ON WEIGHTED SOLUTIONS OF $\overline{\partial}$-EQUATION IN THE UNIT DISC

Authors

  • Feliks V. Hayrapetyan Institute of Mathematics of NAS RA, Armenia

DOI:

https://doi.org/10.46991/PYSU:A/2021.55.1.020

Keywords:

$\overline{\partial}$-equation, weighted function spaces

Abstract

In the paper an equation $\partial g(z)/\partial \overline{z} = v(z)$ is considered in the unit disc $\mathbb{D}$.  For $C^k$-functions $v$ $(k = 1,2,3,\dots, \infty)$ from weighted $L^p$-classes $(1 \leq p < \infty)$ with weight functions of the type $|z|^{2\gamma} (1-|z|^{2\rho})^{\alpha}$, $z \in \mathbb{D}$, a family $g_{\beta}$ of solutions is constructed ($\beta$ is a complex parameter).

Downloads

Published

2021-05-21

How to Cite

Hayrapetyan, F. V. (2021). ON WEIGHTED SOLUTIONS OF $\overline{\partial}$-EQUATION IN THE UNIT DISC. Proceedings of the YSU A: Physical and Mathematical Sciences, 55(1 (254), 20–28. https://doi.org/10.46991/PYSU:A/2021.55.1.020

Issue

Section

Mathematics