ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS
DOI:
https://doi.org/10.46991/PYSU:A/2019.53.2.119Keywords:
linear algebra, finite field, coset of linear subspace, linearized coveringAbstract
We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \mathclose{+} x_{2}x_{3}x_{4} \mathclose{+} \cdots \mathclose{+} x_{3n}x_{1}x_{2} \mathclose{+} x_{1}x_{3}x_{5} \mathclose{+} x_{4}x_{6}x_{8} \mathclose{+} \cdots \mathclose{+} x_{3n-2}x_{3n}x_{2} \mathclose{=} b $$ over an arbitrary finite field.
Downloads
Published
2019-08-15
Issue
Section
Informatics
License
Copyright (c) 2019 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS. (2019). Proceedings of the YSU A: Physical and Mathematical Sciences, 53(2 (249), 119-126. https://doi.org/10.46991/PYSU:A/2019.53.2.119