POWERS OF SUBSETS IN FREE PERIODIC GROUPS
DOI:
https://doi.org/10.46991/PYSU:A/2022.56.2.043Keywords:
power of subset, product of subset, Burnside groupAbstract
It is proved that for every odd $n \ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\le 658n^2$ over the group alphabet $\{x,y\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\cdot 2.9^{[\frac{t}{658s^2}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s\ge1039$.
References
Chang M.-Ch. Product Theorems in SL2 and SL3. J. Inst. Math. Jussieu, 7 (2008), 1--25. https://doi.org/10.1017/S1474748007000126
Safin S.R. Powers of Subsets of Free Groups. Mat. Sb., 202 (2011), 97--102. https://doi.org/10.4213/sm7811
Razborov A.A. A Product Theorem in Free Groups. Ann. of Math., 179 (2014), 405--429. https://doi.org/10.4007/annals.2014.179.2.1
Terence T., Van V. Additive Combinatorics. V. 105. In: Cambridge Studies in Advanced Mathematics. Cambridge, Cambridge University Press (2006).
Adian S.I. The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. V. 95. Berlin, Springer--Verlag (1979).
Adian S.I., Lysenok I.G. On Groups all of whose Proper Subgroups are Finite Cyclic. Izv. Akad. Nauk SSSR. Ser. Mat., 55 (1991), 933--990 (in Russian); Izv. Math., 39 (1992), 905--957 (in English). https://doi.org/10.1070/IM1992v039n02ABEH002232
Atabekian V.S. On Subgroups of Free Burnside Groups of Odd Period n ≥ 1003. Izv. Ross. Akad. Nauk Ser. Mat., 73 (2009), 3--36 (in Russian); Izv. Math., 73 (2009), 861--892 (in English). https://doi.org/10.4213/im2633
Atabekian V.S. Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period. Mat. Zametki, 85 (2009), 516--523 (in Russian); Math. Notes, 85 (2009), 496--502 (in English). https://doi.org/10.1134/S0001434609030213
Atabekian V.S. Monomorphisms of Free Burnside Groups. Math. Notes, 86 (2009), 457--462. https://doi.org/10.1134/S0001434609090211
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.