MICROWAVE RESONANCE IN A SYSTEM OF INTERACTING CONDUCTING RINGS AND ITS APPLICATIONS

Authors

DOI:

https://doi.org/10.46991/PYSU:A.2024.58.2.066

Keywords:

Sommerfeld waves, ring oscillators, coupled modes, resonant transmission, filters

Abstract

The interaction between standing Sommerfeld microwaves within a system comprising two closely spaced conducting rings gives rise to pronounced resonance phenomena. The behavior of this system depends on the relative arrangement of the receiving and transmitting points. Specifically, it leads to a sharp reduction or enhancement of signal output within a narrow frequency range. Remarkably, this structure can serve dual roles: acting as both a band-stop filter and a band-pass filter, all within the same restricted frequency band.

References

Molnar D., Schaich T., et al. Interaction between Surface Waves on Wire Lines. Proc. R. Soc. A 477 (2021). Article Number 20200795. https://doi.org/10.1098/rspa.2020.0795

Shen X., Jun Cui T. Planar Plasmonic Metamaterial on a Thin Film with Nearly Zero Thickness. Appl. Phys. Lett. 102 (2013). Article Number 211909. https://doi.org/10.1063/1.4808350

Tang W.X., Zhang H.C., et al. Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies. Adv. Opt. Mater. 7 (2019). Article Number 1800421. https://doi.org/10.1002/adom.201800421

Chen L., Gao F., et al. Editorial: Recent Progress in Surface Electromagnetic Modes. Front. Phys. 9 (2021). https://doi.org/10.3389/fphy.2021.684584

Goubau G. Single-Conductor Surface-Wave Transmission Lines. Proc. IRE 39 (1951), 619-624. https://doi.org/10.1109/JRPROC.1951.233782

Vaughn B.J., Peroulis D., Fisher A. Mid-Range Wireless Power Transfer Based on Goubau Lines. Microwave Symposium. IEEE/MTT-S International (IMS, IEEE) (2018), 968-971. https://doi.org/10.1109/MWSYM.2018.8439372

Li J., Zhang Q., et al. Pulse Transmission Performance of Goubau Lines and Spoof Surface Plasmon Polaritons Transmission Lines. 2020 IEEE Asia-Pacific Microwave Conference (APMC 2020) (2020), 795-797. https://doi.org/10.1109/APMC47863.2020.9331408

Schaich T., Dinc E., et al. Advanced Modeling of Surface Waves on Twisted Pair Cables: Surface Wave Stopbands. IEEE Trans. Microw. Theory Tech. 70 (2022), 2541-2552. https://doi.org/10.1109/TMTT.2022.3160708

Vaughn B., Peroulis D. An Updated Applied Formulation for the Goubau Transmission Line. J. Appl. Phys. 126 (2019). Article Number 194902. https://doi.org/10.1063/1.5125141

Smirnov Y., Smolkin E., Shestopalov Y. Surface Waves in a Goubau Line Filled with Nonlinear Anisotropic Inhomogeneous Medium. Appl. Anal. 101 (2022), 6172-6190. https://doi.org/10.1080/00036811.2021.1919645

Ge S., Zhang Q., et al. Analysis of Asymmetrically Corrugated Goubau-Line Antenna for Endfire Radiation. IEEE Trans. Antennas Propag. 67 (2019), 7133-7138. https://doi.org/10.1109/TAP.2019.2927633

Laurette S., Treizebre A., Bocquet B. Corrugated Goubau Lines to Slow Down and Confine THz Waves. IEEE Trans. Terahertz Sci. Technol. 2 (2012), 340-344. https://doi.org/10.1109/TTHZ.2012.2189207

Akalin T., Treizebre A., Bocquet B. Single-Wire Transmission Lines at Terahertz Frequencies. IEEE Trans. Microw. Theory Tech. 54 (2006), 2762-2767. https://doi.org/10.1109/TMTT.2006.874890

Wagih M. Broadband Low-Loss On-Body UHF to Millimeter-Wave Surface Wave Links Using Flexible Textile Single Wire Transmission Lines. IEEE Open J. Antennas Propag. 3 (2022), 101-111. https://doi.org/10.1109/OJAP.2021.3136654

Chen W.-C., Mock J.J., et al. Controlling Gigahertz and Terahertz Surface Electromagnetic Waves with Metamaterial Resonators. Phys. Rev. X. 1 (2011). Article Number 021016. https://doi.org/10.1103/PhysRevX.1.021016

Horestani A.K., Withayachumnankul W., et al. Metamaterial-Inspired Bandpass Filters for Terahertz Surface Waves on Goubau Lines. IEEE Trans. Terahertz Sci. Technol. 3 (2013), 851-858. https://doi.org/10.1109/TTHZ.2013.2285556

Maier S.A., Andrews S.R., et al. Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires. Phys. Rev. Lett. 97 (2006). Article Number 176805. https://doi.org/10.1103/PhysRevLett.97.176805

Xu Y., Nerguizian C., Bosisio R.G. Wideband Planar Goubau Line Integrated Circuit Components at Millimetre Waves. IET Microwaves, Antennas Propag. 5 (2011), 882. https://doi.org/10.1049/iet-map.2010.0025

Tang X.-L., Zhang Q., et al. Continuous Beam Steering through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas. Sci. Rep. 7 (2017). Article Number 11685. https://doi.org/10.1038/s41598-017-12118-8

Liu L.W., Kandwal A., et al. Non-Invasive Blood Glucose Monitoring Using a Curved Goubau Line. Electronics 8 (2019), 662. https://doi.org/10.3390/electronics8060662

Boutejdar A., Omar A. A Miniature 5.2 GHz Bandstop Microstrip Filter Using Multilayer-Technique and Coupled Octagonal Defected Ground Structure. Microwave and Optical Technology Letters 51 (2009), 2810-2813. https://doi.org/10.1002/mop.24770

Downloads

Published

2024-10-30

How to Cite

Margaryan, N. G. (2024). MICROWAVE RESONANCE IN A SYSTEM OF INTERACTING CONDUCTING RINGS AND ITS APPLICATIONS. Proceedings of the YSU A: Physical and Mathematical Sciences, 58(2 (264), 66–72. https://doi.org/10.46991/PYSU:A.2024.58.2.066