ON WEIGHTED SOLUTIONS OF $\overline{\partial}$-EQUATION IN THE UNIT DISC
DOI:
https://doi.org/10.46991/PYSU:A/2021.55.1.020Keywords:
$\overline{\partial}$-equation, weighted function spacesAbstract
In the paper an equation $\partial g(z)/\partial \overline{z} = v(z)$ is considered in the unit disc $\mathbb{D}$. For $C^k$-functions $v$ $(k = 1,2,3,\dots, \infty)$ from weighted $L^p$-classes $(1 \leq p < \infty)$ with weight functions of the type $|z|^{2\gamma} (1-|z|^{2\rho})^{\alpha}$, $z \in \mathbb{D}$, a family $g_{\beta}$ of solutions is constructed ($\beta$ is a complex parameter).
Downloads
Published
2021-05-21
How to Cite
Hayrapetyan, F. V. (2021). ON WEIGHTED SOLUTIONS OF $\overline{\partial}$-EQUATION IN THE UNIT DISC. Proceedings of the YSU A: Physical and Mathematical Sciences, 55(1 (254), 20–28. https://doi.org/10.46991/PYSU:A/2021.55.1.020
Issue
Section
Mathematics
License
Copyright (c) 2021 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.