}(\Omega)$.

Note that the remainder $\beta \Omega \setminus \Omega$ has a rather complicated structure, because, for instance, in every point of the remainder the first axiom of countability fails to hold. For $Q \in \mathcal{K}(\Omega)$ denote $\Omega_Q = \beta \Omega \setminus Q$. All the Banach algebras $C_Q(\Omega)$ are proper closed ideals in the algebra $C_b(\Omega)$ for every $Q \in \mathcal{K}(\Omega)$.

Every ideal $C_{\mathcal{Q}}(\Omega)$ defines a family of seminorms $\{P_g\}_{g \in C_{\mathcal{Q}}(\Omega)}$ on $C_b(\Omega)$, with $P_g(f) = \|T_g f\|_{\infty}$, where $T_g : C_b(\Omega) \to C_b(\Omega)$ is the multiplicative operator

^{*} E-mail: m_karakhanyan@yahoo.com

 $T_g f = gf$. The topology on $C_b(\Omega)$, defined by this family of seminorms, we will call the β_Q -topology, and we will denote by $C(\Omega)_{\beta_Q}$ the algebra $C_b(\Omega)$ endowed with the β_Q -topology (cf. [6–9]). It is easy to see that β_Q -topology is Hausdorff topology.

We will say that a closed in the β_Q -topology subalgebra \mathcal{A} of algebra $C(\Omega)_{\beta_Q}$ is β_Q -uniform, if it contains constants and separates the points of Ω_Q (i.e. for any $x_1, x_2 \in \Omega_Q$ with $x_1 \neq x_2$, there exists $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$).

Note that in the case of completely regular space Ω , the ideal $C_0(\Omega)$ can turn out to be unusable, because of its triviality.

It should be noted here that β -topology of Buck on $C_*(\Omega)$ is the inductive limit $Lind(\beta_0)$ of β_0 -topologies for $Q \in \mathcal{K}(\Omega)$.

If $Q \in \mathcal{K}(\Omega)$, then $\Omega_Q = \beta \Omega \setminus Q$ is locally-compact Hausdorff space and in that case one can introduce a strong topology on $C_*(\Omega_Q)$ using the ideal $C_0(\Omega_Q)$, which we will denote by $C(\Omega_Q)_\beta$.

Since $\Omega \subset \Omega_Q \subset \beta \Omega$, then the space of maximal ideals $M_{C_k(\Omega_Q)} = \beta(\Omega_Q) = \beta(\Omega)$.

It can be easily seen, that the algebra $C(\Omega)_{\beta_Q}$ is topologically isomorphic to the algebra $C(\Omega_Q)_{\beta}$ and hence the following assertions hold (cf. [2, 3]):

Theorem 1.

a) For any $Q \in \mathcal{K}(\Omega)$ the algebra $C(\Omega)_{\beta_Q}$ is β_Q -complete locally convex algebra;

b) $C_0(\Omega_Q) = C_Q(\Omega)$ is everywhere dense in $C(\Omega)_{\beta_0}$;

c) the space of all β_Q -continuous linear functionals on $C(\Omega)_{\beta_Q}$ is isomorphic to the space $M(\Omega_Q)$ of all finite regular measures on Ω_Q .

Proposition 1.

a) The uniform topology and β_Q -topology on $C_0(U) = \{f \in C_b(\Omega) : f \mid_{Q \cup U} = 0\}$ coincide for every open set U in Ω_Q such that $\overline{U} \subset \Omega_Q$.

b) The linear space generated by $\{C_0(U_i)\}_{i \in I}$, where $\{U_i\}_{i \in I}$ is the subset of the set of all open subsets in Ω_Q such that $U_i \subset \overline{U_i} \subset \Omega_Q$, is β_Q -dense in $C(\Omega_Q)_\beta \simeq C(\Omega)_{\beta_Q}$.

Let A be a β_Q -uniform algebra on Ω . Since the algebra $C_b(\Omega_Q)$ is complete in the β_Q -topology, then A is a closed subalgebra of the algebra $C_b(\Omega_Q)$ in the sup-norm. Hence, we will denote the algebra A in the sup-norm of $C_b(\Omega_Q)$ by $A_{b,Q}$.

Suppose that the Banach space X is $A_{b,Q}$ -bimodule. Recall that X is β_Q -complete $A_{b,Q}$ -bimodule, if from the fact that the net $\{f_i\}_{i\in I}$ in A β_Q -converges to f_0 it follows that for any $x \in X$ the nets $\{f_ix\}_{i\in I}$ and $\{xf_i\}_{i\in I}$ converge to f_0x and xf_0 respectively in the norm of the Banach space X.

The bimodular operation on X defines a bimodular operation on the dual space X^* of X

$$(f\varphi)(x) = \varphi(xf), \quad (\varphi f)(x) = \varphi(fx)$$

for all $f \in A$, $x \in X$, $\varphi \in X^*$.

Note also that linear functional $\varphi \in X^*$ is called *weak*^{*} β_Q -*continuous*, if from the β_Q -convergence in A of the net $\{f_i\}_{i \in I}$ to f_0 it follows that the net of functionals $\{f_i\varphi\}_{i \in I}$ and $\{\varphi f_i\}_{i \in I}$ converge in the weak topology to $f_0\varphi$ and φf_0 respectively.

As in ([2, 3]) we define the abelian group $Z^1_{\beta_Q}(A, X^*)$ of all β_Q -continuous in the weak^{*} topology differentiations $D: A \to X^*$ (i.e. if the net $\{f_i\}_{i \in I}$ in $A \ \beta_Q$ converges to f_0 , then the net of functionals $\{D(f_i)\}_{i \in I}$ converges to $D(f_0)$ in the weak^{*} topology of X^*). We denote by $Z^1_*(A, X^*)$ the abelian group of all continuous in the weak^{*} topology differentiations $D: A_{b,Q} \to X^*$. For every $Q \in \mathcal{K}(\Omega), Z^1_{\beta_Q}(A, X^*)$ is a subgroup of $Z^1(A, X^*)$.

Following B. Johnson [10] one calls a Banach algebra $A_{b,Q}$ to be *amenable*, if the group $H^1(A, X^*) = Z^1(A, X^*) / B^1(A, X^*)$ is trivial for every $A_{b,Q}$ -bimodule X, where $B^1(A, X^*)$ is the abelian group, consisting of all inner differentiations $\delta_{\varphi}(a) = a\varphi - \varphi a$. Analogously, the algebra A is called β_Q -amenable, if the group $H^1_{\beta_Q}(A, X^*) = Z^1_{\beta_Q}(A, X^*) / B^1_{\beta_Q}(A, X^*)$ is trivial for any β_Q -complete $A_{b,Q}$ bimodule X.

Clearly, if A is an amenable algebra, then A is β_Q -amenable (i.e. from the condition $H^1(A, X^*) = 0$ for any $A_{b,Q}$ -bimodule X it follows that $H^1_{\beta_Q}(A, X^*) = 0$ for any β_Q -complete $A_{b,Q}$ -bimodule X).

For the rest we need two β_O -complete $A_{b,O}$ -bimodules.

Proposition 2. Let $\mu \in M(\Omega_Q)$. Then there exists a measure $v \in M(\Omega_Q)$ and a function $g \in C_0(\Omega_Q)$ such that $\mu = g^* v$, i.e. $\int f d\mu = \int f g dv$ for all $f \in C_0(\Omega_Q)$ ($\simeq C_Q(\Omega)$).

Theorem 2. For any positive measure $\mu \in M(\Omega_Q)$ the Hilbert space $L^2(\Omega_Q, \mu)$ is β_Q -complete Banach $A_{b,Q}$ -bimodule.

The proof can be done in the same manner as of the Lemma 4 in [3].

Let $B_Q = BL(L^2(\Omega_Q, \mu))$ be the algebra of all bounded linear operators in $L^2(\Omega_Q, \mu)$, and $J_{1,Q}$ be the ideal of nuclear operators, which is Banach space in the nuclear norm $||T||_1 = \text{tr}|T|$ ([11]). $J_{1,Q}$ becomes Banach $A_{b,Q}$ -bimodule in the case $f \cdot T \cdot g = T_f \cdot T \cdot T_g$ for all $f, g \in A_{b,Q}$ and $T \in J_{1,Q}$.

It is easy to see (c.f. [11]), that for any $T \in J_{1,Q}$ there exists a positive function $g \in C_0(\Omega_Q)$ such that $T_{g^{-1}} \cdot T \in J_{1,Q}$.

Theorem 3. The Banach space $J_{1,Q}$ is β_Q -complete $A_{b,Q}$ -bimodule.

It is well known, that the algebra B_Q is isometrically isomorphic, as a Banach space, to the dual space $J_{1,Q}^*$ (c.f. [9]). This leads to the following result.

Theorem 4. The Banach $A_{b,Q}$ -bimodule B_Q is isometrically isomorphic as a $A_{b,Q}$ -bimodule to the β_Q -complete in the weak^{*} topology Banach $A_{b,Q}$ bimodule $J_{1,Q}^*$.

Using Lemma 7 form [3], one can analogously prove the following

Proposition 3. Let A be β_Q -complete uniform algebra. If $A \neq C(\Omega)_{\beta_Q}$,

then $H^1_{\beta_0}(A, X^*) \neq 0$ for some β_Q -complete Banach $A_{b,Q}$ -bimodule X.

From this Proposition we get the following result, which is the main result of the paper.

Theorem 5. Let A be β_Q -uniform algebra. Then the following conditions are equivalent:

a) $A = C(\Omega)_{\beta_{\Omega}};$

b) A is amenable algebra;

c) A is β_0 -amenable algebra.

Now consider the situation, when Ω is completely regular Hausdorff space. In this case, as has been mentioned above, one can introduce β -topology in the algebra $C_*(\Omega)$ as the inductive limit $\operatorname{Lind}_{\mathcal{Q}}(\beta_{\mathcal{Q}})$ of $\beta_{\mathcal{Q}}$ -topologies, where $\mathcal{Q} \in \mathcal{K}(\Omega)$, which we will denote again by $C(\Omega)_{\beta}$. Then by β -uniform algebra A over Ω we will mean (as above) a closed in the β -topology subalgebra in the algebra $C(\Omega)_{\beta}$, which contains constants and separates the points of Ω .

It is easy to see, that β -topology on A is the inductive limit $\operatorname{Lind}(\beta_Q)$ of β_Q -topologies of algebras A_{β_Q} , which are β_Q -uniform subalgebras of algebras $C(\Omega)_{\beta_Q}$ respectively.

In the light of the obtained results, we can formulate the following results for completely regular Hausdorff space Ω .

Theorem 6.

a) The algebra $C(\Omega)_{\beta}$ is β -complete locally convex algebra;

b) the space of all β -continuous linear functionals on $C(\Omega)_{\beta}$ is isomorphic to the space $M(\Omega)$ of all finite regular measures on Ω .

Theorem 7. Let A be β -uniform subalgebra of $C(\Omega)_{\beta}$. Then the following conditions are equivalent:

a) $A = C(\Omega)_{\beta}$;

b) A is amenable algebra.

In the case, when Ω is a compact, we get the Theorem of M. Sheinberg from [1].

Remark. Note that *null-set* is a set of the form $f^{-1}(0)$ with $f \in C_*(\Omega)$. Let $\mathcal{Z}(\Omega)$ is the set of all null-sets $Z \in \beta \Omega \setminus \Omega$. If $Z \in \mathcal{Z}(\Omega)$, then $\beta \Omega \setminus Z$ is σ -compact and locally-compact space and, in the light of Theorem 2.6 from [12], in $C_*(\beta \Omega \setminus Z)$ the strong topology coincides with the strong topology of Mackey (i.e. strong space of Mackey). It follows that $C(\beta \Omega \setminus Z)_{\beta}$ is $C(\Omega)_{\beta_Z}$. Hence all the above idealogy works also for β_Z -uniform algebras.

Note that in the algebra $C_*(\Omega)$ one can introduce also the β_1 -topology as the inductive limit $\operatorname{Lind}_Z(\beta_Z)$ of β_Z -topologies, where $Z \in \mathcal{Z}(\Omega)$, which we will denote by $C(\Omega)_{\beta_1}$. This β_1 -topology, as well as β -topology, is locally convex, Hausdorff and $\beta \leq \beta_1 \leq \|\cdot\|$. For β_1 -uniform algebras over Ω the analogues of

Theorem 6 and Theorem 7 are true.

Received 05.09.2009

REFERENCES

- 1. Sheinberg M.V. Uspekhi Mat. Nauk, 1977, v. 32, № 5 (197), p. 203–204 (in Russian).
- Karakhanyan M.I., Khor'kova T.A. Funktsional. Anal. i Prilozhen., 2009, v. 43, № 1, p. 85– 87. Translation in Funct. Anal. Appl., 2009, v. 43, № 1, p. 69–71 (in Russian).
- 3. Karakhanyan M.I., Khor'kova T.A. Sibirsk. Mat. Zh., 2009, v. 50, № 1, p. 96–106. Translation in Sib. Math. J., 2009, v. 50, № 1, p. 77–85 (in Russian).
- Gelfand I.M., Raikov D.A., Shilov G.E. Commutative Normed Rings. M.: Izd. Fiz.-Mat. Lit., 1960 (in Russian).
- Arkhangelskii A.V., Ponomarev V.I. Fundamentals of General Topology in Problems and Exercise. M.: Nauka, 1974 (in Russian).
- 6. Buck R.C. Michigan Math. J., 1958, v. 5, № 2, p. 95–104.
- 7. Sentilles F.D. Trans. Amer. Math. Soc., 1972, v. 168, p. 311-336.
- 8. Giles R. Trans. Amer. Math. Soc., 1971, v. 161, p. 467-474.
- 9. Glicksberg I. Proc. Amer. Math. Soc., 1963, v. 14, p. 329-333.
- 10. Johnson B.E. Memoirs of the American Mathematical Society, № 127. American Mathematical Society. Providence, R.I., 1972, 96 p.
- 11. Reed M., Simon B. Methods of modern mathematical physics. V. 1. New York, London: Functional Analysis Acad. Press, 1972.
- 12. Conway J.B. Trans. Amer. Math. Soc., 1967, v. 126, p. 474-486.

Մ. Ի. Կարախանյան, Տ. Մ. Խուդոյան

Դիտողություն խիստ հավասարաչափ հանրահաշիվների վերաբերյալ

Աշխատանքում ուսումնասիրվում են որոշ հատկություններ լիովին ռեգուլյար (կանոնավոր) տարածության վրա որոշված սահմանափակ անընդհատ ֆունկցիաների մի հանրահաշվի, որում մտցված է բազմապատկման օպերատորների ընտանիքով առաջացած խիստ հավասարաչափ տոպոլոգիա։ Ապացուցվում է Մ. Շեյնբերգի թեորեմը խիստ հավասարաչափ հանրահաշիվների համար։

М. И. Караханян, Т. М. Худоян.

Замечания о строго равномерных алгебрах

В статье изучаются некоторые свойства алгебры ограниченных непрерывных функций на вполне регулярном пространстве, в которой введена строгая равномерная топология, порожденная семейством операторов умножения. Доказан аналог теоремы М. Шейнберга для строго равномерных алгебр.