ON THE MINIMAL COSET COVERINGS OF THE SET OF SINGULAR AND OF THE SET OF NONSINGULAR MATRICES
DOI:
https://doi.org/10.46991/PYSU:A/2018.52.1.008Keywords:
linear algebra, covering with cosets, matricesAbstract
It is determined minimum number of cosets over linear subspaces in $ \mathbb{F}_q $ necessary to cover following two sets of $ A (n \mathclose{\times} n) $ matrices. For one of the set of matrices $ \det{A} = 0 $ and for the other set $ \det{A} \neq 0 $. It is proved that for singular matrices this number is equal to $ 1 \mathclose{+} q \mathclose{+} q^2 \mathclose{+} \ldots \mathclose{+} q^{n-1} $ and for the nonsingular matrices it is equal to $ (q^n \mathclose{-} 1)(q^n \mathclose{-} q)(q^n \mathclose{-} q^2) \cdots (q^n \mathclose{-} q^{n-1}) / q^{\large{\binom{n}{2}}} $.
Downloads
Published
2018-04-16
Issue
Section
Mathematics
License
Copyright (c) 2018 Proceedings of the YSU

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Minasyan, A. (2018). ON THE MINIMAL COSET COVERINGS OF THE SET OF SINGULAR AND OF THE SET OF NONSINGULAR MATRICES. Proceedings of the YSU A: Physical and Mathematical Sciences, 52(1 (245), 8-11. https://doi.org/10.46991/PYSU:A/2018.52.1.008