MICROWAVE RESONANCE IN A SYSTEM OF INTERACTING CONDUCTING RINGS AND ITS APPLICATIONS
DOI:
https://doi.org/10.46991/PYSU:A.2024.58.2.066Keywords:
Sommerfeld waves, ring oscillators, coupled modes, resonant transmission, filtersAbstract
The interaction between standing Sommerfeld microwaves within a system comprising two closely spaced conducting rings gives rise to pronounced resonance phenomena. The behavior of this system depends on the relative arrangement of the receiving and transmitting points. Specifically, it leads to a sharp reduction or enhancement of signal output within a narrow frequency range. Remarkably, this structure can serve dual roles: acting as both a band-stop filter and a band-pass filter, all within the same restricted frequency band.
References
Molnar D., Schaich T., et al. Interaction between Surface Waves on Wire Lines. Proc. R. Soc. A 477 (2021). Article Number 20200795. https://doi.org/10.1098/rspa.2020.0795
Shen X., Jun Cui T. Planar Plasmonic Metamaterial on a Thin Film with Nearly Zero Thickness. Appl. Phys. Lett. 102 (2013). Article Number 211909. https://doi.org/10.1063/1.4808350
Tang W.X., Zhang H.C., et al. Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies. Adv. Opt. Mater. 7 (2019). Article Number 1800421. https://doi.org/10.1002/adom.201800421
Chen L., Gao F., et al. Editorial: Recent Progress in Surface Electromagnetic Modes. Front. Phys. 9 (2021). https://doi.org/10.3389/fphy.2021.684584
Goubau G. Single-Conductor Surface-Wave Transmission Lines. Proc. IRE 39 (1951), 619-624. https://doi.org/10.1109/JRPROC.1951.233782
Vaughn B.J., Peroulis D., Fisher A. Mid-Range Wireless Power Transfer Based on Goubau Lines. Microwave Symposium. IEEE/MTT-S International (IMS, IEEE) (2018), 968-971. https://doi.org/10.1109/MWSYM.2018.8439372
Li J., Zhang Q., et al. Pulse Transmission Performance of Goubau Lines and Spoof Surface Plasmon Polaritons Transmission Lines. 2020 IEEE Asia-Pacific Microwave Conference (APMC 2020) (2020), 795-797. https://doi.org/10.1109/APMC47863.2020.9331408
Schaich T., Dinc E., et al. Advanced Modeling of Surface Waves on Twisted Pair Cables: Surface Wave Stopbands. IEEE Trans. Microw. Theory Tech. 70 (2022), 2541-2552. https://doi.org/10.1109/TMTT.2022.3160708
Vaughn B., Peroulis D. An Updated Applied Formulation for the Goubau Transmission Line. J. Appl. Phys. 126 (2019). Article Number 194902. https://doi.org/10.1063/1.5125141
Smirnov Y., Smolkin E., Shestopalov Y. Surface Waves in a Goubau Line Filled with Nonlinear Anisotropic Inhomogeneous Medium. Appl. Anal. 101 (2022), 6172-6190. https://doi.org/10.1080/00036811.2021.1919645
Ge S., Zhang Q., et al. Analysis of Asymmetrically Corrugated Goubau-Line Antenna for Endfire Radiation. IEEE Trans. Antennas Propag. 67 (2019), 7133-7138. https://doi.org/10.1109/TAP.2019.2927633
Laurette S., Treizebre A., Bocquet B. Corrugated Goubau Lines to Slow Down and Confine THz Waves. IEEE Trans. Terahertz Sci. Technol. 2 (2012), 340-344. https://doi.org/10.1109/TTHZ.2012.2189207
Akalin T., Treizebre A., Bocquet B. Single-Wire Transmission Lines at Terahertz Frequencies. IEEE Trans. Microw. Theory Tech. 54 (2006), 2762-2767. https://doi.org/10.1109/TMTT.2006.874890
Wagih M. Broadband Low-Loss On-Body UHF to Millimeter-Wave Surface Wave Links Using Flexible Textile Single Wire Transmission Lines. IEEE Open J. Antennas Propag. 3 (2022), 101-111. https://doi.org/10.1109/OJAP.2021.3136654
Chen W.-C., Mock J.J., et al. Controlling Gigahertz and Terahertz Surface Electromagnetic Waves with Metamaterial Resonators. Phys. Rev. X. 1 (2011). Article Number 021016. https://doi.org/10.1103/PhysRevX.1.021016
Horestani A.K., Withayachumnankul W., et al. Metamaterial-Inspired Bandpass Filters for Terahertz Surface Waves on Goubau Lines. IEEE Trans. Terahertz Sci. Technol. 3 (2013), 851-858. https://doi.org/10.1109/TTHZ.2013.2285556
Maier S.A., Andrews S.R., et al. Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires. Phys. Rev. Lett. 97 (2006). Article Number 176805. https://doi.org/10.1103/PhysRevLett.97.176805
Xu Y., Nerguizian C., Bosisio R.G. Wideband Planar Goubau Line Integrated Circuit Components at Millimetre Waves. IET Microwaves, Antennas Propag. 5 (2011), 882. https://doi.org/10.1049/iet-map.2010.0025
Tang X.-L., Zhang Q., et al. Continuous Beam Steering through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas. Sci. Rep. 7 (2017). Article Number 11685. https://doi.org/10.1038/s41598-017-12118-8
Liu L.W., Kandwal A., et al. Non-Invasive Blood Glucose Monitoring Using a Curved Goubau Line. Electronics 8 (2019), 662. https://doi.org/10.3390/electronics8060662
Boutejdar A., Omar A. A Miniature 5.2 GHz Bandstop Microstrip Filter Using Multilayer-Technique and Coupled Octagonal Defected Ground Structure. Microwave and Optical Technology Letters 51 (2009), 2810-2813. https://doi.org/10.1002/mop.24770
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.