EXPLICIT FORM FOR THE FIRST INTEGRAL AND LIMIT CYCLES OF A CLASS OF PLANAR KOLMOGOROV SYSTEMS

Authors

  • Rachid Boukoucha Department of Technology, Faculty of Technology, University of Bejaia, Bejaia, Algeria

DOI:

https://doi.org/10.46991/PYSU:A/2021.55.1.01

Keywords:

Kolmogorov system, first integral, periodic orbits, limit cycle

Abstract

In this paper we characterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form

\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +P\left( x,y\right) \exp \left( \dfrac{C\left( x,y\right) }{D\left( x,y\right) }\right) \right) , \\ \\ y^{\prime }=y\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +Q\left( x,y\right) \exp \left( \dfrac{V\left( x,y\right) }{W\left( x,y\right) }\right) \right) , \end{array} \right. \end{equation*}

where $A\left( x,y\right)$, $B\left( x,y\right)$, $C\left( x,y\right)$, $D\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $R\left(x,y\right)$, $V\left( x,y\right)$, $W\left( x,y\right)$ are homogeneous polynomials of degree $a$, $a$, $b$, $b$, $n$, $n$, $m$, $c$, $c$, respectively. Concrete example exhibiting the applicability of our result is introduced.

Downloads

Published

2021-05-21

How to Cite

Boukoucha, R. (2021). EXPLICIT FORM FOR THE FIRST INTEGRAL AND LIMIT CYCLES OF A CLASS OF PLANAR KOLMOGOROV SYSTEMS. Proceedings of the YSU A: Physical and Mathematical Sciences, 55(1 (254), 1–11. https://doi.org/10.46991/PYSU:A/2021.55.1.01

Issue

Section

Mathematics