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Preliminaries. Let H  be a separable Hilbert space. We will denote by 
 BL H  the Banach algebra of all bounded linear operators acting in the space H , 

and let J  be the ideal of all compact operators acting in H . For operator 
 A BL H  we will denote by A  the unique nonnegative square root of the opera-

tor *A A . It is obvious that the compactness of one of the operators *, ,A A A A  
implies the compactness of remaining two operators. Let A J . As A  is com-
pact, self-adjoint and nonnegative, its nonzero eigenvalues can be rearranged in 
decreasing order. We will denote by  js A  the j -th eigenvalue of the operator A  

(note that each eigenvalue is counted with multiplicity). Numbers  js A  are called 

the singular numbers of the operator A  (see [1, 2]). For  1,p   we will denote 

by pJ  the set of all operators A J , satisfying to the condition  
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Then  the formula 
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defines a norm in pJ  and with respect to this norm pJ  is a separable Banach 

space. pJ  is also two-sided ideal of  BL H  and has the following property of 

symmetry: for pA J  we have *
pA J  and *

pp
A A  (see [1]). Clearly, all the 

propositions about  1pJ p    are true also for J . Elements of 1J  are called 
nuclear operators. 
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Let’s note also the following property of ideals pJ : if  1pA J p     

and qB J , where 1 1 1
p q
  , then 1,AB BA J . 

Now we will give the definition and some properties of the trace of a nuclear 
operator. Let 1A J , and  ne  be an orthonormal (finite or countable) base of the 

space H . Then the series  ,n n
n

Ae e  converges, and its sum does not depend on a 

choice of the orthonormal base  ne . This sum is called (matrix) trace of operator 

A  and is denoted  by  tr A . If A J ,  B BL H  and 1,AB BA J , then 
                                              tr trAB BA .                                        (2) 

The norm of 2J  and the trace are connected by the following relation (see 
[3]): 
                                             2 *

22 trA A A A J  .                                   (3) 
The Formula of Traces. We will establish a relation, connecting norms of 

commutators AB BA  and * *AB B A . 
Theor em . If one of the bounded linear operators ,A B , acting in Hilbert 

space H , is nuclear, then the following equality holds: 

         22 * * * * * *
2 2

trAB BA AB B A A A AA B B BB         . (4) 

Proof.  First notice, that by the conditions of the Theorem operators 
AB BA  and * *AB B A  are nuclear, and since for 1 r s     the following 

inclusion s rJ J  is true, the left part of (4) is well-defined. We will denote 

  22 * * * * * *
2 2

trAB BA AB B A A A AA B B BB          . 

In view of (3), we have 

       ** * * * *tr trAB BA AB BA AB B A AB B A             
 

      * * * * * * * *tr tr trA A AA B B BB B A AB B A BA         

         * * * * * * * * * *tr tr tr tr trA B AB A B BA BA AB BA B A A BAB       

         * * * * * * * * * *tr tr tr tr trA BB A A AB B A ABB AA B B AA BB      
or 

       * * * * * * * *tr tr tr trB A AB A ABB A B BA AA B B           

       * * * * * * * *tr tr tr trBA B A A B AB A BAB B A BA            

       * * * * * * * *tr tr tr trA AB B BA AB AA BB A BB A          . 

According to (2), the expressions, standing in the square brackets, are equal 
to zero, and consequently 0  , i.e. (4)  is true. 

The Theorem is proved. 
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Remark 1.  The  steps  in  the  proof  of  the  Theorem  show,  that  the  
statement of the  Theorem  remains  true,  if  instead  of  nuclearity  of  operators 
A  or B  we  assume, that  one  of  these  operators  belongs to pJ ,  and  another  to 

qJ ,  where  1 p     and  1 1 1
p q
  . 

Remark 2. The formula (4) generalizes   the similar formula for the square 
matrices, established by J. Neumann (see [4, 5]). If in the conditions of the Theo-
rem one of operators ,A B  is normal, then the commutability of ,A B  implies the 
commutability of *,A B . This fact for square matrices has been noticed by Neu-
mann, who has raised the question about its possible generalisations. In 1950 Fug-
lede, Putnam and Rosenblum have shown that this statement is true for normal op-
erators from algebra  BL H  (see [6]). This result of Fuglede, Putnam and Rosen-
blum, which goes back to Neumann, has far-reaching generalizations, which can be 
found in works [7, 8]. 

The author thanks professor M. I. Karakhanyan for the formulation of the 
problem and useful discussions of results. 
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Հ. Ա. Ասատրյան 
 

Հետքերի մի բանաձևի մասին 
 

Ջ. Նեյմանի կողմից քառակուսային մատրիցների համար ստացված 
հետքերի մի բանաձև ընդհանրացվում է միջուկային օպերատորների համար: 

 
 

Г. А. Асатрян. 
 

Об одной формуле следов 
                                               

Одна формула следов, установленная Дж. Нейманом для квадратных 
матриц, обобщается для ядерных операторов. 

 
 


