ON DEFICIENCY OF COMPLETE 3-PARTITE AND 4-PARTITE GRAPHS
DOI:
https://doi.org/10.46991/PYSUA.2025.59.3.084Keywords:
proper edge-coloring, interval (consecutive) coloring, deficiency, complete multipartite graph, computer experimentsAbstract
A proper t-edge-coloring of a graph G is a mapping $\alpha: E(G)\rightarrow \{1,\ldots,t\}$ such that all colors are used, and $\alpha(e)\neq \alpha(e^{\prime})$ for every pair of adjacent edges $e,e^{\prime}\in E(G)$. If $\alpha $ is a proper edge-coloring of a graph G and $v\in V(G)$, then the spectrum of a vertex v, denoted by $S\left(v,\alpha \right)$, is the set of all colors appearing on edges incident to v. The deficiency of $\alpha$ at vertex $v\in V(G)$, denoted by $\mathrm{def}(v,\alpha)$, is the minimum number of integers that must be added to $S\left(v,\alpha \right)$ to form an interval, and the deficiency $\mathrm{def}\left(G,\alpha\right)$ of a proper edge-coloring $\alpha$ of G is defined as the sum $\displaystyle\sum_{v\in V(G)}\mathrm{def}(v,\alpha)$. The deficiency of a graph G, denoted by $\mathrm{def}(G)$, is defined as follows: $\mathrm{def}(G)=\min_{\alpha}\mathrm{def}\left(G,\alpha\right)$, where the minimum is taken over all possible proper edge-colorings of G. In 2019, Davtyan, Minasyan, and Petrosyan provided an upper bound on the deficiency of complete multipartite graphs. In this paper, we improve this bound for complete tripartite and some complete 4-partite graphs. We also confirm the conjecture that states the deficiency of a graph is bounded by the number of vertices of the graph for all tripartite graphs containing up to 10 vertices.
References
Asratian A.S., Kamalian R.R. Interval Colorings of Edges of a Multigraph. Appl. Math. 5 (1987), 25-34 (in Russian).
Asratian A.S., Kamalian R.R. Investigation on Interval Edge-Colorings of Graphs. J. Combin. Theory Ser. B 62 (1994), 34-43. https://doi.org/10.1006/jctb.1994.1053
Kamalian R.R. Interval Colorings of Complete Bipartite Graphs and Trees. Preprint. Comp. Cen. of Acad. Sci. of Armenian SSR. Yerevan (1989) (in Russian).
Kamalian R.R. Interval Edge-Colorings of Graphs. Doctoral Thesis, Novosibirsk (1990).
Petrosyan P.A. Interval Edge-Colorings of Complete Graphs and n-Dimensional Cubes. Discrete Math. 310 (2010), 1580-1587. https://doi.org/10.1016/j.disc.2010.02.001
Petrosyan P.A., Khachatrian H.H., Tananyan H.G. Interval Edge-Colorings of Cartesian Products of Graphs. I. Discuss. Math. Graph Theory 33 (2013), 613-632. https://doi.org/10.48550/arXiv.1202.0023
Sevast'janov S.V. Interval Colorability of the Edges of a Bipartite Graph. Metody Diskret. Analiza 50 (1990), 61-72 (in Russian).
Asratia A.S., Denley T.M.J., Haggkvist R. Bipartite Graphs and their Applications. Cambridge University Press, Cambridge (1998).
Kubale M. Graph Colorings. American Mathematical Society (2004).
Giaro K., Kubale M., Malafiejski M. On the Deficiency of Bipartite Graphs. Discrete Appl. Math. 94 (1999), 193-203. https://doi.org/10.1016/S0166-218X(99)00021-9
Petrosyan P.A., Sargsyan H.E. On Resistance of Graphs. Discrete Appl. Math. 159 (2011), 1889-1900. https://doi.org/10.1016/j.dam.2010.11.001
Giaro K., Kubale M., Malafiejski M. Consecutive Colorings of the Edges of General Graphs. Discrete Math. 236 (2001), 131-143.
Schwartz A. The Deficiency of a Regular Graph. Discrete Math. 306 (2006), 1947-1954. https://doi.org/10.1016/j.disc.2006.03.059
Bouchard M., Hertz A., Desaulniers G. Lower bounds and a Tabu Search Algorithm for the Minimum Deficiency Problem. J. Comb. Optim. 17 (2009), 168-191. https://doi.org/10.1007/s10878-007-9106-0
Borowiecka-Olszewska M., Drgas-Burchardt E., Haluszczak M. On the Structure and Deficiency of k-Trees with Bounded Degree. Discrete Appl. Math. 201 (2016), 24-37. https://doi.org/10.1016/j.dam.2015.08.008
Davtyan A.R., Minasyan G.M., Petrosyan P.A. On the Deficiency of Complete Multipartite Graphs (2019). https://doi.org/10.48550/arXiv.1912.01546
Petrosyan P.A., Khachatrian H.H., Mamikonyan T.K. On Interval Edge-Colorings of Bipartite Graphs. IEEE Computer Science and Information Technologies (CSIT) (2015), 71-76. https://doi.org/10.1109/CSITechnol.2015.7358253
Tepanyan H.H., Petrosyan P.A. Interval Edge-Colorings of Composition of Graphs. Discrete Applied Mathematics 217 (2017), 368-374. https://doi.org/10.1016/j.dam.2016.09.022
McKay B.D., Piperno A. Practical Graph Isomorphism, II. Journal of Symbolic Computation 60 (2014), 94-112. https://pallini.di.uniroma1.it
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Proceedings of the YSU

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.