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We study some properties of algebras of bounded continuous functions on a 
completely regular space, these algebras being equipped with the strong         
topology defined by of family multiplication operators (strict uniform algebras). 
We prove an analog of a theorem due to M. Sheinberg for strict uniform algebras 
(see [1–3]).  
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Let   be a completely regular Hausdorff space, and *( )C   be the algebra 
of all bounded complex-valued continuous functions on  . If we equip the space 

*( )C   with the topology induced by sup-norm = sup{| ( ) |: }f f x x 


 , then 
we obtain a commutative Banach algebra ( )bC   with the property that the 
maximal ideals space of which is ( ) =Cb

M   , where   is the Stone-Chekh 

compactification for  . Recall that we call the remainder of   in the extension 
  the space \   with the topology induced from   (see [4–5]). Let 

( )  be the set of all compacts \Q    and for ( )Q   denote  
ˆ= ( ) = { ( ) : | = 0},Q Q b QC C f C f   

where f̂  is the Gelfand transform of f . Then ( )QC   is Banach algebra with 
bounded approximative identity, and ( )bC   is QC -module. In the case when 

1 2, ( )Q Q   and 1 2Q Q , we have 
1 2
( ) ( )Q QC C  . 

Note that the remainder \   has a rather complicated structure, because, 
for instance, in every point of the remainder the first axiom of countability fails to 
hold. For ( )Q   denote = \Q Q  . All the Banach algebras ( )QC   are 
proper closed ideals in the algebra ( )bC   for every ( )Q  . 

Every ideal ( )QC   defines a family of seminorms ( ){ }
Q

g g CP   on ( )bC  , 

with ( ) =g gP f T f


, where : ( ) ( )g b bT C C   is the multiplicative operator 
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=gT f gf . The topology on ( )bC  , defined by this family of seminorms, we will 
call the Q -topology, and we will denote by ( )

Q
C   the algebra ( )bC   endowed 

with the Q -topology (cf. [6–9]). It is easy to see that Q -topology is Hausdorff 
topology. 

We will say that a closed in the Q -topology subalgebra   of algebra 
( )

Q
C   is Q -uniform, if it contains constants and separates the points of Q  (i.e. 

for any 1 2, Qx x   with 1 2x x , there exists f   such that 1 2( ) ( )f x f x ). 
Note that in the case of completely regular space  , the ideal 0 ( )C   can 

turn out to be unusable, because of its triviality. 
It should be noted here that  -topology of Buck on *( )C   is the inductive 

limit ( )QLind   of Q -topologies for ( )Q  . 
If ( )Q  , then = \Q Q   is locally-compact Hausdorff space and in 

that case one can introduce a strong topology on * ( )QC   using the ideal 0 ( )QC  , 

which we will denote by ( )QC  . 

Since Q    , then the space of maximal ideals 

( ) = ( ) = ( )
b QC QM      . 

It can be easily seen, that the algebra ( )
Q

C   is topologically isomorphic to 

the algebra ( )QC   and hence the following assertions hold (cf. [2, 3]): 
T h eor e m 1 .   
a)  For any ( )Q   the algebra ( )

Q
C   is Q -complete locally convex 

algebra;  
 b) 0( ) = ( )Q QC C   is everywhere dense in ( )

Q
C  ;  

 c) the space of all Q -continuous linear functionals on ( )
Q

C   is 

isomorphic to the space ( )QM   of all finite regular measures on Q .  
Proposition 1.  
a) The uniform topology and Q -topology on 0 ( )C U   

\{ ( ) : | = 0}b Uf C f    coincide for every open set U  in Q  such that QU  .  
 b) The linear space generated by 0{ ( )}i i IC U  , where { }i i IU   is the subset of 

the set of all open subsets in Q  such that i i QU U   , is Q -dense in 
( ) ( )

QQC C   .  

Let A be a Q -uniform algebra on  . Since the algebra ( )b QC   is comple-
te in the Q -topology, then A is a closed subalgebra of the algebra ( )b QC   in the 

sup-norm. Hence, we will denote the algebra A in the sup-norm of ( )b QC   by ,b QA . 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2010, № 3, p. 35–39.  
  

37

Suppose that the Banach space X  is ,b QA -bimodule. Recall that X  is     

Q -complete ,b QA -bimodule, if from the fact that the net { }i i If   in A               

Q -converges to 0f  it follows that for any x X  the nets { }i i If x   and { }i i Ixf   
converge to 0f x  and 0xf  respectively in the norm of the Banach space X . 

The bimodular operation on X  defines a bimodular operation on the dual 
space *X  of X   

( )( ) = ( ), ( )( ) = ( )f x xf f x fx     
for all f A , x X , *X . 

Note also that linear functional *X  is called weak* Q -continuous, if 
from the Q -convergence in A  of the net { }i i If   to 0f  it follows that the net of 
functionals { }i i If    and { }i i If   converge in the weak topology to 0f   and 0f  
respectively. 

As in ([2, 3]) we define the abelian group 1 *( , )
Q

Z A X  of all Q -continuous 

in the weak* topology differentiations *:D A X  (i.e. if the net { }i i If   in A  Q -
converges to 0f , then the net of functionals { ( )}i i ID f   converges to 0( )D f  in the 
weak* topology of *X ). We denote by 1 *

* ( , )Z A X  the abelian group of all 
continuous in the weak* topology differentiations *

,: b QD A X . For every 

( )Q  , 1 *( , )
Q

Z A X  is a subgroup of 1 *( , )Z A X .  

Following B. Johnson [10] one calls a Banach algebra ,b QA  to be amenable, 

if the group 1 * 1 * 1 *( , ) = ( , ) / ( , )H A X Z A X B A X  is trivial for every ,b QA -bimodule 

X , where 1 *( , )B A X  is the abelian group, consisting of all inner differentiations 
( ) =a a a   . Analogously, the algebra A  is called Q -amenable, if the    

group 1 * 1 * 1 *( , ) = ( , ) / ( , )
Q Q Q

H A X Z A X B A X    is trivial for any Q -complete ,b QA -

bimodule X . 
Clearly, if A  is an amenable algebra, then A  is Q -amenable (i.e. from     

the condition 1 *( , ) = 0H A X  for any ,b QA -bimodule X  it follows that 
1 *( , ) = 0

Q
H A X  for any Q -complete ,b QA -bimodule X ). 

For the rest we need two Q -complete ,b QA -bimodules. 
Proposition 2.  Let ( )QM  . Then there exists a measure ( )QM   

and a function 0 ( )Qg C   such that *= g  , i.e. =fd fgd    for all 

0( )Qf C   ( ( )QC  ).  
T h eor e m  2 .   For any positive measure ( )QM   the Hilbert space 

2 ( , )QL    is Q -complete Banach ,b QA -bimodule.  
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The proof can be done in the same manner as of the Lemma 4 in [3]. 
Let 2= ( ( , ))Q QB BL L    be the algebra of all bounded linear operators in 

2 ( , )QL   , and 1,QJ  be the ideal of nuclear operators, which is Banach space in 

the nuclear norm 1 trT T  ([11]). 1,QJ  becomes Banach ,b QA -bimodule in the 
case = f gf T g T T T     for all ,, b Qf g A  and 1,QT J . 

It is easy to see (c.f. [11]), that for any 1,QT J  there exists a positive 

function 0( )Qg C   such that 1 1,QgT T J   . 

T h eor e m 3 .   The Banach space 1,QJ  is Q -complete ,b QA -bimodule.  

It is well known, that the algebra QB  is isometrically isomorphic, as a 

Banach space, to the dual space *
1,QJ  (c.f. [9]). This leads to the following result. 

T h eor e m 4 .   The Banach ,b QA -bimodule QB  is isometrically isomorphic 
as a ,b QA -bimodule to the Q -complete in the weak* topology Banach ,b QA -

bimodule *
1,QJ .  

Using Lemma 7 form [3], one can analogously prove the following 
Proposition 3.  Let A  be Q -complete uniform algebra. If ( )

Q
A C  , 

then 1 *( , ) 0
Q

H A X   for some Q -complete Banach ,b QA -bimodule X .  

From this Proposition we get the following result, which is the main result of 
the paper. 

T h eor e m 5 .  Let A  be Q -uniform algebra. Then the following 
conditions are equivalent:   

a) = ( )
Q

A C  ;  

b) A  is amenable algebra;  
c) A  is Q -amenable algebra.  
Now consider the situation, when   is completely regular Hausdorff space. 

In this case, as has been mentioned above, one can introduce  -topology in the 
algebra *( )C   as the inductive limit ( )LindQ Q  of Q -topologies, where 

( )Q  , which we will denote again by ( )C  . Then by  -uniform algebra 
A  over   we will mean (as above) a closed in the  -topology subalgebra in the 

algebra ( )C  , which contains constants and separates the points of  . 

It is easy to see, that  -topology on A  is the inductive limit  Lind Q  of 

Q -topologies of algebras 
Q

A , which are Q -uniform subalgebras of algebras 

( )
Q

C   respectively. 

In the light of the obtained results, we can formulate the following results for 
completely regular Hausdorff space  . 
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T h eor e m 6 .    
a) The algebra ( )C   is  -complete locally convex algebra;  
b) the space of all  -continuous linear functionals on ( )C   is isomorphic 

to the space ( )M   of all finite regular measures on  .  
T h eor e m 7 .   Let A  be  -uniform subalgebra of ( )C  . Then the 

following conditions are equivalent:   
a) = ( )A C  ;  
b) A  is amenable algebra.  
In the case, when   is a compact, we get the Theorem of M. Sheinberg 

from [1]. 
Remark. Note that null-set is a set of the form 1(0)f   with *( )f C  . Let 

( )  is the set of all null-sets \Z   . If ( )Z  , then \ Z  is       
 -compact and locally-compact space and, in the light of Theorem 2.6 from [12], 
in *( \ )C Z  the strong topology coincides with the strong topology of Mackey 
(i.e. strong space of Mackey). It follows that ( \ )C Z   is ( )

Z
C  . Hence all 

the above idealogy works also for Z -uniform algebras. 
Note that in the algebra *( )C   one can introduce also the 1 -topology as 

the inductive limit ( )LindZ Z  of Z -topologies, where ( )Z  , which we will 
denote by 

1
( )C  . This 1 -topology, as well as  -topology, is locally convex, 

Hausdorff and 1    . For 1 -uniform algebras over   the analogues of 
Theorem 6 and Theorem 7 are true. 
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Մ. Ի. Կարախանյան, Տ. Մ. Խուդոյան 
 

Դիտողություն խիստ հավասարաչափ հանրահաշիվների վերաբերյալ 
 
Աշխատանքում ուսումնասիրվում են որոշ հատկություններ լիովին ռեգուլյար 
(կանոնավոր) տարածության վրա որոշված սահմանափակ անընդհատ 
ֆունկցիաների մի հանրահաշվի, որում մտցված է բազմապատկման 
օպերատորների ընտանիքով առաջացած խիստ հավասարաչափ տոպոլոգիա: 
Ապացուցվում է Մ. Շեյնբերգի թեորեմը խիստ հավասարաչափ 
հանրահաշիվների համար:  
 
 

М. И. Караханян,  Т. М.   Худоян. 
 

Замечания  о  строго  равномерных  алгебрах 
 
В статье изучаются некоторые свойства алгебры ограниченных непре-

рывных функций на вполне регулярном пространстве, в которой введена 
строгая равномерная топология, порожденная семейством операторов умноже-
ния. Доказан аналог теоремы М. Шейнберга для строго равномерных алгебр. 
 


