OPTICAL ABSORPTION IN SEMICONDUCTOR NANOWIRE MEDIATED BY ELECTRON-POLAR OPTICAL PHONON AND SPIN-ORBIT INTERACTIONS

Authors

  • Tigran K. Ghukasyan Chair of Solid States, YSU, Armenia

DOI:

https://doi.org/10.46991/PYSU:A/2022.56.3.116

Keywords:

semiconductor nanowire, optical absorption, spin-orbit coupling, polar optical phonon

Abstract

The intrasubband and intersubband absorption of light by free charge carriers in a semiconductor nanowire upon scattering by polar optical phonons mediated by Rashba and Dresselhaus spin-orbit interactions has been studied. The dependence of the absorption coefficient on the energy of the incident photon is investigated by counting the transitions between different conduction subbands. It is shown that the spin-orbit interaction leads to an increase in the coefficient of intrasubband and intersubband absorption of light, with the peaks of the absorption coefficient being determined by the energies of the absorbed photon and the absorbed or emitted phonon. In this case, the difference between the values of the absorption coefficients with or without spin-orbit interaction has maximum in the range of the local minimum of the absorption coefficient obtained by ignoring the spin-orbit coupling.

References

Bhargavi K.S., Patil S., Kubakaddi S.S. Acoustic Phonon Assisted Free-carrier Optical Absorption in an $n$-type Monolayer MoS$_2$ and Other Transition-metal Dichalcogenides. J. Appl. Phys. 118 (2015), 044308. https://doi.org/10.1063/1.4927630

Dumke W.P. Quantum Theory of Free Carrier Absorption. Phys. Rev. 124 (1961), 1813-1817. https://doi.org/10.1103/physrev.124.1813

Seeger K. Semiconductor Physics. Springer, Berlin-Heidelberg (2004). https://doi.org/10.1007/978-3-662-09855-4

Spector H.N. Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures. Phys. Rev. B 28 (1983), 971-976. https://doi.org/10.1103/physrevb.28.971

Kubakaddi S.S., Mulimani B.G. Free-carrier Absorption in Semiconducting Quantum Well Wires. J. Phys. C: Solid State Phys. 18 (1985), 6647-6652. https://doi.org/10.1088/0022-3719/18/36/019

Adamska H., Spector H.N. Free-carrier Absorption from Electrons in Confined Systems. J. Appl. Phys. 59 (1986), 619-626. https://doi.org/10.1063/1.336621

Wu C.C., Lin C.J. Free-carrier Absorption in $n$-type Piezoelectric Semiconductor Films. J. Phys. Condens. Matter 6 (1994), 10147-10158. https://doi.org/10.1088/0953-8984/6/46/030

Yu Y.B., Zhu S.N., Guo K.X. Electron-phonon Interaction Effect on Optical Absorption in Cylindrical Quantum Wires. Solid State Commun. 139 (2006), 76-79. https://doi.org/10.1016/j.ssc.2006.04.009

Wu C.C., Lin C.J. Effect of Electron-phonon Scattering Mechanisms on Free-carrier Absorption in Quasi-one-dimensional Structures. Physica B: Condens. Matter. 316-317 (2002), 346-349. https://doi.org/10.1016/s0921-4526(02)00504-5

Adamska H., Spector H.N. Free Carrier Absorption in Quantum Well Structures for Polar Optical Phonon Scattering. J. Appl. Phys. 56 (1984), 1123-1127. https://doi.org/10.1063/1.334084

Wu C.C., Lin C.-J. Free-carrier Absorption in $n$-type Gallium Arsenide Films for Polar Optical Phonon Scattering. J. Appl. Phys. 79 (1996), 781-785. https://doi.org/10.1063/1.360825

Kubakaddi S.S., Mulimani B.G. Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures for Nonpolar Optical Phonon Scattering. J. Appl. Phys. 58 (1985), 3640-3642. https://doi.org/10.1063/1.335745

Kubakaddi S.S., Mulimani B.G. Free-carrier Absorption in Semiconducting Quantum-well Wires for Nonpolar Optical-phonon Scattering. J. Appl. Phys. 63 (1988), 1799-1801. https://doi.org/10.1063/1.339873

Khoa D.Q., Phuong L.T.T., Hoi B.D. Nonlinear Absorption Coefficient and Optically Detected Electrophonon Resonance in Cylindrical GaAs/AlAs Quantum Wires with Different Confined Phonon Models. Superlattices Microstruct. 103 (2017), 252-261. https://doi.org/10.1016/j.spmi.2017.01.025

Žutić I., Fabian J., Sarma S.D. Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 76 (2004), 323-410. https://doi.org/10.1103/revmodphys.76.323

Rashba E.I. Fiz. Tver. Tela 2 (1960), 1224 (in Russian).

Nitta J., Akazaki T., et al. Gate Control of Spin-orbit Interaction in an Inverted In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As Heterostructure. Phys. Rev. Lett. 78 (1997), 1335-1338. https://doi.org/10.1103/physrevlett.78.1335

Grundler D. Large Rashba Splitting in InAs Quantum Wells Due to Electron Wave Function Penetration into the Barrier Layers. Phys. Rev. Lett. 84 (2000), 6074-6077. https://doi.org/10.1103/physrevlett.84.6074

Koga T., Nitta J., et al. Rashba Spin-orbit Coupling Probed by the Weak Antilocalization Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a Function of Quantum Well Asymmetry. Phys. Rev. Lett. 89 (2002), 046801. https://doi.org/10.1103/physrevlett.89.046801

Zhang S., Tang N., et al. Generation of Rashba Spin-orbit Coupling in CdSe Nanowire by Ionic Liquid Gate. Nano Letters 15 (2015), 1152-1157. https://doi.org/10.1021/nl504225c

Dresselhaus G. Spin-orbit Coupling Effects in Zinc Blende Structures. Phys. Rev. 100 (1955), 580-586. https://doi.org/10.1103/physrev.100.580

Knobbe J., Schäpers T. Magnetosubbands of Semiconductor Quantum Wires with Rashba Spin-orbit Coupling. Phys. Rev. B 71 (2005), 035311. https://doi.org/10.1103/physrevb.71.035311

Serra L., Sánchez D., López R. Evanescent States in Quantum Wires with Rashba Spin-orbit Coupling. Phys. Rev. B 76 (2007), 045339. https://doi.org/10.1103/physrevb.76.045339

Erlingsson S.I., Egues J.C., Loss D. Energy Spectra for Quantum Wires and Two-dimensional Electron Gases in Magnetic Fields with Rashba and Dresselhaus Spin-orbit Interactions. Phys. Rev. B 82 (2010), 155456. https://doi.org/10.1103/physrevb.82.155456

Debald S., Kramer B. Rashba Effect and Magnetic Field in Semiconductor Quantum Wires. Phys. Rev. B 71 (2005), 115322. https://doi.org/10.1103/physrevb.71.115322

Biswas T., Ghosh T.K. Electron-phonon Interaction in a Spin-orbit Coupled Quantum Wire with a Gap. Semicond. Sci. Technol. 30 (2014), 015022. https://doi.org/10.1088/0268-1242/30/1/015022

Quay C.H.L., Hughes T.L., et al. Observation of a One-dimensional Spin-orbit Gap in a Quantum Wire. Nat. Phys. 6 (2010), 336-339. https://doi.org/10.1038/nphys1626

Pereira R.G., Miranda E. Magnetically Controlled Impurities in Quantum Wires with Strong Rashba Coupling. Phys. Rev. B 71 (2005), 085318. https://doi.org/10.1103/physrevb.71.085318

Karaaslan Y., Gisi B., et al. Spin-orbit Interaction and Magnetic Field Effects on the Energy Dispersion of Double Quantum Wire. Superlattices Microstruct. 85 (2015), 401-409. https://doi.org/10.1016/j.spmi.2015.06.002

Serra L., Sánchez D., López R. Rashba Interaction in Quantum Wires with in-plane Magnetic Fields. Phys. Rev. B 72 (2005), 235309. https://doi.org/10.1103/physrevb.72.235309

Song T.L., Liang X.X. Stark Effects on Bound Polarons in Polar Rectangular Quantum Wires. J. Appl. Phys. 110 (2011), 063721. https://doi.org/10.1063/1.3642973

Zhang S., Liang R., et al. Magnetosubbands of Semiconductor Quantum Wires with Rashba and Dresselhaus Spin-orbit Coupling. Phys. Rev. B 73 (2006), 155316. https://doi.org/10.1103/physrevb.73.155316

Zhang T.Y., Zhao W., Liu X.-M. Energy Dispersion of the Electrosubbands in Parabolic Confining Quantum Wires: Interplay of Rashba, Dresselhaus, Lateral Spin-orbit Interaction and the Zeeman Effect. J. Phys. Condens. Matter 21 (2009), 335501. https://doi.org/10.1088/0953-8984/21/33/335501

Liu J.F., Zhong Z.C., et al. Enhancement of Polarization in a Spin-orbit Coupling Quantum Wire with a Constriction. Phys. Rev. B 76 (2007), 195304. https://doi.org/10.1103/physrevb.76.195304

Governale M., Zülicke U. Spin Accumulation in Quantum Wires with Strong Rashba Spin-orbit Coupling. Phys. Rev. B 66 (2002), 073311. https://doi.org/10.1103/physrevb.66.073311

Lee H.C., Yang S.-R.E. Collective Excitation of Quantum Wires and Effect of Spin-orbit Coupling in the Presence of a Magnetic Field Along the Wire. Phys. Rev. B 72 (2005), 245338. https://doi.org/10.1103/physrevb.72.245338

Vartanian A., Kirakosyan A., Vardanyan K. Fröhlich Polaron in Nanowire with Rashba and Dresselhaus Spin-orbit Couplings. Superlattices Microstruct. 109 (2017), 655-661. https://doi.org/10.1016/j.spmi.2017.05.057

Mireles F., Kirczenow G. Ballistic Spin-polarized Transport and Rashba Spin Precession in Semiconductor Nanowires. Phys. Rev. B 64 (2001), 024426. https://doi.org/10.1103/physrevb.64.024426

Schäpers T., Knobbe J., Guzenko V.A. Effect of Rashba Spin-orbit Coupling on Magnetotransport in InGaAs/InP Quantum Wire Structures. Phys. Rev. B 69 (2004), 235323. https://doi.org/10.1103/physrevb.69.235323

Vartanian A., Ghukasyan T., et al. Simultaneous Effects of the Confinement of Polar Optical Phonons and Spin-orbit Coupling on the Free Carrier Absorption of a Nanowire. Micro and Nanostructures 168 (2022), 207287. https://doi.org/10.1016/j.micrna.2022.207287

Xie H.-J., Chen C.-Y., Ma B.-K. Bound Polaron in a Cylindrical Quantum Wire of a Polar Crystal. Phys. Rev. B 61 (2000), 4827-4834. https://doi.org/10.1103/physrevb.61.4827

Downloads

Published

2022-10-21

How to Cite

Ghukasyan, T. K. (2022). OPTICAL ABSORPTION IN SEMICONDUCTOR NANOWIRE MEDIATED BY ELECTRON-POLAR OPTICAL PHONON AND SPIN-ORBIT INTERACTIONS. Proceedings of the YSU A: Physical and Mathematical Sciences, 56(3 (259), 116–127. https://doi.org/10.46991/PYSU:A/2022.56.3.116

Issue

Section

Physics