COMPLEMENTS OF CLASSICAL AND DYNAMIC INEQUALITIES ANALYZED ON CALCULUS OF TIME SCALES
DOI:
https://doi.org/10.46991/PYSUA.2025.59.3.094Keywords:
time scales, reverses of Callebaut's, Rogers-Holder's and Cauchy-Schwarz's inequalitiesAbstract
In this research article, we present several generalizations of reverses of Callebaut's, Rogers-Hölder's and Cauchy-Schwarz's inequalities via reverses of Young's inequalities on time scales. Discrete, continuous, quantum versions of results are unified and extended on time scales.
References
Hilger S. Ein Mass kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis. Universität Würzburg (1988).
Sahir M.J.S. Consonancy of Dynamic Inequalities Correlated on Time Scale Calculus. Tamkang Journal of Mathematics 51 (2020), 233-243. https://doi.org/10.5556/j.tkjm.51.2020.3145
Sahir M.J.S. Reconciliation of Discrete and Continuous Versions of Some Dynamic Inequalities Synthesized on Time Scale Calculus. Communications in Mathematics 28 (2020), 277-287. https://doi.org/10.2478/cm-2020-0023
Sahir M.J.S. Patterns of Time Scale Dynamic Inequalities Settled by Kantorovich's Ratio. Jordan Journal of Mathematics and Statistics (JJMS) 14 (2021), 397-410. https://doi.org/10.47013/14.3.1
Sahir M.J.S. Coordination of Classical and Dynamic Inequalities Complying on Time Scales. Eur. J. Math. Anal. 3 (2023), Article 12. https://doi.org/10.28924/ada/ma.3.12
Bohner M., Peterson A. Dynamic Equations on Time Scales. MA, Boston, Birkhäuser Boston, Inc. (2001).
Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. MA, Boston, Birkhäuser Boston, Inc. (2003).
Dragomir S.S. Some Results for Isotonic Functionals via an Inequality Due to Kittaneh and Manasrah. Fasciculi Mathematici 59 (2017), 29-42. https://doi.org/10.1515/fascmath-2017-0015
Agarwal R.P., O'Regan D., Saker S.H. Dynamic Inequalities on Time Scales. Switzerland, Cham, Springer International Publishing (2014).
Sheng Q., Fadag M., Henderson J., Davis J.M. An Exploration of Combined Dynamic Derivatives on Time Scales and Their Applications. Nonlinear Anal. Real World Appl. 7 (2006), 395-413. https://doi.org/10.1016/j.nonrwa.2005.03.008
Kittaneh F., Manasrah Y. Improved Young and Heinz Inequalities for Matrices. J. Math. Anal. Appl. 361 (2010), 262-269. https://doi.org/10.1016/j.jmaa.2009.08.059
Kittaneh F., Manasrah Y. Reverse Young and Heinz Inequalities for Matrices. Linear Multilinear Algebra 59 (2011), 1031-1037. https://api.semanticscholar.org/CorpusID:119892717
Dragomir S.S. Some Results for Isotonic Functionals via an Inequality Due to Liao, Wu and Zhao. RGMIA Res. Rep. Coll. 18 (2015), 11. https://doi.org/10.1515/fascmath-2017-0015
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Proceedings of the YSU

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.