VERTEX DISTINGUISHING PROPER EDGE COLORINGS OF THE CORONA PRODUCTS OF GRAPHS
DOI:
https://doi.org/10.46991/PYSU:A.2024.58.2.047Keywords:
edge coloring, proper edge coloring, vertex distinguishing proper coloring, corona productAbstract
A proper edge coloring of a graph $G$ is a mapping $f:E(G)\longrightarrow \mathbb{Z}_{\geq 0}$ such that $f(e)\not=f(e')$ for every pair of adjacent edges $e$ and $e'$ in $G$. A proper edge coloring $f$ of a graph $G$ is called vertex distinguishing if for any different vertices $u,v \in V(G)$, $S(u,f) \ne S(v,f)$, where $S(v,f) = \{f(e) \ | \ e = uv \in E(G)\}$. The minimum number of colors required for a vertex distinguishing proper coloring of a graph $G$ is denoted by $\chi'_{vd}(G)$ and called vertex distinguishing chromatic index of $G$. In this paper we provide lower and upper bounds on the vertex distinguishing chromatic index of the corona products of graphs.
References
West D.B. Introduction to Graph Theory. New Jersey, Prentice-Hall (2001). https://dwest.web.illinois.edu/igt/
Burris A.C., Schelp R.H. Vertex-Distinguishing Proper Edge-colorings. Journal of Graph Theory 26 (1997), 73-82.
Cerny J., Hornak M., Sotak R. Observability of a Graph. Mathematica Slovaca 46 (1996), 21-31. https://eudml.org/doc/34424>
Burris A.C. Vertex-Distinguishing Edge-Colorings. Ph.D. Thesis. Tennessee, Memphis, Memphis State University (1993). https://www.memphis.edu/msci/people/pbalistr/vdecg.pdf
Hornak M., Sotak R. Observability of Complete Multipartite Graphs with Equipotent Parts. Ars Combinatoria 41 (1995), 289-301. https://dblp.org/rec/journals/arscom/HornakS95.html
Balister P.N., Bollobas B., Schelp R.H. Vertex Distinguishing Coloring of Graphs with Δ(G)=2. Discrete Mathematics 252 (2002), 17-29. https://doi.org/10.1016/S0012-365X(01)00287-4
Frucht R.W., Harary F. On the Corona of Two Graphs. Aequationes Mathematicae 4 (1970), 322-325. https://eudml.org/doc/136091
Baril J.-L., Kheddouci H., Togni O. Vertex Distinguishing Edge- and Total-Colorings of Cartesian and Other Product Graphs. Ars Combinatoria 107 (2012), 109-127.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.